
Background Gauge Invariant Vector Space Expansion of EYM Amplitude

Expansion of EYM Amplitudes in Gauge Invariant
Vector Space

Xiaodi Li

Zhejiang University

with Bo Feng, Rijun Huang, Kang Zhou

1904.05997, 2005.06287

USTC, Oct. 29 2020



Background Gauge Invariant Vector Space Expansion of EYM Amplitude

Content

1 Background
Relations of Amplitudes
EYM Amplitudes
The Importance of Gauge Invariance

2 Gauge Invariant Vector Space

3 Expansion of EYM Amplitude



Background Gauge Invariant Vector Space Expansion of EYM Amplitude

Relations of Amplitudes

Relations of Amplitudes



Background Gauge Invariant Vector Space Expansion of EYM Amplitude

Relations of Amplitudes

KK Relations

There are many relations for color-ordered YM amplitudes. The
Kleiss-Kuijf relations

AYM
n (1, {α}, n, {β}) = (−1)|β|

∑
σ∈α�βT

AYM
n (1, σ, n),

reduce the number of independent color-ordered YM amplitudes into
(n− 2)!.
[Kleiss, Kuijf; 1989] [Del Duca, Dixon, Maltoni; 2000]
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Relations of Amplitudes

BCJ Relations

In 2008, Bern, Carrasco and Johansson find new relations,

AYM
n (1, β1, · · · , βr, 2, α1, · · · , αn−r−3, n) =∑
{ξ}∈{β}�P{α}

C{α},{β};{ξ}AYM
n (1, 2, {ξ}, n),

which reduces the independent number to (n− 3)!.

The set of color-ordered YM amplitudes {AYM
n (1, 2, {ξ}, n), ξ ∈ Sn−3}

is the minimal basis, called the BCJ basis.
[Bern, Carrasco, Johansson, 2008]
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Relations of Amplitudes

KLT Relations

KLT (Kawai, Lewellen and Tye) relations initially say that closed
string amplitudes can be written as the sums of products of open
string amplitudes,

A(M)
c = (

1

2
i)M−3πκM−2

∑
P,P ′

A(M)
o Ā(M)

o eiπF (P,P ′).

[Kawai, Lewellen and Tye; 1986]
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Relations of Amplitudes

KLT Relations

Taking filed theory limit α′ → 0, we get the field theory version of the
KLT relations as

AG
n =

∑
σ,σ̃∈Sn−3

AYM
n (n− 1, n, σ, 1)S[σ|σ̃]AYM

n (1, σ̃, n− 1, n),

where S[σ|σ̃] is the momentum kernel.
[Bjerrum-Bohr, Damgaard, Feng, Sondergaard; 2010]
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Relations of Amplitudes

CHY formalism

Through the scattering equations, Cachazo, He, and Yuan (CHY) give
the tree-level amplitude of a specific theory as an integral over the
n-punctured sphere

An(k, ε, ε̃) =

∫
dµn In(k, ε, ε̃, σ).

• Here the measure part is universal, same for different theories

dµn =
dnσ

volSL(2,C)

∏′

a
δ(
∑
b 6=a

ka · kb
σab

),

the integrations are localized by n− 3 linearly independent delta
functions completely.

[Cachazo, He, and Yuan; 2013, 2014]
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Relations of Amplitudes

The integrand depends on the specific theory, for example

PTn(α)Pf′Ψn, Pf′Ψn(ε)Pf′Ψn(ε̃), PTr(α)PfΨn−r(ε)Pf′Ψn(ε̃)

for YM, gravity, and single trace EYM.

• The Parke-Taylor factor PTn(α) is defined by

PTn(α) =
1

σα1α2σα2α3 · · ·σαnα1

.

• The reduced Pfaffian Pf′Ψn is

Pf′Ψn = 2
(−1)i+j

σij
Pf(Ψijij).
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Relations of Amplitudes

The 2n× 2n anti-symmetric matrix is

Ψ =

(
A −CT
C B

)
,

where

Aab =

{
ka·kb
σab

a 6= b,

0 a = b,
Bab =

{ εa·εb
σab

a 6= b,

0 a = b,

and

Cab =

{
εa·kb
σab

a 6= b,

−
∑
c=1,c 6=a

εa·kc
σac

a = b.
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Relations of Amplitudes

Generalized KLT Relations

Integrand In can factorize into two factors, I = IL × IR. Each factor
multiplied by a PT factor can be viewed as an integrand of a new
theory.

