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I Main question

Under what conditions do black holes and stars in GR grow
massive vector hair?
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I Partial answer

In consistent theories, massive vector hair cannot be generated
through a tachyonic instability (vectorization) in static, spherically
symmetric backgrounds

While tachyonic instabilities are possible, they are necessarily
accompanied by ghost or gradient-unstable modes
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Introduction

Why massive vector fields?

I Candidates for dark energy
De Felice, Heisenberg, Kase, Mukohyama, Tsujikawa, Zhang (2016)

I Candidates for (light) dark matter
Arkani-Hamed, Weiner (2008)

I Natural alternative to scalar-tensor theories

I Equally (better?) motivated as modifications of gravity
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Introduction

Why hairy black holes and stars?

I Ideal laboratories to test fundamental physics
Cardoso, Pani (2019)

I Opportunity to detect new light particles, e.g. dark matter

I Unique observational signatures, e.g. black hole bomb
Press, Teukolsky (1972)

I Important theoretical objects, e.g. AdS/CFT
Hartnoll, Herzog, Horowitz (2008)
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Generalized Proca theory

Generalized Proca is a vector-tensor theory defined by

S[g ,A] =
∫

d4x
√
−g
[

M2
Pl

2 R − 1
4 FµνFµν −

µ2

2 AµAµ +
6∑

I=2
LI [g ,A]

]

L2 = G2(X ,F ,G)
L3 = G3(X )∇µAµ

L4 = G4(X )R + G4,X (X )
[
(∇µAµ)2 −∇µAν∇νAµ

]
L5 = G5(X )Gµν∇µAν −

G5,X (X )
6

[
(∇µAµ)3

− 3∇ρAρ∇µAν∇νAµ + 2∇µAν∇νAρ∇ρAµ
]

L6 = G6(X )R̃µνρσ∇µAν∇ρAσ + G6,X (X )
2 F̃µν F̃ ρσ∇µAρ∇νAσ

Tasinato (2014), Heisenberg (2014)
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Generalized Proca theory
L2 = G2(X ,F ,G)
L3 = G3(X )∇µAµ

L4 = G4(X )R + G4,X (X )
[
(∇µAµ)2 −∇µAν∇νAµ

]
L5 = G5(X )Gµν∇µAν −

G5,X (X )
6

[
(∇µAµ)3

− 3∇ρAρ∇µAν∇νAµ + 2∇µAν∇νAρ∇ρAµ
]

L6 = G6(X )R̃µνρσ∇µAν∇ρAσ + G6,X (X )
2 F̃µν F̃ ρσ∇µAρ∇νAσ

The Lagrangian includes 5 arbitrary functions GI of

X = −1
2 AµAµ , F = −1

4 FµνFµν , G = AµAνF ρ
µ Fνρ

and G4,X ≡ dG4
dX , etc.
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Generalized Proca theory
L2 = G2(X ,F ,G)
L3 = G3(X )∇µAµ

L4 = G4(X )R + G4,X (X )
[
(∇µAµ)2 −∇µAν∇νAµ

]
L5 = G5(X )Gµν∇µAν −

G5,X (X )
6

[
(∇µAµ)3

− 3∇ρAρ∇µAν∇νAµ + 2∇µAν∇νAρ∇ρAµ
]

L6 = G6(X )R̃µνρσ∇µAν∇ρAσ + G6,X (X )
2 F̃µν F̃ ρσ∇µAρ∇νAσ

The Lagrangian includes non-minimal coupling terms, in particular with
the double dual Riemann tensor

R̃µνρσ = 1
4 ε

µνµ′ν′
ερσρ

′σ′
Rµ′ν′ρ′σ′

Horndeski (1976)
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Generalized Proca theory

S[g ,A] =
∫

d4x
√
−g
[

M2
Pl

2 R − 1
4 FµνFµν −

µ2

2 AµAµ +
6∑

I=2
LI [g ,A]

]

