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1. Introduction
» The 1D Schrodinger equation reads,

d*U(z) 2m

o (E - V(x))\I!(x) — 0,
m, E: the particle mass and total energy;
V(x): the potential

» With the WKB approximation, the wavefunction

is given by

h i [T "
UV e =5/ W&
p(z) =+/2m[E-V(z)] <

[T]

=\ (x)
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1. Introduction (cont.)

» The WKB approximation is valid only when

« turning points, V(x) = E

e singular points, V(z) = +oc0 , for example, the
effective potential for radial motion contains a
centrifugal term:

R21(1 + 1)

2mr?2

Ve(r) =

V(x)

*X

A Ve®
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1. Introduction (cont.)

» The WKB condition is violated around various points (Cont.):

- extreme points, at which we have A s
44
p
Q ~ '— ~ O(1)
2p® / [ i o
* multiple turning points [ (
M :

FIG. 22 The three different cases for the function g(k, n) de-
fined by Eq. (5.22): (a) g(k, ) has one turning point; (b) g(k, )
has two turning points; and (c) g(k, n) has three turning points.

[AW, PRDS2 (2010)124063]
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1. Introduction (Cont.)

» When Trans-Planckian
Physics is involved, the
dispersion relation
becomes nonlinear.
Then, the WKB method S.E. Jords

iS Val | d Only Wh en Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil

PHYSICAL REVIEW D 79, 023514 (2009)
Trans-Planckian physics from a nonlinear dispersion relation

A<<Lly G. Marozzi
- - Dipartimento di Fisica, Universita degli Studi di Bologna and INFN, via Irnerio 46, 1-40126 Bologna, Italy
Where 1= 1/k, Ly=1/aH (Received 28 August 2008; published 22 January 2009)
We study a particular nonlinear dispersion relation  ,(k,)—a series expansion in the physical wave
A In Ly number k,—for modeling first-order corrections in the equation of motion of a test scalar field in a
de Sitter spacetime from trans-Planckian physics in cosmology. Using both a numerical approach and a
' semianalytical one, we show that the WKB approximation previously adopted in the literature should be ;
mic| used with caution, since it holds only when the comoving wave number k > aH. We determine the »
. amplitude and behavior of the corrections on the power Spectrum for this test field. Furthermore, we :'
! E\/ consider also a more realistic model of inflation, the power-law model, using only a numerical approach to :
' ! determine the corrections on the power spectrum.
. —
ti b tend Ina DOL: 10.1103/PhysRevD.79.023514 PACS numbers: 98.80.Cq, 98.70.Vc
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1. Introduction (Cont.) (j\l\l KR = WkR)

> In loop quantum cosmology (LQC):

QIANG WU, TAO ZHU, and ANZHONG WANG PHYS. REV. D 98, 103528 (2018)
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FIG.3. The JWKB criterion is violated near the time of the bounce at # = 0. The left panel shows the result for the hybrid approach and
the right panel shows the result for the dressed metric approach. Note that we used units where mp; = 1 and set ag = 1 in these figures.
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1. Introduction (Cont.)
» To overcome these problems, various (approximation) methods have been proposed,
including the complex and uniform WKB methods [S.-H. Dong, Wave Equations in Higher
Dimensions, Springer, Dordrecht (New York, 2011)].

» In this talk, | shall introduce another one, the so-called uniform asymptotic
approximation (UAA) method, developed by Olver in 1950’s — 70’s:

= F.W. J. Olver, The Asymptotic Solution of Linear Differential Equations of the Second Order
in a Domain Containing One Transition Point, Philos. Trans. R. Soc. Math. Phys. Eng. Sci.

249 (1956) 65

» F.W. J. Olver, Second-Order Linear Differential Equations with Two Turning Points,
Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 278 (1975) 137 -

= F.W. J. Olver, Asymptotics and Special Functions (Wellesley, 1997)




2. The Uniform Asymptotic Approximation (UAA) Method

» The Schrodinger equation can be cast in the form,

dzg—;gy) = f(k, y)pr(y)

In fact, all the linear second-order homogeneous ordinary differntial equations can be cast in
this form.

» However, instead of the above form, we further write it as,

L) — [Ng(w) +a@)] i) @)

a(y), a(y): two unspecified functions
)\ : alarge positive dimensionless parameter and serves as a bookmark
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2. The UAA Method (Cont.)