After localize the integrations, we get the generalized KLT relations:

An =
∑
α,β

A(L)
n (α)S[α|β]A(R)

n (β).

[Cachazo, He, and Yuan; 2013, 2014]
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Relations of Amplitudes

• For example, consider the integrand of single trace EYM
amplitude

IEYM =PTr(α)PfΨn−r(ε)PTn(1, σ̃, n− 1, n)

×
1

PTn(σ̃)PTn(σ)
× Pf′Ψn(ε̃)PTn(n− 1, n, σ, 1),

after localize the integrations,

AEYM
r,n−r(α) =

∑
σ,σ̃∈Sn−3

AYM
n (n− 1, n, σ, 1)S[σ|σ̃]AYMs

r,n−r(α|1, σ̃, n− 1, n).

• The KLT relation gives the expansion of EYM amplitude in BCJ
basis of YM amplitudes, after summing σ̃,

AEYM
r,n−r(α) =

∑
σ

Cσ(α)AYM
n (n− 1, n, σ, 1).
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Relations of Amplitudes

Web of different theories (1)

Cachazo, He, and Yuan introduced three operations on the
integrands,

• dimensional reduction,

• generalized dimensional reduction,

• squeezing.

From the integrand of Einstein gravity, they got the integrands of
many other different theories.
[Cachazo, He, and Yuan; 1412.3479]
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Relations of Amplitudes

Web of different theories (1)

[Cachazo, He, and Yuan; 1412.3479]
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Relations of Amplitudes

Differential Operators

• Cheung, Shen and Wen simply view the physical scattering
amplitude A as a function of ki · kj , ki · εj , εi · εj for i 6= j on the
support of on-shell conditions.

• Physical differential operators should preserve some constraints,
i.e., commuting with total momentum operator Pv =

∑n
i=1 ki · v

and gauge invariance operator Gi =
∑
v(pi · v)∂(εi·v).

• They introduced three kinds of differential operators to transmute
the amplitude of one theory into that of another theory.

[Cheung, Shen, Wen; 2017]



Background Gauge Invariant Vector Space Expansion of EYM Amplitude

Relations of Amplitudes

These differential operators are

• Trace operators, Tij = ∂εi·εj , reduce the spin of particles i, j by
one, and put them in a new color order.

• Insertion operators, Tijl = ∂εj ·ki − ∂εj ·kl , reduce the spin of
particle j by one, and insert it between particles i, l in a color
order.

• Longitudinal operators, Li =
∑
j(ki · kj)∂εi·kj , reduce the spin of

particle i by one and convert it to a longitudinal mode.

[Cheung, Shen, Wen; 2017]
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Relations of Amplitudes

• The trace operators are intrinsically gauge invariant, but
insertion operators are effectively gauge invariant,

[Tij ,Gl] = 0, [Tijk,Gl] = δilTij − δklTjk.

It just means we can’t apply insertion operators before trace
operator.

• For example,

T [i1 · · · in]AG(hi1 , · · · , hin , · · · ) = AEYM(i1, · · · , in; · · · ),

where T [i1 · · · in] =
(∏n−1

s=2 Tis−1isin

)
Ti1in .
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Relations of Amplitudes

Web of different theories (2)

[Cheung, Shen, Wen; 1715.03025]
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EYM Amplitudes

• In 2016, Stieberger and Taylor give the simple formula about the
expansion of single trace EYM amplitude with one graviton

A
EYM
n,1 (1, · · · , n;h) =

κ

g

n−1∑
i=1

(εh ·Kh)A
YM
n+1(1, · · · , i, h, i+ 1, · · · , n),

with Kh = k1 + · · ·+ ki.
[Stieberger, Taylor; 2016]

• The result of Stieberger and Taylor is quickly generalized to the
more general situations with gravitons, even double traces in
CHY formalism or double-copy. [Nandan, Plefka, Schlotterer and

Wen; 2016] [de la Cruz, Kniss, Weinzierl;2016] [Chiodaroli, Gunaydin,

Johansson, Roiban; 2017]
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EYM Amplitudes

• From a general ansatz, Fu, Du, Huang and Feng give a compact
recursive formula for the expansion of EYM amplitudes with m
gravitons

A
EYM
n,m (1, 2, · · · , n;H) =

∑
�

∑
h|h̃=H\ha

Cha (h)

A
EYM
n+m−|h̃|,|h̃|(1, {2, . . . , n− 1}� {h, ha}, n; h̃),

in KK basis with the help of gauge invariance. [Fu, Du, Huang,

Feng; 2017]

• Quickly, Teng, Feng prove the formula in the CHY formalism.
[Teng, Feng; 2017]

• Du, Feng, Teng generalize the expansion of single trace EYM
amplitude to all multitirace tree level EYM amplitudes. [Du,

Feng, Teng; 2017]
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EYM Amplitudes

As we all known, the BCJ basis is the minimal basis, rather than KK
basis. A nature question arises: what is the expansion of single
trace EYM amplitude in the BCJ basis?
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The Importance of Gauge Invariance

Gauge invariance is important!

