Song He (何 松) The visit of theory

Song He (何 松)

ter for Theoretical Physics, Jilin University

#关物理, 彭桓武高能基础理论研究中心

& 2104.03852

Yuan Sun (孙 源)

Yu-Xuan Zhang (张宇轩)

Zhuo-Yu Xian (冼卓宇) The Torus partition function and Wormhole in Thar deformed theory
Thar deformed theory
Thar deformed theory
Song He (何 松)

Center for Theoretical Physics, Jilin University

吉林大学理论物理中心

@弦理论及相关物理,彭桓武高能基础理论研究中心

Based on arXiv: 2011.02901 & 2104.03852

bar deformed theory

 Song He (何 松)

ter for Theoretical Physics, Jilin University

お株大学理论物理中心

相关物理, 彭桓式高能基础理论研究中心

& 2104.03852

Yuan Sun (孙 源)

Yu-Xuan Zhang (张宇轩)

Zhuo-Yu Xian (冼卓宇) Zhuo-Yu Xian(冼卓宇) Collaborators: Yuan Sun (孙 源)

7月11日, 中国·合肥

Outline

- Outline
• Introduction to TTbar deformation
FTL Section 400 (100 cm 100 cm
- Outline
• Introduction to TTbar deformation
• TTbar flow effects on partition function[2nd order]
& KdV [1st order] Outline

Introduction to TTbar deformation

TTbar flow effects on partition fun

& KdV [1st order]
- Wormhole induced by TTbar
- 2021/2022
2021/07/12 ormhole induced by TTbar
2021/2022 Acture Problems
2022/2022 Acture Problems • Conclusions & Future Problems

 2021 of the $T\bar{T}$ deformation
 2021 Basic introduction of the $T\bar{T}$ deformation

Definition:

Example:
We focus on two dimensional spacetime with complex coordinates
Alternative of the coordinates

then in $\{z, \overline{z}\}$ coordinates,

effinition:
\nWe focus on two dimensional spacetime with complex coordinates
\n
$$
z = x + it
$$
,
\n $\bar{z} = x - it$,
\nthen in { z, \bar{z} } coordinates,
\n $det[T_{\mu\nu}] = -4(T\bar{T} - \Theta^2)$,
\nOur notations are following
\n $T := T_{zz}$, $\bar{T} := T_{\bar{z}\bar{z}}$, $\Theta := T_{z\bar{z}}$.
\n $EXECINITION OF TTOEFORMATION$

Our notations are following

$$
T:=T_{zz},\quad \bar{T}:=T_{\bar{z}\bar{z}},\quad \Theta:=T_{z\bar{z}}.
$$

BASIC INTRODUCTION OF $T\bar{T}$ DEFORMATION

Deformation of TTbar

$$
\mathcal{L}^{(\lambda+\delta\lambda)} = \mathcal{L}^{(\lambda)} + \delta\lambda T\overline{T}
$$

$$
\frac{dS(\lambda)}{d\lambda} = \int d^2x T\overline{T}(x).
$$
Smirnov, Zamolodchikov'16

$$
T_{\mu\nu}^{\lambda} = \frac{2}{\sqrt{g}} \frac{\delta S^{\lambda}}{\delta g^{\mu\nu}} = 2 \frac{\partial \mathcal{L}^{\lambda}}{\partial g^{\mu\nu}} - g_{\mu\nu} \mathcal{L}^{\lambda}.
$$

5

Example:

From free bosons to Nambu-Goto

TTbar-deformed

2021/7/12 ̅- flow effects on torus partition functions ⁷ torus partition functions

The deformation of correlation function

$$
\langle \mathcal{O}_1(z_1,\bar{z}_1)\mathcal{O}_2(z_2,\bar{z}_2)\cdots \mathcal{O}_n(z_n,\bar{z}_n)\rangle_{\lambda} = \lambda \int d^2z \langle T\bar{T}(z,\bar{z})\mathcal{O}_1(z_1,\bar{z}_1)\mathcal{O}_2(z_2,\bar{z}_2)\cdots \mathcal{O}_n(z_n,\bar{z}_n)\rangle
$$