> Then, we expand p(y) in terms of \—n
S ﬂi”) (y)
pi(y) = Z .

At the end, without loss of generality, we shall set it to one, by absorbing it to [1.( )(y). Note that the above
expansion usually does not converge, and in these cases we just expand pi(y) to a finite order, say N, so that px(y)
is well approximated by the linear combination of the first N terms.

» The reason to introduce two functions, g(y) and q(y), instead of a single one, f(y), is to use
this extra degree of freedom to minimize the errors, by writing them in the form

g~ g(ya an)) g — g(ya bn) .

Qn, bni a set of parameters, which will be chosen to minimize the errors.




2. The UAA Method (Cont.)

» Then, there are two major steps:
thyee

* The Liouville Transformation

* Minimizing the errors

 Properly choosing y(g)
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2.1 The Liouville Transformation

> The Liouville transformation:

U@E) =5~ V2py, = % > 0. (2.2)

» Then, Eq.(2.1) takes the form,

U (¢)
de?

with

= [N(3%8) + (O] U(©), (2.3)

2 2
0O =ia+ i 5 (177) = Pa— i 55 (1) = vl @4)

d§2




2.2 Minimizing the Errors

> |If

Y(&)
A?y?g
we can ignore the y(¢) term in Eq.(2.3) to find the first-order approximate solution.

<1

» To characterize the errors, we introduce the error control function,

re= [t g

192g(v)|
and the associated error control function

;
T T

92g(v)]




2.2 Minimizing the Errors (Cont.)

» Our goal now is to choose 32g(¢) properly, so that:

v’ the first-order approximate equation,

d ;gg@ — NP UE),  ($(E) =0)

can be solved explicitly (often in terms of known special functions)
o -

v’ the first-order approximation can be as close to the exact solution as possible. This
requirement can be fulfilled by minimizing the error control function

8F(§, anabn) 0 3F(§,an,bn) —0 «g :g(g’an)7 g = q(é., bn),

oa,, - Ob,,
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2.2 Minimizing the Errors (Cont.)
v the requirment,

Yo s(F) < oo, Va,pB € (a1, ),

where (a1,02) s the interval we are interested in, which (one-to-one) correasponds to
(a4, a,) of y, and can be finite or infinite.




2.3 Choices of y(&)

» The choice of y(&) sensitively depends on the properties of the functions g(y) and g(y) near
their poles (singularities) and turning points (roots of g(y) = 0).

» In particular, depending on the number and nature of the turning points, the choices of

will be different.
A gy) A g(y)

» Examples of Turning Points
(@

0 Yo, y “'
| I
(b) !

« Zero Turning Point:

(Zero Turning Point without Poles) (Zero Turning Point with a Pole at yj)




2.3 Choices of y(¢) (Cont.)

One Turning Point:

* Note that we shall consider Cases
(b) & (d) as double turning points,
and only consider Cases (a) and (c)
as a single turning point.

| 82

(b)

@)

©

(One Turning Point)

(d)



2.3 Choices of y(&) (Cont.)

» Two Turning Points: A £V
In general, we have three different cases: \/
v" both are real and different; //
v both are real and equal (double roots); (a) ///\\\

v both are complex roots. Since g(y) is
real, in this case they must be complex
conjugate , — ;5 .

(Two Turning Points) ¥

v' We shall tfreat these three cases all
together.




2.3 Choices of y(¢) (Cont.)

> For each case, we choose [T. Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng, PRD89 (2014) 043507]

4 . .
sgn(q), zero turning point,
) gn(g) iing po 1L >0
g =< &, one turning point, sgn(g) = ) 0
-1, ¢<O.
|sgn(g) (& — €%), two turning points, J

2
fgzi;

[ o

“ ",

“4": ¢h 9 are real; : Y12 are complex
y12: the two turning points (roots) of y(y) = 0. -




2.4 Approximate Solutions

» For such choices, it can be seen that y is
a monotonically increasing function of ¢ |,
so that the map between y and £ are
one-to-one.

» For the cases with more than two turning points,
see, for example, J.-L. Zhang, Extended Airy
function and differential equations with N-turning
points, Appl. Math. Mechanics, 12 (1991) 907.