The gauge invariance plays an important role in the expansion of
EYM amplitude.

Here Fµνi = εµi k
ν
i − k

µ
i ε
ν
i is the linearized field strength, which is

manifestly gauge invariant.
So we need to consider the principle of gauge invariance more.
[Chih-Hao Fu, Yi-Jian Du, Rijun Huang and Bo Feng, 1702.08158]
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The Importance of Gauge Invariance

First Principles

From first principles, sometimes we can determine the tree-level
amplitudes uniquely.

Locality

The amplitude has only simple poles when the sum of a subset of
momenta KS =

∑
i∈S ki goes on shell.

Unitarity

The amplitude factorizes on the poles into the product of lower-point
amplitudes, with an extra intermediate line.

Gauge Invariance

The amplitude satisfy the Ward identity A(εi → ki) = kµi Aµ = 0.

[Arkani-Hamed, Rodina, Trnka; 2016]
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The Importance of Gauge Invariance

Gauge Invariance v.s. Locality and Unitarity

• Feynman diagrams make locality and unitarity manifest, but not
gauge invariance. Only the sum of all Feynman diagrams is gauge
invariant. For example,

A4 ∼
(ε · k)(ε · ε)

s
+

(ε · k)(ε · ε)
t

+ (ε · ε)(ε · ε).

• If we make the sum be gauge invariant manifestly, the locality
and unitarity become obscure.

A4 ∼
F 4

st
.
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The Importance of Gauge Invariance

Determinacy of Gauge Invariance

Arkani-Hamed, Rodina and Trnka make a general ansatz compatible
with locality, i.e., the singularity structure of cubic graphs:

Ãn =
∑

Γ

NΓ
n (εi, pi; p

n−2)

P 2
σ1
P 2
σ2
· · ·P 2

σn−3

.

In the limit of one momentum being soft, they can prove the Ãn = An
by requiring the gauge invariance inductively.
[Arkani-Hamed, Rodina, Trnka; 2016] [Rodina; 2016]



Background Gauge Invariant Vector Space Expansion of EYM Amplitude

The Importance of Gauge Invariance

Arkani-Hamed, Rodina and Trnka even make a further conjecture:

Determinacy of Gauge Invariance

Simply specifying that singularities only occur when the sum of a
subset of momenta goes on shell P 2 → 0, gauge invariance uniquely
fixes the amplitude, together with the usual mass dimension counting.

[Arkani-Hamed, Rodina, Trnka; 2016] [Rodina; 2016]
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The Importance of Gauge Invariance

We want to know the consequences of gauge invariance only, not
require the appearance of singularities, then try to solve the
constraints of gauge invariance solely.



Background Gauge Invariant Vector Space Expansion of EYM Amplitude

The Importance of Gauge Invariance

Physical constraints of amplitudes

Consider the color-ordered YM amplitude, a d-dimensional, parity
even n-point gluon amplitude satisfies:

• on-shell conditions: k2
i = 0 for i = 1, · · · , n,

• momentum conservation:
∑n
i=1 k

µ
i = 0,

• multilinearity, A = ε1,µ1
ε2,µ2

· · · εn,µnIµ1µ2···µn ,

• transversality: ki · εi = 0, for i = 1, · · · , n.

The most important

• gauge invariance: A(εi → ki) = 0, for i = 1, · · · , n.
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The Importance of Gauge Invariance

Solving Gauge Invariance

1 The constraints of first four conditions are easily solved, only
n(n− 3)/2 independent (ki · kj), n(n− 2) (ki · εj) and n(n− 2)
(εi · εj) ( i 6= j) involved.

2 Then constructing all monomials of (ki · εj) and (εi · εj) satisfying
the condition of mulitilinearity, which is a linearly independent
basis, then a ”possible” amplitude is a linear combination of
these bases.

3 Imposing the conditions of gauge invariance results in n linear
equations, transform them into the independent bases, then solve
the system of linear equations.

