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Ø The 1D Schrodinger equation reads,

     m, E: the particle mass and total energy; 
     V(x): the potential

Ø With the WKB approximation, the wavefunction 
     is given by
                                                                                             
                                                                                             

 

1. Introduction
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Ø The WKB approximation is valid only when

Ø The WKB condition is violated around various points:

• turning points, V(x) = E

• singular points,                     , for example, the 
     effective potential for radial motion contains a 
     centrifugal term: 

 

1. Introduction (Cont.)

Wang, Anzhong

Wang, Anzhong

Wang, Anzhong



6

Ø The WKB condition is violated around various points (Cont.):

• extreme points, at which we have 

• multiple turning points
 

1. Introduction (Cont.)

[AW, PRD82 (2010)124063]

Wang, Anzhong

Wang, Anzhong
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1. Introduction (Cont.) 

Ø When Trans-Planckian 
Physics is involved, the 
dispersion relation 
becomes nonlinear.
Then, the WKB method
is valid only when
        𝜆 << LH 
Where 𝜆 = 1/k , LH =1/aH

Wang, Anzhong



8

1. Introduction (Cont.) 

Ø In loop quantum cosmology (LQC): 

Wang, Anzhong
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Ø To overcome these problems, various (approximation) methods have been proposed, 
including the complex and uniform WKB methods [S.-H. Dong,  Wave Equations in Higher 
Dimensions, Springer, Dordrecht (New York, 2011)].

Ø In this talk, I shall introduce another one, the so-called uniform asymptotic 
approximation (UAA) method, developed by Olver in 1950’s – 70’s:

§ F.W. J. Olver, The Asymptotic Solution of Linear Differential Equations of the Second Order 
in a Domain Containing One Transition Point, Philos. Trans. R. Soc. Math. Phys. Eng. Sci.  
249 (1956) 65

§ F.W. J. Olver, Second-Order Linear Differential Equations with Two Turning Points,
     Philos. Trans. R. Soc. Math. Phys. Eng. Sci.  278 (1975) 137

§ F.W. J. Olver,  Asymptotics and Special Functions  (Wellesley, 1997)

1. Introduction  (Cont.)
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2. The Uniform Asymptotic Approximation (UAA) Method

Ø The Schrodinger equation can be cast in the form,

     In fact, all the linear second-order homogeneous ordinary differntial equations can be cast in 
     this form. 

Ø However, instead of the above form, we further write it as,  

     g(y), q(y): two unspecified functions
        : a large positive dimensionless parameter and serves as a bookmark

Wang, Anzhong

Wang, Anzhong
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2. The UAA Method (Cont.)

Ø Then, we expand          in terms of  

Ø The reason to introduce two functions, g(y) and q(y), instead of a single one, f(y),  is to use 
this extra degree of freedom to minimize the errors, by writing them in the form
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2. The UAA Method (Cont.)

ØThen, there are two major steps:

• The Liouville Transformation

• Minimizing the errors

• Properly choosing y(ξ)

Wang, Anzhong
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2.1 The Liouville Transformation

Ø The Liouville transformation:

Ø Then, Eq.(2.1) takes the form, 

     with



14

2.2 Minimizing the Errors

Ø If                   

     we can ignore the       term in Eq.(2.3) to find the first-order approximate solution.

Ø To characterize the errors, we introduce the error control function, 

     and the associated error control function
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2.2 Minimizing the Errors (Cont.)

Ø Our goal now is to choose              properly, so that: 

ü the first-order approximate equation,

    can be solved explicitly (often in terms of known special functions)

ü the first-order approximation can be as close to the exact solution as possible. This 
requirement can be fulfilled by minimizing the error control function 

    

Wang, Anzhong
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2.2 Minimizing the Errors (Cont.)

ü the requirment,     

    where             is the interval we are interested in, which (one-to-one) correasponds to
     (a1, a2) of y, and can be finite or infinite.
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2.3 Choices of y(ξ) 

Ø The choice of y(ξ) sensitively depends on the properties of the functions g(y) and q(y) near 
their poles (singularities) and turning points (roots of g(y) = 0).  

Ø In particular, depending on the number and nature of the turning points, the choices of              
will be different.  

Ø Examples of Turning Points

• Zero Turning Point:

(Zero Turning Point without Poles) (Zero Turning Point with a Pole at y0)
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2.3 Choices of y(ξ) (Cont.)