2.4 Approximate Solutions (Cont.)

» Then, the first-order approximate solutions of the equation,

4 ;gg@ — NP2 UE), ((€) =0)

are given by [T. Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng, PRD89 (2014) 043507]

ra+e’\\/ sen(8) € 4 g_e AVsen(e) € zero turning point
U(€) = { a+Ai (A/3€) + a_Bi (M%), one turning point
a W (%53, V2X f) +a W (%f%, —v2\ cf) , two turning points
‘

a4 : constants;
Ai, Bi: Airy functions;
W: modified parabolic cylindrical function




2.4 Approximate Solutions (Cont.)

» High order solutions can be obtained by recursion relations [Zhu, AW, Cleaver, Kirstein, and Sheng,
PRD89 (2014) 043507; T. Zhu, AW, K. Kirsten, G. Cleaver, Q. Shgeng, PRD93 (2016) 123525].

» For example, for the one-turning point case, we have

"L A(E) | AT(NBE) T By(€)

U(€) = ax | Ai(A*€) L 223 T 2\4/3 225 + fz(sznﬂ)
s=0 s=0
. N Ay(€) | BT = Bol§) | an ;
B BIOTO Y o+ —am et | E
s=0 s=0 &




2.4 Approximate Solutions (Cont.)

1

Ava() = —5BI(E) + / Ry A E TS

B = {251”-’ foﬁ{w(U)As(’U) A"('v)}vl/“ £ >0,

smi Je (9 (0)A,(v) — AL)} =B, € <0,
AO(Aag) =1

nggl); errors, Which is related to the associated error control function, 7%, ., , and




2.4 Approximate Solutions (Cont.)

Yo y(F
exp ’2‘/\( ) — 1, sgn(g) = +1,

exXp V_az;\(_F)‘ - ]-a Sgn(g) - _1)

1
|6j(’\7 6)') ﬁ |6;(’\) é)l < {

a € [a1,as], € = O¢;/0E.

» From the above expression we can see that, to minimize the errors, we need to minimize the
error control function F(y). In particular, when

1
Fy) =0 = |9, oyl =0,

which corresponds to the exact solution! In general we cannot have F(y) = 0. But it does show
the importance to properly choose g(y, a,) and q(y, b,), so that the error control function F(y) is x
minimized.

» This is the key to construct successfully approximate solutions of L.




3. Applications
3.1 Quantum Mechanics (QM)

> In QM, exact solutions of the Schrodinger
equation

dz;;(f) + S (E-V@)¥@ =0,

are known for several potentials V(x)
[S.-H. Dong, Wave Equations in Higher Dimensions
(Springer, New York, 2011)], as given in the

Table.

> In the following, let us compare WKB
and Our methods for these particular
cases [B.-F. Li, T. Zhu, AW, Universe 6 (2020) 90;

arXiv:1920.09675]

Potentials V()
Hydrogen —% -+ %(1%12

Harmonic oscillator

h21(141
mw :1: — —5—5—221”:”

Morse potential

2z

voe + vie”°

Poschl-Teller (PT)

v
cosh?(azx)

Eckart

smh2 () + tanh(am)

[Potentials for which exact solutions are known]




3.1.1 Hydrogen Atoms
> In this case, the potential is given by

e? N RA1(1+1)
T 2mx?

V(ZE) - y

m, e: the electron mass and charge; |: the angular momentum number

» The corresponding exact solutions of the Schrodinger equation are known, from which the
energy eigenvalues are given by [S.-H. Dong, S.-H. Wave Equations in Higher Dimensions (Springer, New

York, 2011)]

me

Exact __
E, =

C2R2(n+1+1)2




3.1.1 Hydrogen Atoms (Cont.)
» The WKB method yields

4

EWKB _

- me # EExact.
. oh2(n+1/2+/I0+1))2~ "

» To fix this problem, Langer [R. Langer, The Asymptotic Solutions of Linear Ordinary Differential Equations with

Reference to the Stokes Phenomenon, Bull. Am. Math. Soc. 40 (1934) 545] introduced the following
replacement

Il+1) = (1+1/2)?

in the Schrodinger equation, without any (physical) justification.