[Barreiro, Medina; 2013] [Boels, Medina; 2016]
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The Importance of Gauge Invariance

Solving Gauge Invariance (2)

The two lines in Minimal number of metrics correspond to linear
combinations with leading terms as (ε · ε)(ε · k)n−2 or (ε · k)n.
[Boels, Medina; 1607.08246]
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The Importance of Gauge Invariance

The idea of solving gauge invariance is simple, but very powerful.

Further, there is also a conjecture:

Determinacy of Gauge Invariance

A general function of n momenta and n polarizaiton vectors satisfying
the gauge invariance, with leading term (ε · ε)(ε · k)n−2, must be the
linear combination of the BCJ basis of YM amplitudes!

[Rodina, 1612.06342]

But the method of solving linear equations directly is not efficient and
limited to the first several examples.
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Viewing EYM Amplitudes as Polynomials

For an EYM amplitude AEYM
n,m (1, 2, · · · , n; {h1, · · · , hm}), it contains

{kµ1 , · · · , kµn, k
µ
h1
, · · · , kµhm}, and polarization vectors and tensors

{εµ1 , · · · , εµn, ε
µν
h1
, · · · , εµνhm}.

• Polarization tensors of gravitons factorize εµνhi = εµhi ε̃
ν
hi

, and
further εhi · ε̃hj doesn’t exist.

• There are two sets of Lorentz contractions, {(k · εh), (ε · εh)} and
{(k · ε̃h), (ε · ε̃h)}, we view the amplitude AEYM

n,m as a polynomial
of the first set contractions with coefficients of the latter.

• The polynomial AEYM
n,m is gauge invariant for εhi and ε̃hi

separately.
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• Assuming the expansion AEYM
n,m =

∑
Cα(k, εhi)A

YM
n+m(1, 2, {α}, n).

Since the amplitudes in the BCJ basis are linearly independent, if
we require the gauge invariance of εhi in An,m,∑

Cα(εhi → khi)A
YM
n+m({α}) = 0 ⇒ Cα(εhi → khi) = 0,

then all expansion coefficients are gauge invariant for
(εh1

, · · · , εhm).

• Since the gauge invariance has strong constraints on the form of
functions, then we want to solve the gauge invariance of Cα as a
function of (k1, · · · , kn, kh1

, · · · , khm , εh1
, · · · , εhm).
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Basic Mathematical Settings

A most general polynomial h of n momenta and m polarization
vectors ( m ≤ n ) satisfying previous physical constraints is
schematically described as

hn,m(k1, . . . , kn, ε1, . . . , εm) = α0(ε · k)m+

α1(ε · ε)(ε · k)m−2 + · · ·+ αbm2 c(ε · ε)
bm2 c(ε · k)m−2bm2 c

with

• B[V ] := {(ε · ε)j(ε · k)m−2j , 0 ≤ j ≤ bm2 c} as generating set,

• αi’s being rational functions of ki · kj ,
• α0 6= 0.
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Vector Space: Vn,m
All such polynomials hn,m constitute the vector space Vn,m.

And there are many such vector spaces for different n and m.
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To avoid solving linear equations imposed by gauge invariance, we
view the replacement εi → ki as a map among the vector spaces
Vn,m’s, called gauge invariant map.

A gauge invariant map is given by the gauge invariant operator
Gi :=

∑
v(v · ki)∂v·εi , v representing all Lorentz vectors.

The kernel and image of the gauge invariant map Gi : Vn,s → V(i)
n,s−1

are important,

• Ker Gi[Vn,s] = {f ∈ Vn,s|f(εi → ki) = 0},
• the map is surjective, so Im Gi[Vn,s] = V(i)

n,s−1.
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A physical polynomial we are interested in is gauge invariant for all
its polynomial vectors.

Gauge Invariant Vector Space

All polynomials gauge invariant for all its polynomial vectors
constitute a vector space, called gauge invariant vector space, given by

Wn,m :=

m⋂
i=1

Ker Gi[Vn,m].
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To characterize the gauge invariant space Wn,m, we should known

• its dimension,

• the manifestly gauge invariant form of its vectors,

• the basis.
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Dimension
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Case: m = 1

For the case with m = 1, G1 : Vn,1 → Vn,0, the dimension of Wn,1

dimWn,1 = dim Ker G1 = dimVn,1 − dim Im G1

= dimVn,1 − dimVn,0,

the dimensions of dimVn,1 = n− 2,dimVn,0 = 1.

