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General properties of light-rings



1.Motivation

* A light ring (LR) is a circular photon orbit outside a
black hole or an ultracompact object (UCO)

* Light ring is an important feature of curved
spacetimes.

* Light rings play an important role in gravitational
wave observations and black hole photographs.

* Light rings could be observational evidence for
event horizons [V. Cardoso, et.al. PRL(2014)]



2.Example: Schwarzschild black
hole

The metric for the Schwarzschild black hole 1s:

IM oM\ 1
ds? = (1 o ) dt® + (1 — ) dr? + r?d6? + r? sin® qur}z

T T

Due to the spherical symmetry, we can always assume that the

light moves on the equatorial plane # = /2. The four-momentum is

a_t, a L (x_) L d) E) (1
=g Y] el
ot

where ¢ = =x and A is an affine parameter of the null geodesic.



There are two conserved quantities, energy and angular momentum
a

associated with the two Killing vector fields (%)ﬂ' and (6%)

" .
E = —gup® (a) — (1 - 20 /)i

b
L = gapp" (%) :ng'b

For null curves, we have
0 = gasp®p® = —(1— 2M/r)i + (1 — 2M/r) 42 + 1247

Thus, the radial geodesic equation can be solved as

7> = F*—V(r)

with V(r) = I



The light ring r = rg satisfies
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The unstable light ring 1s located at r = 3M .
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From Wald et al. 2019
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3. Previous works

* P. Cunha et.al shows that light rings always come in
pairs for UCO (PRL 2017), one being a saddle point
and the other a local extremum. A topological
argument was used in the proof.

ﬁ%:@{\\ No critical points
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* Very recently, the authors employed this topological
argument to a stationary black hole and found that at
least one standard LR exists out-side the nonextremal

horizon for each rotation sense (PRL 2020).



Unresolved issues

* The topological argument relies on the formation
history of UCO

* The previous works cannot answer that whether a
light ring must exist on the equatorial plane.




* It cannot answer whether the radial or the angular
direction is stable.

* The topological argument does not apply to
extremal black holes.



4. General setup

A stationary spacetime with two Killing vector fields:

ds?® = gy (r,0)dt? + g, (v, 0)dr? + 2g;4(r, 0)dtdd + gee(r, 0)dO? + gsu(r, 0)do?
* In general, the 4-momentum of a photon is

r-i(s) (&) @) )

With  p“pa =0
* The conservation of energy and angular momentum:
E = —gup” i b — t O
— =lubl It = =i Jip D ,
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L = gapp® (%) = Yo + Giot
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» Therefore ¢,7> + ggot> + V(r,0) =0
Where V(r,0) = —% (E%gs¢ + 2ELgip + L?gut)

D = g, — 91944

Define U_E Then
L
L2
V = — g (0 —Hy)(o— H_)
. — _gtqﬁi\@.

Yoo

16



For the H. branch, assume that a LR is located at {r =r,,0 =0},

which satisfies

a?«H_@_ = O 89H+ = O o = H+(T‘+._, 9+)

(r4,04) (r+,0+)

Similarly for the H_ branch.

* The H_branch corresponds to LR counter-rotating
with the black hole and the H_ branch
corresponds to LR co-rotating with the black hole.

* To find LRs, we shall analyze the angular direction
and the radial direction, respectively.



Stability
0;V (rLr,0LR) = 0, Hy (rLr, Our) (Hy — H_).

OV (TLR,0LR) = O H_(riRr,01r)(H- — Hy).

where, m € {r,0}

Since H. > H_, we see that 92 H_ has the same sign

as 02V and 02 H_ has the opposite sign.

So the maximum of H, and the minimum ot H_
correspond to unstable orbits.
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5. Existence of LR for Black holes

* Axis-symmetric black holes--angular direction
(fixed r)
P = \/Jsep g0es to zero when § — 0 and 0 — .

89p>0 6’—)0
Dop<0 O —m.

1
Thus we find Hy ~ iE — oo,

and agp +00 0 — 0
OgHL ~ F— ~ .
S P> {ioo 0 — ,
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So, for any fixed r. H4+ can be viewed as a function of

f ranging from O to m,

AN

= H4(6)

0 6 — H.(9 T\

For each given r, there always exists a § = 64 such
that H, (7,0, ) is a minimum in the @ direction. In this
way, we obtain a function # = 6, (r). Similarly, we have

6_(r) for H_.