Generalized Proca is the unique consistent extension of the linear Proca
theory in the sense that

I it describes 2+3 degrees of freedom at the full non-linear level

I among the 4 components of Aµ, the time component is
non-dynamical

i.e. the contraction
nµAµ

has no time derivatives in the action

nµ → normal vector to constant-time hypersurfaces
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Generalized Proca theory

More generally we define a consistent Proca theory by an action S[g ,A]
that has a pair of second-class constraints

Extensions of Generalized Proca do exist
I Beyond Generalized Proca

Heisenberg, Kase, Tsujikawa (2016)

I Extended vector-tensor theories
Kimura, Naruko, Yoshida (2016)

I Proca-Nuevo
de Rham, Pozsgay (2020)

I Extended Proca-Nuevo
de Rham, SGS, Heisenberg, Pozsgay (2021)
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Generalized Proca theory

I We are interested in the linearization of Generalized Proca about
the state

〈Aµ〉 = 0

but with arbitrary background metric

I At quadratic order in Aµ only two terms survive

L4 = G4,X

[
− 1

2 RAµAµ + (∇µAµ)2 −∇µAν∇νAµ
]

L6 = G6 R̃µνρσ∇µAν∇ρAσ

where
G4,X ≡ G4,X (X = 0) , G6 ≡ G6(X = 0)
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Generalized Proca theory

L4 = G4,X

[
− 1

2 RAµAµ + (∇µAµ)2 −∇µAν∇νAµ
]

L6 = G6 R̃µνρσ∇µAν∇ρAσ

I L4 can be integrated by parts

L4 = G4,X AµAνGµν

I L6 can be expanded as

L6 = −G6
4

(
FµνFµνR − 4FµρF νρRµν + FµνF ρσRµνρσ

)
Remark: same operators appear in Drummond-Hathrell effective
action of QED

S. Garcia-Saenz (SUSTech)



Generalized Proca theory
General quadratic Lagrangian

S =
∫

d4x
√
−g
[

M2
Pl

2 R − 1
4 FµνFµν −

µ2

2 AµAµ + G4,X AµAνGµν

− G6
4

(
FµνFµνR − 4FµρF νρRµν + FµνF ρσRµνρσ

)]
Remarks

I The model has 3 free parameters: µ , G4,X , G6

I All other known Proca theories either have the same linearization
or else do not admit 〈Aµ〉 = 0

I Regardless of the non-linear completion, this is the most general
theory with the properties

(i) quadratic in Aµ
(ii) 3+2 degrees of freedom
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Stability analysis

S =
∫

d4x
√
−g
[

M2
Pl

2 R − 1
4 FµνFµν −

µ2

2 AµAµ + G4,X AµAνGµν

− G6
4

(
FµνFµνR − 4FµρF νρRµν + FµνF ρσRµνρσ

)]

I We want to derive the dispersion relations for the physical degrees
of freedom

I We focus on static and spherically symmetric backgrounds

gµνdxµdxν = −f (r)dt2 + dr2

g(r) + r2 (dθ2 + sin2 θdφ2)
I Vector and metric perturbations do not mix at linear level

I We assume background is stable under metric perturbations
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Stability analysis

Proca field is expanded in vector spherical harmonics

Aµ =
∞∑

l=0

l∑
m=−l

4∑
J=1

C (J)
l,m(t, r)

(
Z (J)

l,m

)
µ

(θ, φ)

(Z (1)
l,m)µ = δt

µYl,m(θ, φ)

(Z (2)
l,m)µ = δr

µYl,m(θ, φ)

(Z (3)
l,m)µ = 1√

l(l + 1)
∂µYl,m(θ, φ)

(Z (4)
l,m)µ = 1√

l(l + 1)
[
− csc θ δθµ∂φYl,m(θ, φ) + sin θ δφµ∂θYl,m(θ, φ)

]
Z (3,4)

0,0 = 0 (monopole)
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Stability analysis