3.1.1 Hydrogen Atoms (Cont.)

» On the other hand, the potential diverges at x = 0. So, in the framework of the UAA method, in
order to have the error control function F(x) be finite near this pole, q(x) must be chosen as

1

CI(CU) - —@,

which is nothing but the Langer’s modification!

» With such a choice, g(y) = 0 now has two real and different roots

e? n \/m2E4 +mE(l + 1/2)%h2
2F 2mE ¥

1,2 = —




3.1.1 Hydrogen Atoms (Cont.)

» Then, the energy eigenvalues are given by

4
EUAA _ me . EExact
n .

CR2(n4141)2° "




3.1.2 Harmonic Oscillators
» The potential for the harmonic oscillator in D-dimensions is given by

V(x) = %mzwsz + " (l (D+1—2)+ i(D —1)(D — 3))

2mx?

» The exact solution of the Schrodinger equation leads to [S.-H. Dong, S.-H. Wave Equations in Higher
Dimensions (Springer, New York, 2011)],

EExact (Zn +1+ g) hw.
» The WKB method gives :
E,YVKB:(2n+\/l(D+l—2)+(D_1{4(D_3)+1>hw '

Which is also different from the exact one.




3.1.2 Harmonic Oscillators (Cont.)

» On the other hand, in the framework of the UAA method, the finite requirement of the error
control function F(y) leads to the unique choice,

1

q(CB) - _@a

for which we find that

D
EJA = (2n +1+ 5) hw = B




3.1.3 Poschl-Teller (PT) Potential

» The PT potential is given by
Vo
2 )
cosh”(ax)

V(z) = Vo, @: constants.

» The exact solution of the Schrodinger equation leads to [S.-H. Dong, S.-H. Wave Equations in Higher
Dimensions (Springer, New York, 2011)],

232
Exact __ a“h 2 8'm"UO
En —’Uo—m 2n —|—2n+1—(2n+1)\/1—a2h2] :‘
» The WKB method gives
’h? | (2n + 1)? 8muy s
EWKB _ 5, _ & —(2n+1)4/— .
" T am 2 (2n+1) a? h?




3.1.3 PT Potential (Cont.)

» On the other hand, in the framework of the UAA method, we choose

q(x) <

~ 4cosh? (az)’

which leads precisely to

UAA _ pExact
EUAA _ pExact




3.1.4 Other Potentials

> For other potentials (listed in the previous Table), by properly choosing q(y), the UAA method
always yields [B.-F. Li, T. Zhu, AW, Universe 6 (2020) 90; arXiv:1920.09675],

UAA _ pExact Potentials V(z) glz) |ENKE = phxact| EUAA = plxact
EUAA = plxact
Hydrogen -£ + Tl,(n%ll — 53 X N,
» For other applications N 2,2 RA+) |
AN Sthodit Harmonic oscillator| 3mw?z? + == 7 X Vv
QM, see B.-F. Li, T. Zhu, : %z -
AW, Universe 6 (2020) Morse potential | voe *** + vie” 0 Vv Vv
90 [arXiv:1920.09675]. . ; o2
[ Poschl-Teller (P T) coTth(a_m) m(a_m) X \/ ;’
U v 02
Eckart sinhzo(aa:) t tanh%am) ~ 4sinh?(az) A \/




3.2 Cosmology

> The first application of the UAA method gravity physics was by S. Habib, et al. in 2002 with a
single turing point to the first-order approximation, precisely 46 years after Olver first studied
this case [F.W.J. Olver, Philos. Trans.Roy. Soc. London A249 (1956) 65].

VOLUME 89, NUMBER 28 PHYSICAL REVIEW LETTERS 31 DECEMBER 2002

The Inflationary Perturbation Spectrum

Salman Habib,l Katrin Heitmann,l Gerard Jungman,] and Carmen Molina-Paris

"Theoretical Division, MS B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

*Mathematics Institute, University of Warwick, Coventry CV4 JAL, United Kingdom
(Received 23 August 2002; published 27 December 2002)

Motivated by the prospect of testing inflation from precision cosmic microwave background
observations, we present analytic results for scalar and tensor perturbations in single-field inflation -
models, based on the application of uniform approximations. This technique is systematically improv-
able, possesses controlled error bounds, and does not rely on assuming the slow-roll parameters to be
constant. We provide closed form expressions for the power spectra and the corresponding scalar and
tensor spectral indices.