(One Turning Point)

* Note that we shall consider Cases 
(b) & (d) as double turning points, 
and only consider Cases (a) and (c) 
as a single turning point.

• One Turning Point:
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In general, we have three different cases: 

ü both are real and different; 

ü both are real and equal (double roots);

ü both are complex roots. Since g(y)  is 
     real, in this case they must be complex 
    conjugate              .

ü We shall treat these three cases all 
together.

2.3 Choices of y(ξ)	(Cont.)

Ø Two Turning Points:

(Two Turning Points)
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2.3 Choices of y(ξ)	(Cont.)

Ø For each case, we choose [T. Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng, PRD89 (2014) 043507]
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Ø For such choices, it can be seen that y is 
     a monotonically increasing function of     , 
     so that the map between y and      are 
     one-to-one.

Ø For the cases with more than two turning points, 
    see, for example, J.-L. Zhang, Extended Airy 
    function and differential equations with N-turning 
    points, Appl. Math.   Mechanics, 12 (1991) 907.  

2.4 Approximate Solutions
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Ø  Then, the first-order approximate solutions of the equation,

are given by [T. Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng, PRD89 (2014) 043507]

2.4 Approximate Solutions (Cont.)
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Ø High order solutions can be obtained by recursion relations [Zhu, AW, Cleaver, Kirstein, and Sheng, 
PRD89 (2014) 043507; T. Zhu, AW, K. Kirsten, G. Cleaver, Q. Shgeng, PRD93 (2016) 123525]. 

Ø For example, for the one-turning point case, we have

2.4 Approximate Solutions (Cont.)
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                              which is related to the associated error control function,           , and

                                                                                                                

2.4 Approximate Solutions (Cont.)
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Ø From the above expression we can see that, to minimize the errors, we need to minimize the 
error control function F(y). In particular, when 

     which corresponds to the exact solution! In general we cannot have F(y) = 0. But it does show 
     the importance to properly choose g(y, an) and q(y, bn), so that the error control function F(y) is 
     minimized. 

Ø This is the key to construct successfully approximate solutions of      .

2.4 Approximate Solutions (Cont.)
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3.  Applications

[Potentials for which exact solutions are known]

3.1 Quantum Mechanics (QM)

Ø In QM, exact solutions of the Schrodinger 
     equation

     are known for several potentials V(x) 
     [S.-H. Dong, Wave Equations in Higher Dimensions 
        (Springer, New York, 2011)], as given in the 
     Table.
Ø In the following, let us compare WKB 
     and Our methods for these particular 
     cases [B.-F. Li, T. Zhu, AW, Universe 6 (2020) 90; 
          arXiv:1920.09675]



27

3.1.1 Hydrogen Atoms

Ø In this case, the potential is given by

     m, e: the electron mass and charge; l: the angular momentum number

Ø The corresponding exact solutions of the Schrodinger equation are known, from which the 
energy eigenvalues are given by [S.-H. Dong, S.-H. Wave Equations in Higher Dimensions (Springer, New 
York, 2011)] 
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3.1.1 Hydrogen Atoms (Cont.)
Ø The WKB method yields 

     

Ø To fix this problem, Langer [R. Langer, The Asymptotic Solutions of Linear Ordinary Differential Equations with 
Reference to the Stokes Phenomenon,  Bull. Am. Math. Soc. 40 (1934) 545] introduced the following 
replacement

     in the Schrodinger equation, without any (physical) justification. 
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3.1.1 Hydrogen Atoms (Cont.)
Ø On the other hand, the potential diverges at x = 0. So, in the framework of the UAA method, in 

order to have the error control function F(x) be finite near this pole, q(x) must be chosen as

                                       
     
     which is nothing but the Langer’s modification!

Ø With such a choice, g(y) = 0 now has two real and different roots
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3.1.1 Hydrogen Atoms (Cont.)
Ø Then, the energy eigenvalues are given by  
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3.1.2 Harmonic Oscillators
Ø The potential for the harmonic oscillator in D-dimensions is given by

Ø The exact solution of the Schrodinger equation leads to [S.-H. Dong, S.-H. Wave Equations in Higher 
Dimensions (Springer, New York, 2011)],

Ø The WKB method gives

     Which is also different from the exact one.
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3.1.2 Harmonic Oscillators (Cont.)
Ø On the other hand, in the framework of the UAA method, the finite requirement of the error 

control function F(y) leads to the unique choice, 

     
     for which we find that
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3.1.3 Poschl-Teller (PT) Potential
Ø The PT potential is given by