Energy-Momentum conservation

$$
\langle \mathcal{O}_1(z_1,\bar{z}_1)\mathcal{O}_2(z_2,\bar{z}_2)\cdots\mathcal{O}_n(z_n,\bar{z}_n)\rangle_{\lambda} = \lambda \int d^2z \Big(\sum_{i=1}^n \big(\frac{h_i}{(z-z_i)^2} + \frac{\partial_{z_i}}{z-z_i}\big)\Big) \Big(\sum_{i=1}^n \big(\frac{\bar{h}_i}{(\bar{z}-\bar{z}_i)^2} + \frac{\partial_{\bar{z}_i}}{\bar{z}-\bar{z}_i}\big)\Big) \times \langle \mathcal{O}_1(z_1,\bar{z}_1)\mathcal{O}_2(z_2,\bar{z}_2)\cdots\mathcal{O}_n(z_n,\bar{z}_n)\rangle,
$$

Conformal Ward Identity

Go beyond the 1st order?

- Conformal symmetry does not hold.
- Wald Identity breaks down due to higher order deformation of TTbar.
- Solve the effective action order by order and go further.

TTbar deformation on torus:

Field theory defined on torus has (anti-) periodic boundary condition

Field theory defined on torus
has (anti-) periodic boundary condition
Bosons :
$$
\phi(z + 1) = \phi(z)
$$
, $\phi(z + \tau) = \phi(z)$
Fermions : $\psi(z + 1) = e^{2\pi i\nu}\psi(z)$, $\psi(z + \tau) = e^{2\pi i\nu}\psi(z)$
 $(\nu, u) = \{(0, 0), (0, 1/2), (1/2, 0), (1/2, 1/2)\}$
Green functions of free theories are comprised
of (anti) double periodic functions
(Weierstrass elliptic functions, *Jacobi* theta functions)

Green functions of free theories are comprised

(*Weierstrass* elliptic functions, *Jacobi* theta functions)

 $T\bar{T}$ deformation on torus $T\bar{T}$ deformed partition functions and the form of $10/23$

Path integral formulation:

perturbation approach

Path integral formulation:
perturbation approach
The deformed partition function in the Lagrangian path integral formalism

$$
Z^{\lambda} = \int [\mathrm{d}\phi] \, \exp\Big{-} \int_{\mathcal{T}^2} \mathcal{L}^{\lambda}[\phi] \Big).
$$

$$
\frac{\mathrm{d}\mathcal{L}^{\lambda}}{\mathrm{d}\lambda} = \frac{1}{2} \epsilon^{\mu\nu} \epsilon^{\rho\sigma} T^{\lambda}_{\mu\rho} T^{\lambda}_{\nu\sigma},
$$

Path integral formulation $T\bar{T}$ deformed partition functions $11/23$

TTbar deformed Partition function

$$
\begin{split} Z^{\lambda} &= \int \mathcal{D}\phi \,\, \mathrm{e}^{-\int_{\mathcal{M}} \mathcal{L}^{\lambda}[\phi]} \\ &= Z^{(0)} - \lambda Z^{(0)} \int_{\mathcal{M}} \langle \mathcal{L}^{(1)} \rangle + \frac{\lambda^2}{2} Z^{(0)} \big(\int_{\mathcal{M}} \int_{\mathcal{M}'} \langle \mathcal{L}^{(1)}(x) \mathcal{L}^{(1)}(x') \rangle - \int_{\mathcal{M}} \langle \mathcal{L}^{(2)} \rangle \big) + \mathcal{O}(\lambda^3) \\ &\equiv Z^{(0)} + \lambda Z^{(1)} + \frac{\lambda^2}{2} Z^{(2)} + \mathcal{O}(\lambda^3), \end{split}
$$