In asymptotically flat spacetimes, Hyx — =+
r — oo. Thus, we have

Bilr — 00) =7/2.
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When the spacetime possesses a parity reflection symmetry 8 — m — 6.
H . satisfies H. (0) = H,(m — #). Thus,

OH . | JH
20 lo 90 lx_g
One the equatorial plane,
OH,|  OH,|
00 w/2 B 00 /2 o

Therefore, 0 (r) = w/2.

An orbit confined on the equatorial plane always has
an extremum in the angular direction.
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Radial direction (fixed 9 )

e At infinity »r — 00, we have

gt — 0, gre — —1 and ggp — 12
|

_ s 0T
rsin @

Hj:—>:‘2

* On the horizon D|,, =0, and D is always

positive outside the horizon

Hyl, = —g% <0.
rh



So there exists at least one maximum for H_|_
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H_ is always negative outside the horizon.

D'(rp)
2/ D(rn)9ps(rh)
i Gt6(Th) 95 (Th) — 916 (Tn) 9o (Th)
Q%¢(Th) I

H. (rn) ~

One can show that D’(rp) > 0 for nonextremal horizons

Thus, H' (r,) » —0

There exists at least one minimum for H_ (maximum for
V)
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The above argument holds for any constant 6, i.e.,
given any €, there exists r = ry > rp such that H,
takes an maximum value in the r direction. Hence, we
have a function r (#) defined in the range 0 < 6 < .
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The functions r+ () and 0+ (r) for the Kerr black hole
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* For extremal Kerr black holes D’(r},) = 0
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6. LRs in horizonless spacetime

* Horizonless spacetimes are interesting because
they can represent ultracompact objects (UCO)

* The behavior of H+ at infinity is the same as BH,
Hy — 0%
* Assume that the spacetime is regular,
git < 0 and g+ > 0 everywhere.
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* Near the cente

r r=0, assume

gis — —k*
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For 0 <8<,

st g (] o B 1/2 2. |
2y RO s SR
2 o — &
H N_(fIQ—s 2@)1)_)_00 O{_p
for @=0y —pE P2+ E2? -1+ V14 a?r?
v 7'2 T ?"2 p)
H_ — -0 Hy - %p>0
4
8}
B [@y=0; =md H;:(0+):—Zp<o,

Hence, H/ become negative just away from r = 0
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= H.(r)

— (1)

* There is either no LR or there are even number of

LRs for each branch.
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7. Conclusions

* We have shown that there are at least two LRs
outside a non-extreme stationary black hole. The
outermost LRs are unstable along the radial
direction and stable along the angular direction.

* For an extremal stationary black hole, we find there
is at least one LR.

* When the spacetime possesses a reflection
symmetry, there must exist a LR on the equatorial
plane.



* For horizonless spacetimes, we have proved that if LR
exists, there are at least two LRs, with the outer one
being unstable in the radial direction and the inner one

being stable.

* |n our arguments, only some generic conditions have
been used, for instance, the asymptotically flat
condition and the behaviors of the metric near the
horizon or the center of star. The results could apply to

most gravity theories.



Quasi-black holes and stability of
spacetimes



1. Motivations

e Cardoso et al. (2014) conjectured that ultracompact
objects possessing LRs may not be stable. They calculated
the quasi-normal modes of ultracompact stars and found
that lone-lived modes near the stable light ring.

* |f the conjecture is true, then the LRs can be the
signature of black holes.

* Can we have a one-parameter family of horizonless
solutions where the LRs appear at certain parameter?

 For this purpose, we revisit the quasi-black hole solutions,
constructed by Lemos, et. al. (2000).

* The one-parameter family of static solutions are
everywhere nonsingular but can come arbitrarily close to
a black hole at certain critical parameters.



2. Quasi-black holes

The metric

dt?

2 _
5" = U(R)

+ U(R)*[dR* + R*(d#* + sin® 6do?)] .

describes a spacetime consisting of extremal dust, i.e., p = pe.