The fundamental theorem of linear map is

dim Ker Gi = dimVn,s − dim Im Gi = dimVn,s − dimV(i)
n,s−1.
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Case: m = 2

Vn,2 V(12)
n,0

V(1)
n,1

V(2)
n,1

G1 G2

G2 G1

The dimension

dimWn,2 = dim(KerG1 ∩KerG2)

= dim KerG1 + dim KerG2 − dim(KerG1 + KerG2)
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Case: m = 2

Proposition I: the splitting formula

Ker G1 + Ker G2 = Ker G12, with G12 = G1G2.

The physical meaning is: a polynomial which is gauge invariant for ε1
and ε2 simultaneously always can be divided into two parts, each of
which is gauge invariant for one polarization vector.
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Case: m = 2

Then the dimension can be calculated

dimWn,2 = dim(KerG1 ∩KerG2)

= dim KerG1 + dim KerG2 − dim KerG12

=2(dimVn,2 − dimVn,1)− (dimVn,2 − dimVn,0)

= dimVn,2 − 2 dimVn,1 + dimVn,0
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Case: m = 3

When generalize the method to m = 3, we meet problem for m = 3.
In linear algebra, we only have

dim(U1 + U2 + U3)

= dimU1 + dimU2 + dimU3 − dim(U1 ∩ U2)− dim((U1 + U2) ∩ U3),

since in general (U1 + U2) ∩ U3 6= U1 ∩ U3 + U2 ∩ U3.
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Case: m = 3

Proposition II: the distribution formula

(Ker G1 + Ker G2) ∩Ker G3 = Ker G1 ∩Ker G3 + Ker G2 ∩Ker G3.

The physical meaning is: if a polynomial is gauge invariant for ε3 and
for ε1, ε2 simultaneously, then can be divided into two parts, one is
gauge invariant for ε1, ε3, another is gauge invariant for ε2, ε3.
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Then the dimension is

dimWn,3 = dim Ker G1 + dim Ker G2 + dim Ker G3 − dim KerG1G2

− dim Ker G1G3 − dim Ker G2G3 + dim Ker G1G2G3

= dimVn,3 − 3 dimVn,2 + 3 dimVn,1 − dimVn,0.
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General Case

Then the dimension of Wn,m

dimWn,m =

m∑
s=0

(−1)s
(
m

s

)
dimVn,m−s

with

dimVn,m =

bm2 c∑
i=0

(
m

2i

)
(2i)!

2i (i!)
(n− 2)m−2i.

n 4 5 6 7 8 9
dimWn,n 10 142 2364 45028 969980 23372550
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The two lines in Minimal number of metrics correspond to linear
combinations with leading terms as (ε · ε)(ε · k)n−2 or (ε · k)n.
[Boels, Medina; 1607.08246]
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Manifestly Gauge Invariant Form
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• Applying the gauge invariance in the form of operator equation
[Tijk,Gl] = δilTij − δklTjk, we can prove that every vector of
Wn,m (m < n) can be written in the form of linear
combinations of multiplications of (ki · fhl · · · fhs · kj) with
fµνa = kµa ε

ν
a − εµakνa .

• Because

(BfiA)(Cki) = (BfiC)(Aki) + (CfiA)(Bki),

all f -terms with more than two f can be split into fundamental
f -terms: (ki · fa · kj), (ki · fa · fb · kj),

• Note that there is another kind of gauge invariant factors
Tr(f · · · f), but in fact we can also split them into the
combinations of (ki · fhl · · · fhs · kj).
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So we get the conclusion.

Proposition III: Gauge invariant vector

Every vector in Wn,m (m < n) can be recast in a manifestly gauge
invariant form, which is a linear combination of the multiplication of
fundamental f -terms with the total number of field strength f in
every monomial being m.
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Gauge Invariant Basis
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Proposition IV: Gauge invariant vector basis

The set of vectors{
s∏
i=1

(kn−1 · fα2i−1
· fα2i

· kn−1)

m∏
i=2s+1

(kn−1 · fβi · kj)

}

with s = 0, 1, · · · , bm2 c is the basis of Wn,m (m ≤ n− 2).

• Momentum conservation eliminates kn,

• (kn−1fafbkn−1) = (kn−1fbfakn−1), (kn−1fakn−1) =
0, (kn−1faka) = 0.
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The number of the set of vectors N equal the dimension of Wn,m

dim Wn,m

=

m∑
s=0

bm−s2 c∑
i=0

(−)s
(
m

s

)(
m− s

2i

)
(2i)!