Deformed Partition function up to second order

$$
Z^{(0)} = \int \mathcal{D}\phi \, e^{-\int_{\mathcal{M}} \mathcal{L}^{(0)}[\phi]},
$$

\n
$$
Z^{(1)} = - Z^{(0)} \int_{\mathcal{M}} \langle \mathcal{L}^{(1)} \rangle,
$$

\n
$$
Z^{(2)} = Z^{(0)} \big(\int_{\mathcal{M}} \int_{\mathcal{M}'} \langle \mathcal{L}^{(1)}(x) \mathcal{L}^{(1)}(x') \rangle - \int_{\mathcal{M}} \langle \mathcal{L}^{(2)} \rangle \big).
$$

12

1st order deformation
\n
$$
\mathcal{L}^{(1)} = -\frac{1}{\pi^2} T^{(0)} \bar{T}^{(0)} = -4g^2 (\partial \phi \bar{\partial} \phi)^2,
$$
\n2nd order deformation
\n
$$
\mathcal{L}^{(2)} = -\frac{1}{\pi^2} (T^{(0)} \bar{T}^{(1)} + \bar{T}^{(0)} T^{(1)}) = 32g^3 (\partial \phi \bar{\partial} \phi)^3.
$$
\n
$$
\text{Regularized } \mathbf{Z}
$$
\n
$$
\mathcal{Z}^{(2)} = \mathcal{Z}^{(0)} \left(\int_{T_1^2} \int_{T_2^2} \underbrace{\mathcal{L}^{(1)}(x_1) \mathcal{L}^{(1)}(x_2)}_{\text{Tr } 2} \right) \int_{T^2} \langle \mathcal{L}^{(2)} \rangle - \frac{2}{\lambda^2} \int_{T^2} \langle \mathcal{L}_{ct} \rangle \right)
$$
\n
$$
\text{SH, Yuan Sun, Yu-Xuan Zhang, 2011.02901}
$$
\n
$$
\mathcal{L}_{\text{FB,ct}} = \lambda^2 \cdot \left\{ \frac{8g^2}{\pi \epsilon^2} (\partial \phi \bar{\partial} \phi)^2 + \frac{1}{24\pi^3 \epsilon^6} \right\}
$$
\n20217/12

FREE BOSONS GENERAL CONSULTING THE PARTITION FUNCTIONS AND LOCAL CONSULTING THE RESERVE OF $14/23$

FREE BOSONS GENERAL CONSULTING THE PARTITION FUNCTIONS AND LOCAL CONSULTING THE RESERVE OF $15/23$

Generic operator: KdV
\n
$$
P_s^{\lambda} = \frac{1}{2\pi} \int_0^L (dzT_{s+1}^{\lambda} + d\bar{z}\Theta_{s-1}^{\lambda})
$$
\n
$$
= \frac{1}{z^{\lambda}} \int \mathcal{D}\phi \mathcal{O}^{\lambda} \exp\left\{-\int_{T^2} \mathcal{L}^{\lambda}\right\}
$$
\n
$$
= \langle \mathcal{O}^{(0)} \rangle_{\text{tor.}} + \lambda \cdot \left\{ \langle \mathcal{O}^{(1)} \rangle_{\text{tor.}} + \langle \mathcal{O}^{(0)} \rangle_{\text{tor.}} \int_{T^2} \langle \mathcal{L}^{(1)} \rangle_{\text{tor.}} - \int_{T_1^2} \langle \mathcal{O} \mathcal{L}^{(1)}(z_1, \bar{z}_1) \rangle_{\text{tor.}} \right\} + O(\lambda^2)
$$

