1D repulsive Hubbard model: From quantum liquid to transport

Xi-Wen Guan

[#]Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Science

Collaborators:

Jia-Jia Luo[#], Han Pu^{*}

* Department of Physics and Astronomy, Rice University, USA

University of Science and Technology of China, Hefei, China, April 23, 2024

Hubbard model with cold atoms

A paradigm of physics in condensed matter:

- Electronic properties of solids with narrow bands
- Band magnetism
- Metal-Mott insulator transition,
- Fractional excitations, FFLO pairing

•

The Hubbard model has also become increasingly important in

- cold atoms
- quantum metrology
- quantum information

Nichols et. al., Science 363, 383 (2019) Brown, et. al. Science 363,379 (2019) Shao, et. al. ArXiv:2402.14605 (2024)

Hart, et al. Nature 519, 211 (2015) Boll et al. Science 353, 1257 (2016) Parsons et al. Science 353, 1253 (2016) Cheuk, et al. Science 353, 1260 (2016) Cheuk, et al. PRL 116, 235301 (2016) Hilker, et al. Science 357, 484 (2017) Cocchi, et al, Phys. Rev. X, 7, 031025 (2017) Chiu, et al, Science 365, 251(2019)} Hart, et al. Nature 565, 56 (2019) Vijayan, et. al., Science, 367, 186 (2020)

Outline

I. 1D Hubbard model

Ground state, phase diagram at zero and finite T, critical scaling functions

II. Interaction driven criticality and Contact

III. Quantum transport

Spin and charge Drude weights at zero and finite temperature

IV. Conclusion and discussion

I. 1D Hubbard model: A prototypical integrable model

$$H_{0} = -\sum_{j=1}^{L} \sum_{a=\uparrow\downarrow} \left(c_{j,a}^{+} c_{j+1,a} + c_{j+1,a}^{+} c_{j,a} \right)$$
$$+u \sum_{j=1}^{L} (1 - 2n_{j\uparrow})(1 - 2n_{j\downarrow})$$
$$H_{GE} = H_{0} - \mu \widehat{N} - 2B\widehat{S}^{z}$$

- C_{ja} and C⁺_{ja} : annihilation and creation operators of electrons with spin a at site j
- $n_{ja} = C_{ja}^+ C_{ja}$
- $\widehat{N} = \sum_{j=1}^{L} n_{j\uparrow} + n_{j\downarrow}$
- u < 0 (u > 0): on-site attractive (repulsive) interaction

Lieb, Wu PRL 20, 1445 (1968)

Spin SU(2) symmetry

$$S^{\alpha} = \frac{1}{2} \sum_{j=1}^{L} \sum_{a,b=1}^{2} c_{j,a}^{\dagger} (\sigma^{\alpha})_{b}^{a} c_{j,b}, \alpha = x, y, z$$

Eta-pairing Symmetry

$$\eta^{+} = \sum_{\substack{j=1\\L}}^{L} (-1)^{j+1} c_{j,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger}, \qquad \eta^{z} = \frac{1}{2} (\widehat{N} - L)$$
$$\eta^{-} = \sum_{j=1}^{L} (-1)^{j+1} c_{j,\uparrow} c_{j,\downarrow},$$

The model has been realized with ultracold atoms in lab

Hart, et al. Nature 565, 56 (2019) Vijayan, et. al., Science, 367, 186 (2020) V. Korepin, A. A. Ovchinnikov, F. Essler, H. Frham, P. Schlottmann, N. Kawakami, J. M. Carmelo, N.M. Bogoliubov, F. Woy- narovich, B.S. Shastry

String hypothesis for u > 0:

k: real quasimomentum root M_e Λ : spin wave bound state M_n $k - \Lambda$: charge bound state M'_n

$$N = \mathcal{M}_e + \sum_{n=1}^{\infty} 2nM'_n$$
$$M = \sum_{n=1}^{\infty} n\left(M_n + M'_n\right)$$

1.5

1

0.5

0

-2

Fundamental concepts

Fractional quasiparticles, Universal thermodynamics,

Luttinger liquid, Quantum criticality,

Magnetism, Caloric effect,

Hydrodynamics, Transport

Length-n *A* strings(Orange dots): n-magnons form a bound state

Length-n $k - \Lambda$ strings (Green dots): 2n electrons form a bound state $K - \Lambda$ strings

$$\begin{aligned} k_{\alpha}^{1} &= \pi - \arcsin(\Lambda_{\alpha}^{\prime m} + miu), \\ k_{\alpha}^{2} &= \arcsin(\Lambda_{\alpha}^{\prime m} + (m-2)iu), \\ k_{\alpha}^{3} &= \pi - k_{\alpha}^{2}, \\ \vdots \\ k_{\alpha}^{2m-2} &= \arcsin(\Lambda_{\alpha}^{\prime m} - (m-2)iu), \\ k_{\alpha}^{2m-1} &= \pi - k_{\alpha}^{2m-2}, \\ k_{\alpha}^{2m} &= \pi - \arcsin(\Lambda_{\alpha}^{\prime m} - miu), \end{aligned}$$