3.2 Cosmology (Cont.)

» Later, the same authors generalized their studies to high-order approximaitns [S. Habib, et al.,
PRD70 (2004) 083507; D71 (2005) 043518].

» In 2008, Lorenz et al. applied the method to k-inflaiton and obtained the power spectra up
to the first-order approximation [L. Lorenz, et al., PRD78 (2008)

083513]. Ae
» In 2009, Yamamoto et al. applied the method to calculate
the power spectra of cosmological perturbations in the HL . )
—

gravity [K. Yamanoto, et al., PRD80 (2009) 063514].

» Note that up to this moment (2009) all the applications
were restricted to the one-turning point case.

[AW, PRD82 (2010) 124063]




3.2 Cosmology (Cont.)

» But the problem is really a three-turning-point problem.
In order to calculate the power spectra of cosmological
perturbations correctly, one needs to generalize the
one-turning-point case to three-turning-point one
[AW, PRD82 (2010) 124063; Y. Huang, AW, Q. Wu, JCAP10 (2012)

010].

> \Very fortunately, in 2013 Dr. Tao Zhu joined Baylor as a
postdoc to work with Jerry, Klaus, Tim & me, through
CASPER, and we immediately proposed to work on the
above problem.

FIG. 2 The three different cases for the function g(k, n) de-
fined by Eq. (5.22): (a) g(k, ) has one turing point; (b) g(k, n)
has two turning points; and (c) g(k, ) has three turning points.

[AW, PRD82 (2010)124063]

> In that year, we worked out the first-order approximation to the case with two singular and
three turning points to the first-order approximation [T. Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng,
IJMPA29 (2014) 1450142; PRD89 (2014) 043507].




3.2 Cosmology (Cont.)

» Later, we generalized our studies to high-order
approximations:

= Case (a) [T. Zzhu, AW, G. Cleaver, K. Kirsten,
Q. Sheng, PRD0 (2014) 063503]

= Cases (b) & (¢) [T. zhu, AW, K. Kirsten,
G. Cleaver, Q. Shgeng, PRD93 (2016) 123525]

> In particular, we found that to the third-order
approximation, the upper bound of errors is
no larger that 0.15%, which are sufficiently
accurate for the current and forthcoming

cosmological observations [Y. Akrami, et al., Planck
Collaboration, Planck 2018 results: I. Overview and the
cosmological legacy of Planck, A&A 641 (2020) A1]

200 F

150

Ik 32 pye (v) (aH)|
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T e—r— Y ye—— pe—e—r
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€, =0.005
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o Uniform 1st-order | Ft
« Uniform 2nd-order - .
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3.2 Cosmology (Cont.)

» Power spectrum of cosmological scalar perturbations in Deforemd Algebra Approach

[M. Bojowald, et al., 2008; T. Cailleteau et al., 2012; A. Barrau, et al., 2015]:

» Equation:
A at)
" 2 Z_g' — = ﬂ
P + (‘*’k ZS) Pe =0, 2 = Contracting Expanding
< Pe
2% >0, p= 77,
w=1l——=<4{=0, p= %’ I !
Pc 0 > Pc 1 !
<Y p=7y y w<0| w<0, w>0
« Silent point: . ' I E
. P./2 P fpc/2 Pl E
P = §pC' . . >:
Bounce Solient Point




3.2 Cosmology (Cont.)

» Imposing the Minkowski vacuum initial conditions at remote past of the quantum bounce,
it was found that the power spectra of both scalar and tensor perturbations are

inconsistent with observatins [B. Bolliet et al, PRD93 (2016) 124011]:

10°
A a(t) 10’} — LQC
10° - GR
Contracting Expanding _ w0
§ 103
— 10
S 10
[ I — .‘
! : =B j
y <0 w<0, w>0 n ?
1 1 — > 10" '

P./2 P

Bounce Solient Point

10! 10° 10°




3.2 Cosmology (Cont.)

» In the framework of the UAA method, to make the error control function

%(§)
92 2

F(§) =

be finite, we must choose

1
4k2t2

q(t) = —

» Then, g(t) has only one turning
point. So, to the first-order
approximaiton, it is the linear

combination of the Airy functions.