Operator with flow effect:

$$
=\langle \mathcal{O}^{(0)}\rangle_{\text{tor.}} + \lambda \cdot \left\{ \langle \mathcal{O}^{(1)}\rangle_{\text{tor.}} + \langle \mathcal{O}^{(0)}\rangle_{\text{tor.}} \int_{T^2} \langle \mathcal{L}^{(1)}\rangle_{\text{tor.}} - \int_{T_1^2} \langle \mathcal{O}\mathcal{L}^{(1)}(z_1, \bar{z}_1) \rangle_{\text{tor.}} \right\} + O(\lambda^2)
$$
\n**Operator with flow effect:**\n
$$
\mathcal{O}^{\lambda} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \mathcal{O}^{(n)}, \quad \langle \mathcal{O} \rangle_{\text{tor.}} \equiv \text{Tr} \left[e^{-\beta H} \right]^{-1} \cdot \text{Tr} \left[e^{-\beta H} \mathcal{O} \right]
$$
\n
$$
\langle T^{\lambda} \rangle_{\text{tor.FB}}^{\lambda} = \left(\eta_{1} - \frac{\pi}{2\tau_{2}} \right) + \lambda \cdot \left(\frac{2|\eta_{1}|^2}{\pi} - \frac{1}{2\tau_{2}} \left(\eta_{1} + \bar{\eta}_{1} \right) + \left(\frac{2}{\pi} \tau_{2} \bar{\eta}_{1} - 1 \right) i \partial_{\tau} \eta_{1} \right) + O(\lambda^{2})
$$
\n
$$
\langle \Theta^{\lambda} \rangle_{\text{tor.FB}}^{\lambda} = \lambda \cdot \left(-\frac{|\eta_{1}|^2}{\pi} + \frac{2}{\tau_{2}} \left(\eta_{1} + \bar{\eta}_{1} \right) - \frac{3\pi}{4\tau_{2}^{2}} \right) + O(\lambda^{2}).
$$
\n
$$
\text{S-H, Yuan Sun, Yu-Xuan Zhang, 2011.02901}
$$
\n
$$
\frac{\text{SH, Yuan Sun, Yu-Xuan Zhang, 2011.02901}}{\pi\tau_{\text{-flow effect on torus partition functions}}
$$

$$
\langle \Theta^{\lambda} \rangle_{\text{tor.FB}}^{\lambda} = \lambda \cdot \left(-\frac{|\eta_1|^2}{\pi} + \frac{2}{\tau_2} \left(\eta_1 + \bar{\eta}_1 \right) - \frac{3\pi}{4\tau_2^2} \right) + O(\lambda^2).
$$

Resulting VEV of KdV

$$
P_s^{\lambda} = \frac{1}{2\pi} \int_0^L (dz T_{s+1}^{\lambda} + d\bar{z} \Theta_{s-1}^{\lambda})
$$

eriodic B.C.)
antiperiodic B.C.)
antiperiodic B.C.)

$$
\frac{SH, Yuan Sun, Yu-Xuan Zhang, 2011.02901}{V.S.M. Astr}
$$

$$
\langle P_1^{\lambda} \rangle_{\text{o,FB}}^{\lambda} = \frac{\pi}{12} + \lambda \cdot \frac{\pi^2}{72} + O(\lambda^2), \text{ (periodic B.C.)}
$$

$$
\langle P_1^{\lambda} \rangle_{\text{o,DF}}^{\lambda} = \frac{\pi}{12} + \lambda \cdot \frac{\pi^2}{72} + O(\lambda^2), \text{ (antiperiodic B.C.)}
$$

$$
\langle P_1^{\lambda} \rangle_{\text{o,MF}}^{\lambda} = \frac{\pi}{24} + \lambda \cdot \frac{\pi^2}{288} + O(\lambda^2), \text{ (antiperiodic B.C.)}
$$