Proca field is expanded in vector spherical harmonics

Aµ =
∞∑

l=0

l∑
m=−l

4∑
J=1

C (J)
l,m(t, r)

(
Z (J)

l,m

)
µ

(θ, φ)

Mode functions C (J)
l,m correspond to perturbations with even or odd parity

I C (1,2,3)
l,m are even, only two combinations are dynamical

(one for the monopole)

I C (4)
l,m is odd and it is dynamical

Even and odd modes decouple at linear order
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Stability analysis

Lagrangian for odd modes

Sodd = 1
2

∫
dtdr

∑
l,m

(−1)m
[
H1
f |Ċ

(4)
l,m|

2 − gH2 |C (4)′
l,m |

2

−
(
Nm + l(l + 1)

r2 Nj

)
|C (4)

l,m|
2
]

(Ḟ ≡ ∂F
∂t , F ′ ≡ ∂F

∂r )

Coefficient functions

H1 = 1− G6
g ′
r , H2 = 1− G6

f ′g
fr

Nm = µ2 + G4,X
(
R − 2r2Rθθ

)
Nj = 1 + G6

(
R − 4r2Rθθ + 2(1− g)

r2

)
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Stability analysis

I To obtain the dispersion relations one assumes localized
perturbations, or smooth enough background∣∣∣∣ f ′f

∣∣∣∣ � k , ω , meff

I One can then perform a standard Fourier transform

C → C̃ e i(kr−ωt)

I For the odd modes the dispersion relation is then

H1
f ω2 − gH2 k2 −

(
Nm + l(l + 1)

r2 Nj

)
= 0
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Stability analysis

Lagrangian for even modes

Spol = 1
2

∫
dtdr r2

∑
l,m

(−1)m
[

g
f G1

∣∣∣Ċ (2)
l,m − C (1)′

l,m

∣∣∣2
+ 1

fr2 H1

∣∣∣Ċ (3)
l,m −

√
l(l + 1) C (1)

l,m

∣∣∣2 − g
r2 H2

∣∣∣C (3)′
l,m −

√
l(l + 1) C (2)

l,m

∣∣∣2
+ 1

f M1|C (1)
l,m|

2 − gM2|C (2)
l,m|

2 − Nm
r2 |C

(3)
l,m|

2
]

Coefficient functions G1 = 1 + 2G6
1− g

r2

M1 = µ2 − 2G4,X

(
g ′
r −

1− g
r2

)
, M2 = µ2 − 2G4,X

(
f ′g
fr −

1− g
r2

)
while H1 , H2 , Nm are the same functions that appear in the odd sector

S. Garcia-Saenz (SUSTech)



Stability analysis
Lagrangian for even monopole mode

S(l=0)
even = 1

2

∫
dtdr r2

[
g
f G1

∣∣∣Ċ (2)
0,0 − C (1)′

0,0

∣∣∣2
+ 1

f M1|C (1)
0,0 |

2 − gM2|C (2)
0,0 |

2
]

Trick is to integrate out non-dynamical mode by introducing an additional
field

B0,0 = a0

(
Ċ (2)

0,0 − C (1)′
0,0

)
a0 ≡

√
g |G1|

f

This relation is enforced as an equation of motion with the auxiliary action

S(l=0)
even = 1

2

∫
dtdr r2

{
− σ0|B0,0|2 + σ0a0

[
B∗0,0

(
Ċ (2)

0,0 − C (1)′
0,0

)
+ c.c.

]
+ 1

f M1|C (1)
0,0 |

2 − gM2|C (2)
0,0 |

2
}

σ0 ≡ sign(G1)
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Stability analysis

S(l=0)
even = 1

2

∫
dtdr r2

{
− σ0|B0,0|2 + σ0a0

[
B∗0,0

(
Ċ (2)

0,0 − C (1)′
0,0

)
+ c.c.