2i i!
(n− 2)m−s−2i

=

bm2 c∑
i=0

m−2i∑
s=0

(−)s
m!

s!(m− s− 2i)! 2i i!
(n− 2)m−s−2i

=

bm2 c∑
i=0

m!

i! 2i (m− 2i)!
(n− 3)m−2i = N
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Expansion of EYM in BCJ basis
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We change to expand EYM amplitudes in gauge invariant basis of
Wn+m,m,

AEYM
n,m =

∑
C̃i(ε̃)Bi(ε)

the new coefficients of the basis will be linear combinations of YM
amplitudes.

• Calculating the coefficients C(ε) is difficult,

• gauge invariant structures of C or Bi are known,

• differential operators act on coefficients Bi(ε).
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The exact basis is chosen as

B(α, β, γ) :=

p∏
i=1

Fhα2i−1
hα2i

q∏
i=1

F
hβ′
i

hβi

r∏
i=1

F
aγi
hγi

,

with 2p+ q + r = m and

Fhihj :=
k1 · fhi · fhj · k1

(k1 · khi )(k1 · khj )
, F

hj
hi

:=
k1 · fhi · khj
k1 · khi

, Fahi :=
k1 · fhi ·Ka
k1 · khi

.
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Applying a differential operator as a multiplication of m insertion
operators for ε to the expansion,

T mAEYM
n,m =

∑
C(α, β, γ) (T mB(α, β, γ)) =

∑
AYM
n+m.

Finding enough many differential operators, we get enough linear
equations to solve the coefficients.


T m1 B1 T m1 B2 . . . T m1 BN
T m2 B1 T m2 B2 . . . T m2 BN

...
...

. . .
...

T mN B1 T mN B2 . . . T mN BN



C1
C2
...
CN

 =


T m1 AEYM

n,m

T m2 AEYM
n,m

...
T mN AEYM

n,m
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A simple example

To illustrate the idea, consider a simple example An,2(1, · · · , n;h1, h2).
dim Wn+2,2 = (n− 1)2 + 1 and the basis is

Fa1h1
Fa2h2

, Fh1

h2
Fa1h1

, Fh2

h1
Fa2h2

, Fh1h2
, Fh2

h1
Fh1

h2
.

with 2 ≤ a1, a2 ≤ n− 1.

The expansion of An,2(1, · · · , n;h1, h2) is

An,2 =

n−1∑
a1,a2=2

C[Fa1h1
Fa2h2

]Fa1h1
Fa2h2

+

n−1∑
a=2

(
C[Fh1

h2
Fah1

]Fh1
h2

Fah1
+ C[Fh2

h1
Fah2 ]Fh2

h1
Fah2

)
+ C[Fh1h2

]Fh1h2
.
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There are four types of basis, then we apply four types differential
operators,

Ta1h1(a1+1)Ta2h2(a2+1) ⇒ C[Fa1h1
Fa2h2

]

Th2h1nTa2h2(a2+1) ⇒ C[Fh2

h1
Fa2h2

]

Th1h2nTa1h1(a1+1) ⇒ C[Fh1

h2
Fa1h1

]

(k1 · kh2
)Th2h1nT1h22 ⇒ C[Fh1h2

].

There are totally (n− 1)2 + 1 differential operators.
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Directly solving the system of linear equations is difficult. Properly
choosing differential operators, we can simplify the process of solving
the system of linear equations.
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Strategy

Construct a good differential operator as a multiplication of m
properly chosen insertion operators, under its action, there is only one
unknown coefficient appearing in the equation, while other appearing
coefficients have been calculated.

The problem is reduced to construct good differential operators,
which only select specific B’s.

Constructing good differential operators require us to know more
about the structures of vectors in the gauge invariant basis.
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Quivers: fundamental f -terms

The structures of the gauge invariant basis can be depicted by some
quivers.

• (εh · k)’s in gauge invariant vectors are important.

hi hj hi j
.

εhi · khj εhi · kj

• The quiver representation of fundamental f -terms are

hi hj hi hj hi Ka

Fhihj F
hj
hi

Fahi

The colour loop of Fhihj is a pseudo-loop. Real loops are dropped for
the index circles.
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Structures of gauge invariant basis

• The quiver of a vector of the basis has many disconnected
components.
All pseudo-loops, and these points labelled by Ka are topological
disconnected from each other.