$$
P_{1}^{\lambda}\rangle_{0,MF}^{\lambda} = \frac{\pi}{24} + \lambda \cdot \frac{\pi}{288} + O(\lambda^{2}),
$$
 (antiperiodic B.C.)
\n $\langle P_{1}^{\lambda}\rangle_{0,DF}^{\lambda} = -\frac{\pi}{6} + \lambda \cdot \frac{\pi^{2}}{18} + O(\lambda^{2}),$ (periodic B.C.)
\n $\langle P_{1}^{\lambda}\rangle_{0,MF}^{\lambda} = -\frac{\pi}{12} + \lambda \cdot \frac{\pi^{2}}{72} + O(\lambda^{2}).$ (periodic B.C.)
\n**V.S. M. Asrat,**
\n $\langle P_{1}^{\lambda}\rangle_{0,MF}^{\lambda} = -\frac{\pi}{12} + \lambda \cdot \frac{\pi^{2}}{72} + O(\lambda^{2}).$ (periodic B.C.)
\n2002.04824

2021/7/12 ̅- flow effects on torus partition functions ¹⁸ Wormhole induced by Wormhole induced by
1D TTbar deformation

2D TTbar
$$
S_{\lambda} = S_{grav}[g_{\mu\nu}, \gamma_{\mu\nu}] + S_0[g_{\mu\nu}, \psi].
$$

\n
$$
S_{\mu\nu} = \delta_{ab}e_{\mu}^a e_{\nu}^b, \quad \gamma_{\mu\nu} = \delta_{ab}f_{\mu}^a f_{\nu}^b
$$

\n**2D TTbar**
$$
S_{grav}[e_{\mu}^a, f_{\mu}^a] = \frac{1}{2\pi^2 \lambda} \int d^2x \, e^{\mu\nu} \epsilon_{ab} (e_{\mu}^a - f_{\mu}^a)(e_{\nu}^b - f_{\nu}^b)
$$

\n**2D TTbar**
$$
T_{\mu}^a = \frac{1}{2\pi^2 \delta \lambda [e, f, \psi]} = -\frac{2}{\pi \lambda \det(f_{\mu}^a)} e^{\mu\nu} \epsilon_{ab} (e_{\nu}^b - f_{\nu}^b)
$$

\n**2D TTbar**
$$
S_{grav}[g_{\mu\nu}, \gamma_{\mu\nu}] = \frac{1}{2\pi^2 \lambda} \int d^2x \, e^{\mu\nu} \epsilon_{ab} (e_{\mu}^a - f_{\mu}^a)(e_{\nu}^b - f_{\nu}^b)
$$

\n**2D TTbar**
$$
S_{grav}[g_{\mu\nu}, \gamma_{\mu\nu}] = \frac{1}{2\pi^2 \lambda} \int d^2x \, e^{\mu\nu} \epsilon_{ab} (e_{\mu}^a - f_{\mu}^a)(e_{\nu}^b - f_{\nu}^b) + \frac{1}{2\pi^2 \lambda} \epsilon^{\mu\nu} \epsilon_{ab} (e_{\nu}^a - f_{\nu
$$

 $\overline{1}$

2021/7/12 ̅- flow effects on torus partition functions ²⁰ TTbar deformed Hamiltonian 1D TTbar One H deformation SH,Zhuoyu Xian2104.03852 D. J. Gross, J. Krutho, A. Rolph and E. Shaghoulian,1912.06132

$$
\mathcal{L}_{\lambda} = \frac{\sqrt{(1+4\lambda\sum_{s}\phi_{s}'\phi_{s}')(1-8\lambda V(\vec{\phi}))}-1}{4\lambda}
$$