-----------------------------------------------------------------

0.1 1 10 100 1000 104




3.2 Cosmology (Cont.)

» From the figure, it can be seen that e g AR MRS 'E ]
0 c . ’ B ! ! HEl i 1
even to the first-order approximation, o2f “-\ ,’ \ ,: i Hpél i :
the numerical (exact) solution can be orf ;Y it ”:'iiq :
described well by the analytical Z . - O | hi ’,gr
approximate solution. S| Qi p— R — &.\ :l i | ‘ lm,;;;l
== b
. : : X Vo v rag
» With the general analytical solutions, | | . S ' ' E
we find that the unique consistent o : , |
initial conditions at the silent point F N NOA N RRAM
o0z2) | ======-= Numerical f \. i \ { ‘i i 'I it Il 4 -
AlET e e e L ] e = Anantical | £ t !' i i '| ‘!! f !“i :
AR W i B
- &~ } ; | ,’ L ;l !il ¢
E ¢ i 1 1 Bt 5
/ r o 11 & Ll :
T . [ / N i g £
Ay = 4[—, b, = =iy [—, / \ VE oA i Wt 5
k=Yg % 2k L (VARRVAR 'R AR 11
<<t ~~ [B.-F. L, et al, PRD99 (2019) 103536]




3.2 Cosmology (Cont.)

a3 a2
1.x1078 [ 0.00001
8.x107° 810 | ak= . =ik
6.x107° 6.x10°6
ax10° . 4108 | L
2.x1079 ':‘{')Q‘—')W e ————— 2.%10-6 , - ’
. " i " sl T I e e
[Consistent with Observations] [Inconsistent with Observations]
> It important to note that the above results can be obtained only after the £

general analytical solutitons are known, so we are able to explore the whole
initial data space.




3.3 Applications to Gravitaitonal Waves
» Recewntly, using this method, we have also calculated:
v QNMs of black holes, arXiv:1902.09675

v the gravitaitonal waveforms in parity-violating gravity, arXiv:1911.01580;
arXiv:2211.16825

v’ Gravitational Waveforms in Spatially Covariant Gravity, arXiv:2211.04711




3.3 Applications to Gravitaitonal Waves (Cont.)

Parity-Violated Gravity:
R+ 2+ v )HR, + (14 puy)k2hy =0,  (4.3)

where a prime denotes a derivative with respect to the
conformal time 7. The deviations from that in GR are
quantified by the quantities v, and p,, which are given by

B e pAk(ClH - Cll)/(aHMPV)
4 1 — pakcy/(aMpy)

, (4.4)

_ pak(c1 — ¢3)/(aMpy)
Ha= 1 = pakei/(aMpy) (45)

The quantity v, describes the modification of the friction
term, and p, describes the modification of the dispersion
relation of GWs. In parity-violating gravities, the former
induces the amplitude birefringence effect of GWs, while
the latter induces the velocity birefringence of GWs. In the

PHYSICAL REVIEW D 101, 043528 (2020)

Polarized primordial gravitational waves in the ghost-free
parity-violating gravity

Jin Qiao®,"*" Tao Zhu,"** Wen Zhao®,>*” and Anzhong Wangs’§
nstitute for theoretical physics and Cosmology, Zhejiang University of Technology,

Hangzhou, 310032, China

United center for gravitational wave physics (UCGWP), Zhejiang University of Technology,
Hangzhou, 310032, China

3cAs Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,

University of Science and Technology of China, Hefei 230026, China
4School of Astronomy and Space Sciences, University of Science and Technology of China,
Hefei, 230026, China
5GCAP—CASPER, Physics Department, Baylor University, Waco, Texas 76798-7316, USA

2

™ (Received 8 November 2019; accepted 6 February 2020; published 20 February 2020)

The tests of parity symmetry in the gravitational interaction is an attractive issue in gravitational-wave
astronomy. In the general theories of gravity with parity violation, one of the fundamental results is that
primordial gravitational waves (PGWs) produced during slow-roll inflation is circularly polarized. In this
article, we investigate the polarization of PGWs in the recently proposed ghost-free parity-violating gravity,
which generalizes Chern-Simons gravity by including higher derivatives of the coupling scalar field. For
this purpose, we first construct the approximate analytical solution to the mode function of the PGWs
during slow-roll inflation by using the uniform asymptotic approximation. With the approximate solution,
we explicitly calculate the power spectrum and the corresponding circular polarization of the PGWs
analytically, and find that the contributions of the higher derivatives of the coupling scalar field to the
circular polarization are of the same order of magnitude as that of Chern-Simons gravity. The degree of
circular polarization of PGWs is suppressed by the energy scale of parity violation in gravity, which is
unlikely to be detected using only the two-point statistics of future cosmic microwave background data.