      
Ø The exact solution of the Schrodinger equation leads to [S.-H. Dong, S.-H. Wave Equations in Higher 

Dimensions (Springer, New York, 2011)],

Ø The WKB method gives
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3.1.3 PT Potential (Cont.)
Ø On the other hand, in the framework of the UAA method, we choose

      
    which leads precisely to
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3.1.4 Other Potentials
Ø For other potentials (listed in the previous Table), by properly choosing q(y), the UAA method 

always yields [B.-F. Li, T. Zhu, AW, Universe 6 (2020) 90; arXiv:1920.09675], 

Ø For other applications 
     of the UAA method to 
     QM, see B.-F. Li, T. Zhu, 
      AW, Universe 6 (2020) 
      90 [arXiv:1920.09675]. 
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Ø The first application of the UAA method gravity physics was by S. Habib, et al. in 2002 with a 
     single turing point to the first-order approximation, precisely 46 years after Olver first studied  
     this case [F.W.J. Olver, Philos. Trans.Roy. Soc. London A249 (1956) 65].

3.2 Cosmology
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Ø Later, the same authors generalized their studies to high-order approximaitns [S. Habib, et al., 
PRD70 (2004) 083507; D71 (2005) 043518].

Ø  In 2008, Lorenz et al. applied the method to k-inflaiton and obtained the power spectra up   
      to the first-order approximation [L. Lorenz, et al.,  PRD78 (2008) 
         083513]. 

Ø In 2009, Yamamoto et al. applied the method to calculate 
    the power spectra of cosmological perturbations in  the HL
    gravity [K. Yamanoto, et al., PRD80 (2009) 063514].

Ø Note that up to this moment (2009) all the applications 
    were restricted to the one-turning point case. 

                                                                                             [AW, PRD82 (2010) 124063]

3.2 Cosmology (Cont.)
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Ø But the problem is really a three-turning-point problem. 
     In order to calculate the power spectra of cosmological 
     perturbations correctly, one needs to generalize the 
     one-turning-point case to three-turning-point one 
     [AW, PRD82 (2010) 124063; Y. Huang, AW, Q. Wu, JCAP10 (2012) 
        010]. 

Ø Very fortunately, in 2013 Dr. Tao Zhu joined Baylor as a 
      postdoc to work with Jerry, Klaus, Tim & me, through 
      CASPER, and we immediately proposed to work on the 
      above problem.                                                                             [AW, PRD82 (2010)124063]

Ø  In that year, we worked out the first-order approximation to the case with two singular and 
three turning points to the first-order approximation [T. Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng, 
IJMPA29 (2014) 1450142; PRD89 (2014) 043507].                                                              

3.2 Cosmology (Cont.)
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Ø Later, we generalized our studies to high-order 
    approximations:

§ Case (a) [T. Zhu, AW, G. Cleaver, K. Kirsten, 
       Q. Sheng, PRD90 (2014) 063503] 
§ Cases (b) & (c) [T. Zhu, AW, K. Kirsten, 
       G. Cleaver, Q. Shgeng, PRD93 (2016) 123525]

Ø In particular, we found that to the third-order 
    approximation, the upper bound of errors is 
    no larger that 0.15%, which are sufficiently 
    accurate for the current and forthcoming 
    cosmological observations [Y. Akrami, et al., Planck 
      Collaboration, Planck 2018 results: I. Overview and the 
      cosmological   legacy of Planck, A&A 641 (2020) A1]

3.2 Cosmology (Cont.)
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Ø Power spectrum of cosmological scalar perturbations in Deforemd Algebra Approach 
    [M. Bojowald, et al., 2008; T. Cailleteau  et al., 2012; A. Barrau, et al., 2015]:

• Equation:

• Silent point: 

3.2 Cosmology (Cont.)
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Ø Imposing the Minkowski vacuum initial conditions at remote past of the quantum bounce, 
it was found that the power spectra of both scalar and tensor perturbations are 
inconsistent with observatins [B. Bolliet et al, PRD93 (2016) 124011]:

3.2 Cosmology (Cont.)
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Ø In the framework of the UAA method, to make the error control function 

    be finite, we must choose 

Ø Then, g(t) has only one turning 
    point. So, to the first-order 
    approximaiton, it is the linear
   combination of the Airy functions.

3.2 Cosmology (Cont.)
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Ø From the figure, it can be seen that 
even to the first-order approximation, 
the numerical (exact) solution can be 
described well by the analytical 
approximate solution. 