TFD under the $T\bar{T}$ deformation

Consider a deformation

$$
H_{\lambda} = f(H_L + H_R), \quad e.g. \ f(H) = H + 2\lambda H^2.
$$

$$
TT \text{ deformed TFD: Deform and evolve the TFD } |\Psi\rangle \text{ with } H_{\lambda}
$$
\n
$$
|\Psi_{\lambda}\rangle = \sum_{E} e^{-\beta f(E)/2} |E\rangle_{L} |E\rangle_{R}, \quad \rho_{\lambda} = \sum_{E} e^{-\beta f(E)} |E\rangle \langle E|
$$
\n
$$
|\Psi_{\lambda}(t)\rangle = e^{-itf(H_{0})} |\Psi_{\lambda}\rangle, \quad \rho_{\lambda}(t) = \rho_{\lambda}.
$$
\nNormalization $|\tilde{\Psi}\rangle = |\Psi\rangle / \sqrt{Z(\beta)}, |\tilde{\Psi}_{\lambda}\rangle = |\Psi_{\lambda}\rangle / \sqrt{Z_{\lambda}(\beta)}.$

\n2021/7/12

Causal correlation caused by the $T\bar{T}$ deformation

Up to 1st order $f(H) = H + 2\lambda H^2$

$$
O_L = O \otimes 1, \quad O_R = 1 \otimes O^T.
$$

the deformed retarded correlator

$$
G_{LR}^{R}(t_1, t_2) = -i\Theta(t_-) \left\langle \tilde{\Psi} \middle| [O_L(t_1), O_R(t_2)] \middle| \tilde{\Psi} \right\rangle = 2\Theta(t_-) \text{Im} \left\langle \tilde{\Psi} \middle| O_L(t_1) O_R(t_2) \middle| \tilde{\Psi} \right\rangle
$$

\n
$$
= -i\Theta(t_-) \left\langle \tilde{\Psi} \middle| \left(-4i\lambda t_- \dot{O}_L^{(0)}(t_1) \dot{O}_R^{(0)}(t_2) + \mathcal{O}[\lambda^2] \right) \middle| \tilde{\Psi} \right\rangle
$$

\n
$$
= -4\lambda t_- \Theta(t_-) G_W''(-t_+; \beta) + \mathcal{O}[\lambda^2],
$$

\n**Non-vanishing means the causal correlation.**
\n
$$
V_V(-t_+; \beta) \text{ is maximized at } t_+ = 0. \text{ So the signal comes out from QM}_L \text{ around the time}
$$

\n
$$
= -t_2.
$$

Non-vanishing means the causal correlation.

2021/7/12 ̅- flow effects on torus partition functions ²⁵ Summary and future works

Summary

IMMATY
• The second order correction contains the TTbar flow effect in path
integral formalism. integral formalism. Partition function & KdV operator • The second order correction contains the TTbar flow effect in path
integral formalism.
Partition function & KdV operator
• Reformalize the 1D TTbar deformation to realize the quantum
transversible wormhole. nd the second order correction contains the TT
integral formalism.
Partition function & KdV operator
Reformalize the 1D TTbar deformation to reat
transversible wormhole.

Partition function & KdV operator

• Reformalize the 1D TTbar deformation to realize the quantum

transversible wormhole.

SUMMARY SUMMARY AND FUTURE WORKS

Future works

Future works
Generic higher order correlation functions on 2D Rieman surface
in deformed theory.
Formulate the JT+CFTs in terms of TTbar deformation in deformed theory. Future works
Future works
in deformed theory.
Formulate the JT+CFTs in terms of TTbar deformation
2D Bosonization of TTbar...
Correlation functions in Lorentz-breaking theory IM. Guica. Future works
Generic higher order correlation functions on 2D Rien
in deformed theory.
Formulate the JT+CFTs in terms of TTbar deformati
2D Bosonization of TTbar…
Correlation functions in Lorentz-breaking theory [M.
Cardy…

-
- Correlation functions in Lorentz-breaking theory [M. Guica, Cardy…], … Generic higher order correlation functions on 2D Riema
in deformed theory.
Formulate the JT+CFTs in terms of TTbar deformation
2D Bosonization of TTbar...
Correlation functions in Lorentz-breaking theory [M. Gı
Cardy...],

2021/7/12 ̅- flow effects on torus partition functions ²⁸ Thank you for your attention!