• Every component of the quiver of a vector in the basis has one of
the following structures

· · · · · · · · ·

· · ·
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For example: Fh1h2F
h1

h3
Fh5

h4
F2
h5
F7
h6

and Fh4

h1
Fh4

h2
Fh3

h4
F4
h3
F6
h5
F4
h6

h1 h2 h3 h4 h5 h6

K2 K7

h1 h2 h3 h4 h5 h6

K4 K6
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Constructing differential operators

The vector in the gauge invariant basis is the multiplication of three
types of fundamental f -terms, the constructed differential operators
should distinguish them.

• First, Tahi(a+1) can only select Fahi uniquely,

Tahi(a+1) Fbhj = δijδab, Tahi(a+1) Fhi′hj′ = 0, Tahi(a+1) F
hj′
hi′

= 0.

• Second, Thjhin only selects F
hj
hi

, the Fhi′hj′ is left in the next step,

Thjhin F
hj′
hi′

= δii′δjj′ , Thjhin F
ai′
hi′

= 0,

Thjhin Fhi′hj′ =
εhj · k1
k1 · khj

(δii′δjj′ + δij′δji′ ).
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• Third, (k1 · khj )T1hj2Thjhin only selects the term Fhihj ,

(k1 · khj )T1hj2Thjhin Fhi′hj′ = δii′δjj′ ,

(k1 · khj )T1hj2ThjhinF
hj
hi
Fathj = −khj · (k1 +Kat),

(k1 · khj )T1hj2ThjhinF
hj
hi
F
hp
hj

= −khj · (k1 +Khp).
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The map from a given gauge invariant vector to a corresponding
differential operator is

Method of constructing differential operators

Bαβγ =

p∏
i=1

Fhα2i−1
hα2i

q∏
i=1

F
h
β′
i

hβi

r∏
i=1

F
aγi
hγi

=⇒

Dαβγ =

p∏
i=1

(k1 · khα2i
)Thα2i

hα2i−1
nT1hα2i

2

q∏
i=1

Th
β′
i
hβi

n

r∏
i=1

Taγihγi (aγi+1).
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Algorithm

The algorithm is implemented order by order, starting from p = 0 to
the largest value p and for a given p, we start from the largest r to
r = 0.

• First, calculating these vectors with 0 pseudo-loop. Apply these
differential operators(

q∏
i=1

Thβ′
i
hβi

n

)(
r∏
i=1

Taγihγi (aγi+1)

)

to the expansion equation, each operator gives one linear
equation of one unknown coefficients.
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• Second, calculating these vectors with 1 pseudo-loop. Substitute
the solutions in first step back to the expansion, apply(

(k1 · kα2 )Thα2hα1n
T1hα22

)( q∏
i=1

Thβ′
i
hβi

n

)(
r∏
i=1

Taγihγi (aγi+1)

)
,

each operator gives one linear equation with one unknown
coefficient.

• · · ·

• Repeat the procedure until these vectors with [m/2] pseudo-loops.
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Example: AEYM
n,3
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There are totally dimWn,3 − 3(n− 2)− 8 = n3 − 2 terms contributing.

1 0 pseudo-loop.
• 3 K: Ta1h1(a1+1)Ta2h2(a2+1)Ta3h3(a3+1) ⇒ C[Fa1h1

Fa2h2
Fa3h3

].

• 2 K: Thβ′1hβ1nTaγ1hγ1 (aγ1+1)Taγ2hγ2 (aγ2+1) ⇒ C[F
hβ′1
hβ1

F
aγ1
hγ1

F
aγ2
hγ2

].

• 1 K: Thβ′1hβ1nThβ′2hβ2nTaγ1hγ1 (aγ1+1) ⇒ C[F
hβ′1
hβ1

F
hβ′2
hβ2

F
aγ1
hγ1

].

2 1 pseudo-loop.
• 1 K: Th3h2nT1h32Ta1h1(a1+1) ⇒ C[Fh2h3F

a1
h1
].

• 0 K: Th3h2nT1h32Th2h1n ⇒ C[Fh2h3F
h2
h1
].
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Thanks for you attentions!
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Proof of Proposition III

Proof:

• Inductively, consider hn,1(k1, · · · , kn, ε1)

hn,1 =

n−1∑
i=1

αi(ε1 · ki).

Solving the condition of gauge invariance of ε1 in hn,1,

n−1∑
i=1

αi(k1 · ki) = 0⇒ αn−1 = −
n−2∑
i=1

αi
(k1 · ki)

(kn−1 · k1)
.