By using Einstein’s equation, one can show that

19 (R28—U) = —4nU%p.



q
VR2 +c2
where ¢ is the total charge of the spacetime.

Choose UR)=1+

When ¢ — 0, the solution reduces to the extremal RN black hole

and R = 0 is the black hole horizon.

Then the areal radius r is related to R by

qR

r=RU =R+
VRI T &

For ¢=0, The horizon R = 0 corresponds to r = q.



when ¢ # 0 quasi-black hole spacetime describes a spherically

symmetric compact star with R =0 (r = 0) being its center.



3. Light rings of QBH

On the equatorial plane § = 7/2, the four-momentum of a photon takes the fort

82 sl 2N sal 2Y
P =0 \ & “\ogy

The conserved energy and angular momentum are given by

9\° e
B = —gar®(2) = —gut= gt
Gabl’ (at) [ 2

i 5 .

£ = Qabpa'(a—@> :g¢¢®:U3R2511139@.

In addition, we have the null condition

0= gup™p".



We get the radial equation

g 12 :
" : =¥
T R2U4
Define the potential
, L?
V(R) = R2U4"
Let 22 = R? + ¢? and then
L
Vi R) = ;
U e e

The light rings occur at V/(R) = 0 and E? = V(R). which gives

2% — g2 +2¢c2 = 0. (3.8)



For ¢ = (,there are two solutions z=0and z=¢q, or R=0and R =q.
R = q is just the light ring located outside the black hole horizon.

R =0 (or r = q) is the null geodesic normal to the horizon, which is not the light ring.

For ¢ # 0, we let

y=2—4q/3>—q/3.

Then Eq. (3.8) becomes

1 ¢ 2
3 2
— —y+2¢c° — — =0.

where we have set g = 1.



To solve the cubic equation, we define

8= () (3) =

A S o 2
A = 0 vyields a critical constant K = =.
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When ¢? > K, Eq. (3.10) has only one real root taking in this form

‘ 2/3
—1—3i+i(i + v3) (1 — 27¢% + 3v/—6c2 + 81c4)

Yd =

_ ‘ 1/3
6(1 — o7 3B 81c4)

But this root does not give a light ring because r < 0.



For A = 0, that is, ¢2 = K. We find the roots of the cubic equation read

Yml = Ym2 = 1/3 and  Ym3 = _2/3
So there are two degenerate light rings.

For A < 0, that is ¢ < K. We have three different real roots,

2 O + 2w
Yy = —COS——

3 3

where w = —1,0,1 and

O = arccos(1 — 27¢2).

7o and 71 correspond to two LRs.



Va (r)

— 2 _1/27

c2=2/27

c2=3/27




Now we pay special attention to the regime ¢ — 0, 1.e., the black hole limit.

We can expand the roots to the order of ¢* and find

5)
RO = {— 562/617
R_1 = £y
Since
re B = BT

VRIt &

We see that as ¢ — 0,
rg — 24

ro1 = q/v2

Note that rg just reduces to the light ring of the extremal RN black hole,

while r_; does not have the black hole correspondence in the ¢ — 0 limit.



Quasi-black hole ¢ —> 0

r=12q

Extremal RN black
hole ¢=0

r=12q
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4. Long-lived quasi-normal modes
(QNM) of the QBH spacetime

The master equation

[82 o~

27~ o7t Vsz(?")] T(r.t) =0,

where s = 2 corresponds to gravitational perturbations.
Assuming a time dependence W(r,t) = ¢ (r)e !,
the radial function v (r) satisfies a Schrodinger-like equation

&y
dr? + s

—Yale)p =16,



Write w = wg + iwy. As we assume ¥(r,t) = (r)e "

7

the amplitude of perturbation will grow exponentially when wy > 0
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5. Conclusions

* We found a critical parameter for the quasi-black hole at
which the light rings just appear.

* In the black hole limit, we found one unstable LR which
coincides with the RN black hole, while the stable LR
does not have the black hole correspondence..

* We calculated the quasinormal modes of the quasi-black
holes. Both the WKB result and the numerical result
show that long-live modes survive for the range where
light rings exist, indicating that horizonless spacetimes
with light rings are unstable.

e Our work provides a strong and explicit example that
light rings could be direct observational evidence for
black holes.



Thank You!



