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» Main question

Under what conditions do black holes and stars in GR grow
massive vector hair?
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» Partial answer

In consistent theories, massive vector hair cannot be generated
through a tachyonic instability (vectorization) in static, spherically
symmetric backgrounds

While tachyonic instabilities are possible, they are necessarily
accompanied by ghost or gradient-unstable modes
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Introduction

Why massive vector fields?

» Candidates for dark energy
De Felice, Heisenberg, Kase, Mukohyama, Tsujikawa, Zhang (2016)

» Candidates for (light) dark matter
Arkani-Hamed, Weiner (2008)

» Natural alternative to scalar-tensor theories

> Equally (better?) motivated as modifications of gravity
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Introduction

Why hairy black holes and stars?

» ldeal laboratories to test fundamental physics

Cardoso, Pani (2019)
» Opportunity to detect new light particles, e.g. dark matter

» Unique observational signatures, e.g. black hole bomb
Press, Teukolsky (1972)

> Important theoretical objects, e.g. AdS/CFT
Hartnoll, Herzog, Horowitz (2008)
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Generalized Proca theory

Generalized Proca is a vector-tensor theory defined by

2 6
Slg, Al —/d“x«/i{ Plp_ F’“’FW— l;A“Au—i—ZC,[g,A]}

1=2

‘62 = G2(Xa]:7g)
L3 = G3(X)V, A"

L4 = Ga(X)R + Gax(X) {(VMA”)2 - VHA”VVA“]
G x(X
Ls = Gs(X)GM'V A, — %() [(VuA")e‘
— 3V, APV, AYV, AL + 2VHA”V1,APVPA“]

Ge x(X)
2

L = Ge(X)RMP7V , A,V ,As + FHFPo7 AN, As

Tasinato (2014), Heisenberg (2014)
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Generalized Proca theory
‘62 = GZ(XaJ:ag)
L3 = G3(X)V, A"
L4 = Gy(X)R + Gyx(X) {(V“A")z - V,LA"VDA“}
Gs x(X)
6

Ls = Gs(X)G''V A, — [(VNA“)3

— 3V, APV, AYV, Al + 2V,LA”V,,APVPA“]

(X)

~ G -~
Lo = Go(X)R"P7V AN Ay + 227 52 FIVEION AN A,

The Lagrangian includes 5 arbitrary functions G, of

1 1
X=—q A F=—gF"Fu,  G=AAFLE,

and Gy x = Z—fg‘ , etc.
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Generalized Proca theory

Lr = Gy(X, F,G)
L3 = G3(X)V, A"
L4 = Go(X)R + Gax(X) [(VMA“)2 - VMAVVVAH}
Gs x(X
£5 = 606"V, - X (9, 402
— 3V, AV, AVY, AP 1 2VHA”VVAPV,JA“]
~ Ge x(X) ~ ~
Lo = Go(X)RMP7V , AV A, + %() Fr'FPov AV, A,
The Lagrangian includes non-minimal coupling terms, in particular with
the double dual Riemann tensor
RHVPO _ 1 etvu'v' pop’e’ p
4

w'v'p'o’

Horndeski (1976)
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Generalized Proca theory

M2 1 e °
— 4 Pl v
S[g, Al = /d X\/—g|:2 R — 7 F*Fp — 7A“Au + /E—z El[gvA]:|

Generalized Proca is the unique consistent extension of the linear Proca
theory in the sense that

> it describes 243 degrees of freedom at the full non-linear level

» among the 4 components of A,, the time component is
non-dynamical

i.e. the contraction
nA,

has no time derivatives in the action

n* — normal vector to constant-time hypersurfaces
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Generalized Proca theory
More generally we define a consistent Proca theory by an action S[g, A]
that has a pair of second-class constraints

Extensions of Generalized Proca do exist

> Beyond Generalized Proca
Heisenberg, Kase, Tsujikawa (2016)

» Extended vector-tensor theories
Kimura, Naruko, Yoshida (2016)

» Proca-Nuevo
de Rham, Pozsgay (2020)

» Extended Proca-Nuevo

de Rham, SGS, Heisenberg, Pozsgay (2021)
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Generalized Proca theory

» We are interested in the linearization of Generalized Proca about
the state
<Au> =0

but with arbitrary background metric

> At quadratic order in A, only two terms survive

Ly=Gyx|— E 5 RAMA, + (V, A")? = VAV, A

Lo = G “””"V ALV Ay

where
G4,X = G47x(X = 0) 5 G6 G6( )
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Generalized Proca theory