]
+ 1

f M1|C (1)
0,0 |

2 − gM2|C (2)
0,0 |

2
}

I Integrating out B0,0 gives back the original action

I But now we can also integrate out C (1)
0,0 and C (2)

0,0 because their EoM
are algebraic

C (1)
0,0 = −σ0

r2
f
M1

(
r2a0B0,0

)′
, C (2)

0,0 = −σ0
a0

gM2
Ḃ0,0
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Stability analysis

The result is

S(l=0)
even = 1

2

∫
dtdr r2

[
|G1|

fM2
|Ḃ0,0|2

− g |G1|
M1

∣∣∣∣B′0,0 + (r2a0)′
r2a0

B0,0

∣∣∣∣2 − σ0|B0,0|2
]

with a0 ≡
√

g|G1|
f , σ0 ≡ sign(G1)

Remarks
I As expected, there is a single dynamical monopole mode

I The naive “mass” coefficients control the kinetic and gradient
terms of the dynamical mode

I This has no analog for scalars
S. Garcia-Saenz (SUSTech)



Stability analysis

The same procedure works for the l ≥ 1 even modes

I We introduce two additional fields

Bl,m = a0

(
Ċ (2)

l,m − C (1)′
l,m

)
, Cl,m = C (3)

l,m

I Then integrate out C (1)
l,m and C (2)

l,m

C (1)
l,m = f(

M1 +H1
l(l+1)

r2

)[− σ0
r2
(
r2a0Bl,m

)′ +
H1
√

l(l + 1)
fr2 Ċl,m

]

C (2)
l,m = 1

g
(
M2 +H2

l(l+1)
r2

)[− σ0a0Ḃl,m +
gH2

√
l(l + 1)

r2 C ′l,m
]
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Stability analysis

I Final action for the dynamical modes

S(l>0)
even = 1

2

∫
dtdr

∑
l,m

(−1)m
[

(diagonal terms)

−
σ0a0H2

√
l(l + 1)(

M2 +H2
l(l+1)

r2

) (Ḃ∗l,mC ′l,m + c.c.
)

+
σ0H1

√
l(l + 1)

r2
(
M1 +H1

l(l+1)
r2

) ((r2a0B∗l,m)′Ċl,m + c.c.
) ]

I In general the Lagrangian cannot be diagonalized via a (local) field
redefinition

I Dispersion relations are in general non-linear
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Stability analysis

Summary of dispersion relations

I Odd modes (l ≥ 1)

H1
f ω2 − gH2 k2 −

(
Nm + l(l + 1)

r2 Nj

)
= 0

I Even monopole mode

|G1|
fM2

ω2 − g |G1|
M1

k2 − sign(G1) = 0

I Even higher multipole modes

det

PBB PBC

PBC PCC

 = 0
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Stability analysis

Stability conditions

I Absence of ghost and radial gradient instabilities

H1 > 0 , H2 > 0 , M1 > 0 , M2 > 0

I Absence of angular gradient instabilities

Nj > 0 , Nm > 0 , G1 > 0

Corollary

I Effective masses of all modes are positive definite if kinetic and
gradient terms are healthy

I Tachyonic instabilities cannot arise
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Stability analysis

No-go theorem∗ for vectorization

Static spherically symmetric GR backgrounds cannot spontaneously grow
vector hair through a tachyonic instability

SGS, Held, Zhang (2021); Silva, Coates, Ramazanoglu, Sotiriou (2021)

∗Potential loophole:

I The analysis was based on dispersion relations of localized
perturbations

I We cannot discard a tachyonic destabilization of global solutions

I We have checked that Schwarzschild black holes are stable (more on
this later)
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Applications

Schwarzschild black hole

Beltran-Jimenez, Durrer, Heisenberg, Thorsrud (2013)

I Metric
f = g = 1− rs

r rs = 2GM

I Coefficient functions

H1 = H2 = 1− G6rs
r3 , Nj = G1 = 1 + 2G6rs

r3

Nm =M1 =M2 = µ2

I Note: no dependence on G4,X for solutions of vacuum Einstein
equations
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Applications