Replacing αn−1,

hn,1 =

n−2∑
i=1

αi
(kn−1f1ki)

(kn−1k1)
.
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Proof of Proposition III

Proof:

• (1) hn,m(k1, · · · , kn, ε1, · · · , εm) always has the form

hn,m =

m∑
i=2

(ε1 · εi)T1i +

m∑
i=2

(ε1 · ki)(εi · T ′1i) +

n−1∑
i=m+1

(ε1 · ki)T ′′1i,

and Gahn,m = 0, 1 ≤ a ≤ m.
(2) Applying [Ta1n,Ga] = Ta1 with 2 ≤ a ≤ m,

T1a = −(ka · T ′1a).

Then

hn,m =

m∑
i1=2

(ε1 · fi1 · T ′1i1) +

n−1∑
i1=m+1

(ε1 · ki1)T ′′1i1 .
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Proof of Proposition III

Proof:

• (3) Solving the condition of gauge invariance of ε1 of hn,m, like
hn,1, get

hn,m =

m∑
i1=2

(kn−1 · k1 · fi1 · T ′1i1)

(k1 · kn−1)
+

n−1∑
i1=m+1

(kn−1f1 · ki1)

(k1 · kn−1)
T ′′1i1 .

• (4) T ′′1i1 has already been the desired form, then expand T ′1i1 as
before, and apply the operator equations. Continuing the
procedure to the end, finally get

hn,m =

n−1∑
i1=m+1

(kn−1f1 · ki1)

(k1 · kn−1)
T ′′1i1 +

m∑
s=2

h̃m,s
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Proof of Proposition III

Proof:

h̃n,s =

m∑
i1=2

m∑
i2=2
i2 6=i1

· · ·
m∑

is−1=2

is−1 6=i1,i2,...,is−2

n−1∑
is=m+1

is=1,i1,i2,...,is−2

kn−1 · f1 · fi1 · · · fis−1
· kis

k1 · kn−1
T ′′(1i1···is−1)is

• (5) Applying the following identity, all ”long” f -terms can be
split into fundamental f -terms,

(B · fp ·A)(C · kp) = (B · fp · C)(A · kp) + (C · fp ·A)(B · kp).

The proof is finished.
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Terms with Index Circle (1)

• Terms with index circles are those the expansion of them contain
such factors (εi1 · ki2)(εi2 · ki3) · · · (εis−1

· ki1).
• Consider applying a differential operator
Tahi1hi2Tahi2hi3 · · · Tahishi1 to the EYM amplitude in CHY,

Tahi1hi2 Tahi2hi3 · · · Tahishi1A
EYM
n,m

=

∫
dµPT(1, 2, · · · , n)(Tahi1hi2 Tahi2hi3 · · · Tahishi1 PfΨHm )Pf′Ψ.

• PfΨHm can be expanded as the sum of all permutations like

PfΨHm =
∑

1≤i1≤i2≤···≤im≤n
i1+i2+···+im=n

(−1)n−mPi1i2···im ,

which is organized by the unique cycle decomposition of these
permutations. When the length of the cycle is one, it is denoted

by Ψ(hi), which is Ψ(hi) = −
∑
b6=hi

εhi ·kb
σhib

. When the length of

the cycle is bigger than one, it’s given by

Ψ(hi1 ···hir ) =
tr(fhi1

···fhir )

2σhi1hi2
···σhir hi1
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Terms with Index Circle (2)

• Take the s = 2 as an example

Tah1h2Tah2h1PfΨHm

= Tah1h2Tah2h1
∑

1≤i1≤i2≤···≤im≤n
i1+i2+···+im=n

(−1)
n−m

Pi1i2···im

= Tah1h2Tah2h1
{

Ψ(1)Ψ(2)ΨHm−2
−Ψ(12)ΨHm−2

+ Ψ(1)Ψ(2··· )(· · · )

+ Ψ(2)Ψ(1··· )(· · · ) + Ψ(1..2...)(· · · )
}

= Tah1h2Tah2h1
{

Ψ(1)Ψ(2) −Ψ(12)

}
ΨHm−2

.

Among all cycle structures of permutations, only the first two
give nonzero contributions. Carrying it out explicitly, we get

Tah1h2Tah2h1
PfΨHm =Tah1h2

Tah2h1
{

Ψ(1)Ψ(2) −Ψ(12)

}
ΨHm−2

=
{ σh2a

σh1aσh1h2

σh1a

σh2h1
σh2a

−
1

σh1h2
σh2h1

}
PfΨHm = 0.

• The proof is easy to generalize to the general case.
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