1
La = Gax| =5 RA"A, + (VA2 — VA"V, AL
Lo = Go R™P7N AV A,
» L4 can be integrated by parts
Ly = Gy xA'AY G,
> Lg can be expanded as

G
Lo = —76 (F“”FWR —4F"FY, Ry + FWFWRWM)

Remark: same operators appear in Drummond-Hathrell effective
action of QED
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Generalized Proca theory

General quadratic Lagrangian

wo. v
—A A;L + G4,XAHA G;Lu

S= /d“xﬁ{ —R- F‘“’F,“,—z

G
46 (F“”F R —4F"F" Ry, + F“”F”"R;wpo)]

Remarks

> The model has 3 free parameters:  p, G x, Gp

» All other known Proca theories either have the same linearization
or else do not admit (A,) =0

> Regardless of the non-linear completion, this is the most general
theory with the properties
(i) quadratic in A,
(i) 3+2 degrees of freedom
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Stability analysis

2
S= / d*xy/— [ PLp_ F‘“’F,“, - % AA, + Gy xAMAY G,
G

i (F“”F R — 4F"PF" R,, + FWF”"RWM)]

» We want to derive the dispersion relations for the physical degrees
of freedom

» We focus on static and spherically symmetric backgrounds

d 2
gudxtdx” = —f(r)dt* + T e

2 (d6? + sin® §d¢°)

v

Vector and metric perturbations do not mix at linear level
> We assume background is stable under metric perturbations
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Stability analysis

Proca field is expanded in vector spherical harmonics

=iii%wwmﬂ@

1=0 m=—/J=1

(ZD), = 65 Y1m(8, 9)

(Z2), = 6,Y1.m(0, 0)
1

(3)
7P, = ———— 8, Yim(0,
(Zm)n AR (0.9)
1 .
(Z%), = NSy [~ csc08%05Y)m(0, 6) + sin 0555 Y,m(6, )]

Zé?d“) =0 (monopole)
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Stability analysis

Proca field is expanded in vector spherical harmonics
4

S Z > Cnen) (25)  6.9)

=0 m=—/J=1

—

Mode functions C,(Q correspond to perturbations with even or odd parity

1,23 — .
> C,(_n’, ) are even, only two combinations are dynamical

(one for the monopole)
> C,(f;), is odd and it is dynamical

Even and odd modes decouple at linear order
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Stability analysis

Lagrangian for odd modes
Sodd = f/dtd Z [ 112 — gHa |CIAV P2

//-‘rl
_ <Nm+ (r2 )J\/J> CI(,22:|

Coefficient functions
! f‘/
Hi=1-G&, Ho=1-G -2
r fr
N = p? + Gy x (R —2r*RY)

Ni=1+Gs (R4r2R96+2(1r;g)>
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Stability analysis

» To obtain the dispersion relations one assumes localized
perturbations, or smooth enough background

<<k7w;meff

!
f

» One can then perform a standard Fourier transform

C — Z‘ei(krfwt)

» For the odd modes the dispersion relation is then

I(1+1
lez—gszz—<Nm+ (; )Nj>_0

f
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Stability analysis
Lagrangian for even modes
pol /dtdl’ r2 Z( ]_ |: G1 ‘Cl(,2n)7
¢ 2
+ 2t [0 - VT D 6] = &) - VIT+ D) )

N,
+ ?Ml\C/(,I,Z\Z —gM> |C(2 |2 ;n |C/(,?1)1|2]

1—
Coefficient functions G1 =1+ 2Gg 2g

N flg 1-
My = pi® — 26y x <g 2g> . Mo=p? 2G4x( g)
r r fr

r2

while Hi , Ho , Ny, are the same functions that appear in the odd sector
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Stability analysis

Lagrangian for even monopole mode
l 0 2) 1)/
G =3 [ a6 e - )

+ 3 MR - g Mal 3]

2

Trick is to integrate out non-dynamical mode by introducing an additional
field

g
BOO = ap (C C(l)/) ap = g|f1‘

This relation is enforced as an equation of motion with the auxiliary action
(=0 _ 1 2f 2 s (@ sy
Seven =5 dtdr r O'Q‘BO’O‘ + ogpao 3070 C070 CO,O + c.c.
1 .
+ 2 Ml gM2|q§?g|2} o0 = sign(G1)
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Stability analysis

§(1=0) _

even

N —
—

dtdr r2{ — 0’0‘30’0‘2 + ogpao |:B6k,0 (C(g?g — Cé’lo)l) + C.C.:|

4 M1|Cé}3|2gMz|Cé?3|2}

| =

> Integrating out By gives back the original action

> But now we can also integrate out Cé}o) and Cé?g because their EoM
are algebraic