Schwarzschild black hole

I Stability for all radii r ≥ rs

−1
2 <

G6
r2
s
< 1

I Conclusion: for any non-zero G6 , there exist sufficiently small black
holes subject to instabilities

I Example motivated by dark energy

G6 ∼ Λ−2 , Λ ∼ (MPlH2
0 )1/3 → G6 ∼ (103 km)2

→ unstable stellar-mass BHs, stable supermassive BHs

I Potentially interesting for primordial BHs with rs ∼ 10−10 m
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Applications

Reissner-Nordström black hole

I Metric

f = g = 1− rs
r +

r2
Q

4r2 rs = 2GM , rQ = 2
√

G Q

I Coefficient functions

H1 = H2 = 1− G6
r2

(
rs
r −

r2
Q

2r2

)

Nj = 1 + 2G6
r2

(
rs
r −

3r2
Q

4r2

)
, G1 = 1 + 2G6

r2

(
rs
r −

r2
Q

4r2

)

M1 =M2 = µ2 +
G4,X r2

Q
2r4 , Nm = µ2 −

G4,X r2
Q

2r4
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Applications
Reissner-Nordström black hole

I The problem is to derive bounds on G6 and G4,X such that the
coefficient functions are positive for all radii

r ≥ r+ = rs
2

1 +

√
1−

r2
Q

r2
s

 , rQ ≤ rs

0.0 0.2 0.4 0.6 0.8 1.0
-2

-1

0

1

2

rQ / rs

G
6
/
r s
2

0.0 0.2 0.4 0.6 0.8 1.0
-4

-2

0

2

4

rQ / rs

G
4
,X

/
μ
2
r s
2
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Applications

Reissner-Nordström black hole

I Bounds are most stringent for an extremal BH (rQ = rs)

|G6|
r2
s

<
1
8 ,

|G4,X |
µ2r2

s
<

1
8

I For small but non-zero charge (rQ � rs)

|G4,X |
µ2r2

s
<

2r2
s

r2
Q

I What values of rQ/rs ∼ Q/M could we expect in realistic situations?
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Applications

Digression: Wald mechanism

Wald (1974)

I A black hole immersed in an external magnetic field will
preferentially accrete charges until acquiring a net charge

Q = 2BextJ
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Applications

Digression: Wald mechanism

I A sizable BH charge might be achieved in a NS-BH merger if the
neutron star is a strongly magnetized pulsar

Levin, D’Orazio, SGS (2018)
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Applications

Digression: Wald mechanism

I Optimistically, values up to

rQ
rs
∼ 10−7

might be achievable

I Estimate seems robust after more thorough analysis; moreover, BH
spin is not necessary

Chen, Dai (2021); Adari, Berens, Levin (2021)

I Taking G4,X = O(1) and rQ ∼ 10−7 rs , rs ∼ 10 km

µ & 10−17 eV

Compare with range 10−22 − 10−20 eV for fuzzy dark matter
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Applications

Perfect fluid stars

I In general, stability conditions must be investigated numerically
because metric is not known explicitly

I However, suppose the stability criteria are extremized at the center
of the star

I Checked for uniform density star and polytropic star with
p = Kρ5/3

I Then we can solve the TOV equations analytically in the vicinity of
r = 0 and obtain bounds on G6 and G4,X

I Plausible that assumption is true for all realistic equations of state,
including imperfect fluids
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Applications

Perfect fluid stars

I Stability bounds

− 3
2ρc

<
G6

M2
Pl
<

3
ρc + 3pc

− 1
2ρc

<
G4,X

µ2M2
Pl
<

1
2pc

ρc → central density
pc → central pressure

I Example: neutron star and typical EFT couplings

ρc ∼ 1018 kg m−3 , |G6| ∼
|G4,X |
µ2 ∼ Λ−2 → Λ

MPl
& 10−38

Seemingly mild but relevant to dark energy
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Applications