Ø With the general analytical solutions, 
we find that the unique consistent 
initial conditions at the silent point 

     are

[B.-F. Li, et al, PRD99 (2019) 103536]

3.2 Cosmology (Cont.)



44

 

[Inconsistent  with Observations][Consistent with Observations]

Ø It important to note that the above results can be obtained only after the 
general analytical solutitons are known, so we are able to explore the whole 
initial data space.  

3.2 Cosmology (Cont.)
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3.3  Applications to Gravitaitonal Waves

Ø Recewntly, using this method, we have also calculated:

ü   QNMs of black holes, arXiv:1902.09675

ü  the gravitaitonal waveforms in parity-violating gravity, arXiv:1911.01580; 
arXiv:2211.16825

ü Gravitational Waveforms in Spatially Covariant Gravity, arXiv:2211.04711
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3.3  Applications to Gravitaitonal Waves (Cont.)

Parity-Violated Gravity：
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3.3  Applications to Gravitaitonal Waves (Cont.)
Using UAA, first 
found the mode 
functiopns

Ø Solid blue: GR

Ø Green: CS theory

Ø Darker Yellow: PV 
theory

Wang, Anzhong
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3.3  Applications to Gravitaitonal Waves (Cont.)

Then, using our analytical solutions,

•  we explicitly calculated both the power spectra for the two polarization modes

• we showed that in the presence of parity violation the power spectra of PGWs are slightly 
modified. 

• the circular polarization generated in the ghost-free parity-violating theory of gravity is 
quite small, suppressed by the energy scale of parity violation of the theory, and it would 
be difficult to detect using only the power spectra of future CMB data.

• However, previous calculations in Chern-Simons gravity showed that parity-violation 
signatures in the bispectrum could be large enough to be detected in the future CMB 

    observations [N. Bartolo and G. Orlando, JCAP 07 (2017) 034] 



49

3.3  Applications to Gravitaitonal Waves (Cont.)

• In particular, it was found that the tensor-tensor-scalar bispectra for each polarization state 
can be peaked in the squeezed limit by setting the level of parity violation during inflation. 

• Therefore, it would be interesting to further explore whether the ghost-free parity-violating 
theory of gravity could lead to any parity-violation signatures in non-Gaussianity of PGWs.  
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3.4  Applications to Other Fields
Ø After developing the general formulas, we have applied the UAA method to study analytically 

the power spectra of cosmological perturbations and non-Gaussianities in various theories of 
gravity, including

ü k-inflation, arXiv:1407.8011

ü Loop quantum cosmology, ; arXiv:1503.06761; arXiv:1508.03239; arXiv:1510.03855; 
arXiv:1812.11191

ü Einstein-scalar-Gauss-Bonnet cosmology, arXiv:1707.08020

ü Cosmology in Effective Theories of Gravity, arXiv:1811.03216; arXiv:1811.12612; 
arXiv:1907.13108

ü Cosmology in 4D EGB Gravity, arXiv:2212.08253
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4. Conclusions & Challenges

4.1 Conclusions

Ø We have sucessfully applied the UAA method to various problems in several    
    fields of physics, including:

ü  the accurate calculations of power spectra of  cosmological perturbations when quantum 
effects are taken into acocunt, which were done only numerically previously

ü gravitational waveforms in modified theories of gravity

ü QNMs of black holes

ü Energy eigenvalues in QM

Ø We expect that such analytical analysis will provide much deeper and thorough 
understanding of the physics involved. 
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4.1 Conclusions (Cont.)

Ø One advantage of the UAA method is to allow us to estimate the upper bound of errors, and 
more important to minimize the errors,

Ø provided that
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4.2 Challenges

Ø When we study the QNMs of black holes in modified theories of gravity, the linearized 
equations are normally coupled ODEs, for example, 

ü in the Einstein-scalar-Gauss-Bonnet theory [D. Langlois, K. Noui, H. Roussille, arXiv:2204.04107]:

ü in scalar-tensor gravity [O.J. Tattersall, P. Ferreira, Phys. Rev. D99 (2019) 104082]: 
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Ø Another challenging question is the cosmological perturbations of LQC in the deformed 
algebra approach,

 

    

     where        changes signs at            .  This is similar to the Tricomi problem, 

                                  in the (x, y)-plane, which leads to the change of the type of the equation. 

Ø  So far, no details have been worked out for any of the above problems.  

4.2 Challenges (Cont.)
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