Célo) = —-— — (rzaoBo,o)/ 5 Cé?g = —00 ——,—
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Stability analysis
The result is

_ 1 .
SU=0) — f/dtdr r2[ 1] |Bo.o

2

even 2 WZ
2
glG: rlag)
- /|\/l1| By o + (r2a0) Boo Uo|Bo,o|2]
with gy = % , 0o = sign(Gy)

Remarks

> As expected, there is a single dynamical monopole mode

» The naive "mass” coefficients control the kinetic and gradient
terms of the dynamical mode

» This has no analog for scalars
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Stability analysis

The same procedure works for the / > 1 even modes

» We introduce two additional fields

Bin=a0 (Cn—C0) o Gm=C

> Then integrate out C,(i,), and C,(j,),

f Hi/I(I+1) .
et - % (P ) + VD
N YRERTRCEI) R fr
1 . Hor/ 11+ 1
@ _ ~ vosoBim + “72() -
; g <M2 A /(/:gl)) r :
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Stability analysis

» Final action for the dynamical modes

1
SUZY = 5 / dtde(_l)m [(diagonal terms)

I,m

L) I(1+1) (B,* ¢+ ccc)
(M T+ /(/+1 ) m=h
0'07'[1 I(/ + ].)

2 (M + 1, 10)

((rPaoBf ) Crom + c.c.)

> In general the Lagrangian cannot be diagonalized via a (local) field
redefinition

> Dispersion relations are in general non-linear
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Stability analysis

Summary of dispersion relations

> Odd modes (/ > 1)

?w — gy k? — (Afm+

/(/tl)j\[j> _0

» Even monopole mode

G _ 8191|

2 _
M w M, k® —sign(G1) =0

» Even higher multipole modes

Pes P
det BB BC —0

Pec  Pcc
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Stability analysis
Stability conditions
» Absence of ghost and radial gradient instabilities

H1 >0, Ho>0, M;>0, M»>0

> Absence of angular gradient instabilities

Ni>0, N,>0, G >0

Corollary

» Effective masses of all modes are positive definite if kinetic and
gradient terms are healthy

» Tachyonic instabilities cannot arise
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Stability analysis

No-go theorem* for vectorization

Static spherically symmetric GR backgrounds cannot spontaneously grow
vector hair through a tachyonic instability

SGS, Held, Zhang (2021); Silva, Coates, Ramazanoglu, Sotiriou (2021)

*Potential loophole:

> The analysis was based on dispersion relations of localized
perturbations

» We cannot discard a tachyonic destabilization of global solutions

> We have checked that Schwarzschild black holes are stable (more on
this later)
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Applications

Schwarzschild black hole

Beltran-Jimenez, Durrer, Heisenberg, Thorsrud (2013)

> Metric

f:g:l—r—: r. = 2GM

» Coefficient functions

Gers
Hy=Hoy=1— f; . N=Gi=1+

Nm =My = My = i

2G6rs
r3

> Note: no dependence on G4 x for solutions of vacuum Einstein
equations
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Applications

Schwarzschild black hole

» Stability for all radii r > r,

1 G

— <1
2 2

» Conclusion: for any non-zero Gg, there exist sufficiently small black
holes subject to instabilities

» Example motivated by dark energy
Gs~N2 | A~ (MpH)Y? = Gs~ (10°km)?
— unstable stellar-mass BHs, stable supermassive BHs
» Potentially interesting for primordial BHs with r, ~ 1071%m
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Applications

Reissner-Nordstrom black hole

» Metric
re  r3
2 Q re=2GM, ro=2VGQ

» Coefficient functions

G6 Is r(2\)
pr— pr— 1 _— - — T
Ha=He r2 ( r2r?

2Gg [ rs 3r(23 2Gg [ rs I’é
N + r2 (r 4r2 |’ G1 + r2 \r 4r?
G4 Xr2 G4 Xr2
= = 2 i Q = 2 _— 2 Q
Mi=Mo =i+ —== N o
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Applications

Reissner-Nordstrom black hole

> The problem is to derive bounds on Gg and G4 x such that the
coefficient functions are positive for all radii

rS
rzry = 5 ) rQ<rs
2 4
1 2
\T o,
o~ o
”
2 =
s . 3
5}
-1 -2
-2 -4
0.0 02 0.4 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
rqlrs rolrs
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Applications

Reissner-Nordstrom black hole

> Bounds are most stringent for an extremal BH (rq = r)

Ge| 1 | Ga,x|
r2 g

< 1
prry 8
» For small but non-zero charge (rq < rs)

|G4,X‘ 2/’52

p2r2 r

> What values of rg/rs ~ Q/M could we expect in realistic situations?
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Applications