Perfect fluid stars

I Interesting dependence on the equation of state
I Motivates dedicated analysis of realistic EoS

1.0 1.5 2.0 2.5 3.0
10-5

10-4

0.001

0.010

0.100

1

10

R / rs

|G
6
|
/
r s
2

UDS G6>0

UDS G6<0

Poly G6>0

Poly G6<0

1.0 1.5 2.0 2.5 3.0

10-5

10-4

0.001

0.010

0.100

1

10

R / rs

|G
4
,X
|
/
μ
2
r s
2

UDS G4,X>0

UDS G4,X<0

Poly G4,X>0

Poly G4,X<0
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Global solutions

Global solutions are determined by equations of the form

d2uI
dr2
∗

+ ω2uI − VIJuJ = 0

uI ∈ {monopole, axial, polar1, polar2}

ω → complex eigenfrequency

r∗ → tortoise coordinate

VIJ → effective potential

In general Im(ω) 6= 0 due to the coupling to gravity

Im(ω) < 0→ decaying mode, stable

Im(ω) > 0→ growing mode, unstable
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Global solutions

Axial mode

−I
m(

ω
r s)

-0.5 0.0 0.5 1.0
0.001

0.005

0.010

0.050

g6

R
e
[(
μ
-
ω
)r

g
]

-0.5 0.0 0.5 1.0

10-8

10-6

10-4

0.01

g6

-
I

m
[ω

r
g
]

-0.5 0.0 0.5 1.0

0.005

0.010

0.020

g6

R
e
[(
μ
-
ω
)r

g
]

-0.5 0.0 0.5 1.0

5.×10-4

0.001

0.005

0.010

g6

-
I

m
[ω

r
g
]

Monopole mode

G6/r2
s G6/r2

s

μrs = 1.4

μrs = 1.3

μrs = 1.2

I Numerically we find no evidence of unstable global modes

I However our code cannot access values of G6 arbitrarily close to the
bounds {−r2

s /2 , rs}
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Global solutions

For values of G6 close to the bounds we can prove analytically the absence
of unstable modes

Axial mode:∫ ∞
rs

dr
(

1− rs
r

) [
|v ′|2 + Vaxi(r)|v |2

]
= −|ω|

2|v(rs)|2
Im(ω)

I v(r) is the redefined axial mode function

I Similar to a formula derived originally in asymptotically AdS
backgrounds
Horowitz, Hubeny (1999)
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Global solutions

∫ ∞
rs

dr
(

1− rs
r

) [
|v ′|2 + Vaxi(r)|v |2

]
= −|ω|

2|v(rs)|2
Im(ω)

I If Vaxi was positive definite then we could immediately
conclude Im(ω) < 0

I Unfortunately this is not the case; however for G6/r2
s = 1− ε we

can prove ∫ ∞
rs

dr
(

1− rs
r

)
Vaxi|v |2 = C log 1

ε

to leading order in small ε and where C > 0

I This proves that Im(ω) < 0 and explains the behavior observed
numerically

I Proofs for the monopole and polar modes are analogous although
more involved
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Outlook

What to make of the instabilities?

I If absent, then one has interesting bounds relevant for dark energy
and ultra-light dark matter

I If present, then potentially interesting signatures, but needs
understanding of higher-derivative operators, cf. ghost condensate
Arkani-Hamed, Cheng, Luty, Mukohyama (2003)

Other ways to grow massive vector hair?

I Tachyonic instability (vectorization) via vector-matter coupling
Minamitsuji (2020)

I Non-linear instabilities

I Quantum phase transitions
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Outlook

Extensions of our work (future/ongoing)

I Robustness of no-go result for tachyonic instabilities

I Rotating systems, cosmological constant

I Realistic NS equations of state

I Inclusion of higher-derivative operators

Thank you
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