3.3 Applications to Gravitaitonal Waves (Cont.)

Using UAA, first
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FIG. 1. Uniform asymptotic approximate solutions of mode functions |k*/?u, /(z,H)|* (solid curves) and the corresponding numerical
solutions (dotted curves). The left and right panels show the solutions of the left-hand and right-hand modes, respectively. In each panel,
the solid blue, green, and darker yellow curves correspond to the solutions for general relativity, Chern-Simons theory, and ghost-free
parity-violating gravities, respectively. The numerical solution associated with each analytical solution is shown by the red dotted
curves.



Wang, Anzhong


3.3 Applications to Gravitaitonal Waves (Cont.)
Then, using our analytical solutions,
« we explicitly calculated both the power spectra for the two polarization modes

« we showed that in the presence of parity violation the power spectra of PGWSs are slightly
modified.

 the circular polarization generated in the ghost-free parity-violating theory of gravity is
quite small, suppressed by the energy scale of parity violation of the theory, and it would
be difficult to detect using only the power spectra of future CMB data.

« However, previous calculations in Chern-Simons gravity showed that parity-violation

signatures in the bispectrum could be large enough to be detected in the future CMB
observations [N. Bartolo and G. Orlando, JCAP 07 (2017) 034]




3.3 Applications to Gravitaitonal Waves (Cont.)

 In particular, it was found that the tensor-tensor-scalar bispectra for each polarization state
can be peaked in the squeezed limit by setting the level of parity violation during inflation.
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» Therefore, it would be interesting to further explore whether the ghost-free parity-violating
theory of gravity could lead to any parity-violation signatures in non-Gaussianity of PGWs.




3.4 Applications to Other Fields

> After developing the general formulas, we have applied the UAA method to study analytically
the power spectra of cosmological perturbations and non-Gaussianities in various theories of
gravity, including

v' k-inflation, arXiv:1407.8011

v' Loop quantum cosmology, ; arXiv:1503.06761; arXiv:1508.03239; arXiv:1510.03855;
arXiv:1812.11191

v’ Einstein-scalar-Gauss-Bonnet cosmology, arXiv:1707.08020

v" Cosmology in Effective Theories of Gravity, arXiv:1811.03216; arXiv:1811.12612; :
arXiv:1907.13108 .

v' Cosmology in 4D EGB Gravity, arXiv:2212.08253




4. Conclusions & Challenges
4.1 Conclusions

» We have sucessfully applied the UAA method to various problems in several
fields of physics, including:

v the accurate calculations of power spectra of cosmological perturbations when quantum
effects are taken into acocunt, which were done only numerically previously

v’ gravitational waveforms in modified theories of gravity

v QNMs of black holes

v' Energy eigenvalues in QM &

» We expect that such analytical analysis will provide much deeper and thorough
understanding of the physics involved.




4.1 Conclusions (Cont.)

» One advantage of the UAA method is to allow us to estimate the upper bound of errors, and
more important to minimize the errors,
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4.2 Challenges

» When we study the QNMs of black holes in modified theories of gravity, the linearized
equations are normally coupled ODEs, for example,

v in the Einstein-scalar-Gauss-Bonnet theory [D. Langlois, K. Noui, H. Roussille, arXiv:2204.04107]:
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v' in scalar-tensor gravity [0.J. Tattersall, P. Ferreira, Phys. Rev. D99 (2019) 104082]:
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4.2 Challenges (Cont.)

» Another challenging question is the cosmological perturbations of LQC in the deformed
algebra approach,

us(n) + wpps(n) =0, Qi) =1- 220
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where q(; changes signs at »=,./2. This is similar to the Tricomi problem,
0*u 0%u

92 tY52 = 0 in the (x, y)-plane, which leads to the change of the type of the equation.

» So far, no details have been worked out for any of the above problems.
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