Digression: Wald mechanism

Wald (1974)

» A black hole immersed in an external magnetic field will
preferentially accrete charges until acquiring a net charge

Q@ = 2BextJ

et
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Applications

Digression: Wald mechanism

> A sizable BH charge might be achieved in a NS-BH merger if the
neutron star is a strongly magnetized pulsar

Levin, D’Orazio, SGS (2018)
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Applications

Digression: Wald mechanism

» Optimistically, values up to

e
Q@ 1077
I's

might be achievable

» Estimate seems robust after more thorough analysis; moreover, BH
spin is not necessary

Chen, Dai (2021); Adari, Berens, Levin (2021)
» Taking G x = O(1) and rg ~ 107" rs, rs ~ 10km
p> 10" ev

Compare with range 10722 — 10~2%¢V for fuzzy dark matter
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Applications
Perfect fluid stars

> In general, stability conditions must be investigated numerically
because metric is not known explicitly

» However, suppose the stability criteria are extremized at the center
of the star

» Checked for uniform density star and polytropic star with
p= Kp5/3

» Then we can solve the TOV equations analytically in the vicinity of
r = 0 and obtain bounds on Gg and G4 x

» Plausible that assumption is true for all realistic equations of state,
including imperfect fluids
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Applications
Perfect fluid stars

» Stability bounds

3 Gg 3
- 2 <
2pc Mg, Pec + 3pc

1 Ga,x 1

— < <
2pc ~ p2M3, " 2pc

pc — central density

pc — central pressure

» Example: neutron star and typical EFT couplings

G A
pe~ 108 kgm™3 | |G| ~ | 4’2X| ~A2 s - >10738
I Pl

Seemingly mild but relevant to dark energy
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Applications

Perfect fluid stars

» Interesting dependence on the equation of state

» Motivates dedicated analysis of realistic EoS

UDS Gg<0

UDS Gg>0

Poly G>0

15 2.0 25 3.0
R/rs

1Gaxl | 1rs

UDS Gy x<O,

UDS Gy x>0
Poly G4 x>0

Poly G4 x<0

1.0 1.5 20 25
R/rs
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Global solutions

Global solutions are determined by equations of the form

d2U/

a2 +w2u/ —Vyu; =0

uy € {monopole, axial, polary, polarg}
w — complex eigenfrequency
r. — tortoise coordinate

Vi, — effective potential

In general Im(w) # 0 due to the coupling to gravity

Im(w) < 0 — decaying mode, stable

Im(w) > 0 — growing mode, unstable
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Global solutions

Axial mode Monopole mode
D pry=12
0.010
0.005 .
:E:’- pemmmmmm T ury=13
k=
| 0.001
5.x107* pr, = 1.4
. -0.5 0.0 0.5 1.0
Gy/r? Gy/r?

» Numerically we find no evidence of unstable global modes

» However our code cannot access values of Gg arbitrarily close to the
bounds {—r2/2, r.}
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Global solutions

For values of Gg close to the bounds we can prove analytically the absence
of unstable modes

Axial mode:

/roo dr (1 — r—:) “V"z + Vaxi(r)|V‘2:| _ _W;Il/((:))ﬁ

s

> v(r) is the redefined axial mode function

» Similar to a formula derived originally in asymptotically AdS
backgrounds

Horowitz, Hubeny (1999)
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Global

solutions

/roo dr (1= =) [V + Vaus(n) V] = _W

s

If Vaxi was positive definite then we could immediately
conclude Im(w) < 0

Unfortunately this is not the case; however for Gg/r2 =1 — ¢ we

can prove
[e%S) . 1
/ dr (1 — r—) Vaxi|v[> = C log =
. r €

to leading order in small € and where C > 0

This proves that Im(w) < 0 and explains the behavior observed
numerically

Proofs for the monopole and polar modes are analogous although
more involved
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Outlook

What to make of the instabilities?

» If absent, then one has interesting bounds relevant for dark energy
and ultra-light dark matter

> If present, then potentially interesting signatures, but needs
understanding of higher-derivative operators, cf. ghost condensate

Arkani-Hamed, Cheng, Luty, Mukohyama (2003)

Other ways to grow massive vector hair?

> Tachyonic instability (vectorization) via vector-matter coupling
Minamitsuji (2020)

» Non-linear instabilities

» Quantum phase transitions
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Outlook

Extensions of our work (future/ongoing)

> Robustness of no-go result for tachyonic instabilities
> Rotating systems, cosmological constant
» Realistic NS equations of state

» Inclusion of higher-derivative operators

Thank you

S. Garcia-Saenz (SUSTech)