 $\Lambda - \Lambda$ strings

$$\Lambda'^{m,j}_{\alpha} = \Lambda'^{m}_{\alpha} + (m-2j+1)iu, \quad j = 1, \dots m.$$

Thermodynamics Bethe ansatz equations

Equation of state

$$f = -T \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \ln\left(1 + \mathrm{e}^{-\frac{\kappa(k)}{T}}\right) + u$$
$$-T \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \frac{\mathrm{d}\Lambda}{\pi} \operatorname{Re} \frac{1}{\sqrt{1 - (\Lambda - inu)^2}} \ln\left(1 + \mathrm{e}^{-\frac{\varepsilon'_n(\Lambda)}{T}}\right)$$

- quantum many body systems
- microscopic state energy E_i
- partition function $Z = \sum_{i=1}^{\infty} W_i e_i^{-E_i/(k_B T)}$

• free energy
$$F = -k_{\rm p}T lnZ$$

$$\varepsilon'_{n}(\Lambda) = 4Re\sqrt{1 - (\Lambda - inu)^{2}} - 2n\mu - 4nu - \int dk \cos ka_{n}(\sin k - \Lambda)T \ln\left(1 + e^{-\frac{\kappa(k)}{T}}\right)$$

$$+ \sum_{m=1}^{\infty} A_{nm} * T \ln\left(1 + e^{-\frac{\varepsilon'_{m}(\Lambda)}{T}}\right)$$
Length-*n* electron BS

M. Takahashi One-dimensional Hubbard model at finite temperature, Progress of Theoretical Physics, 1972, 47(1): 69-82.

Wilson ratio maps out T=0 phase diagram

Wilson ratio: $R_{W}^{\chi_{s}} = \frac{4}{3} \left(\frac{\pi k_{B}}{\mu_{B} q}\right)^{2} \frac{\chi_{s}}{C_{w}/T}$ χ -- susceptibility c_{v} -- specific heat *T*-- temperature For Luttinger liquid phases at T=0 II: $R_w^{\chi_s} \approx 2$ $|V: \quad R_w^{\chi_s} \approx 4(v_c K_s + v_s K_{sc})/(v_s + v_c)$ V: $R_w^{\chi_s} \approx 8k_s$ **New result** $|,|||: \quad R_w^{\chi_s} \approx 0$ $K_{\rm s}$ -- spin Luttinger parameter $v_{c,s}$ -- charge and spin velocities Luo, Pu, Guan, PRB 107, L201103 (2023) Luo, Pu, Guan, arXiv: 2307.00890

Wilson ratio maps out T=0 phase diagram

TBA equations at low temperature

$$\kappa(k) = -2\cos k - \mu - 2u - B + \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} d\Lambda a_n (\sin k - \Lambda) T \ln \left(1 + e^{-\frac{\varepsilon'_n(\Lambda)}{T}} \right)$$
$$-\sum_{n=1}^{\infty} \int_{-\infty}^{\infty} d\Lambda a_n (\sin k - \Lambda) T \ln \left(1 + e^{-\frac{\varepsilon_n(\Lambda)}{T}} \right),$$
$$\varepsilon_n(\Lambda) = 2nB - \int_{-\pi}^{\pi} dk \cos ka_n (\sin k - \Lambda) T \ln \left(1 + e^{-\frac{\kappa(k)}{T}} \right) + \sum_{m=1}^{\infty} A_{nm} * T \ln \left(1 + e^{-\frac{\varepsilon_m(\Lambda)}{T}} \right).$$

$$f = f_0 - \frac{\pi T^2}{6} \left(\frac{1}{v_c} + \frac{1}{v_s} \right) \text{ phase IV}$$

$$f = f_0 - \frac{\pi T^2}{6} \frac{1}{v_c} \text{ phase II}$$

$$f = f_0 - \frac{\pi T^2}{6} \frac{1}{v_s} \text{ phase V}$$

Free energy at low energy

Fractional Excitations

All figures are drawn in the first Brillouin zone

(a): Yellow circle	$B = 0, \mu = -1.5765$
(b): Strong coupling	$n_c = 0.6496, u = 10$
(c): Red star	$B = 0.555, \mu = -1.32$
(d): Diamond	$B = 0.555, \mu = -0.722$
(e): Square	$B = 0.555, \mu = -1.77$
(f): Orange circle	$B = 0.3, \mu = -2.5$

 πn_c

 ΔK

 2π

Elemental Fractional Excitations Particle-hole Ν Charge **Fractional spinions** Length-1 Λ string (Ground state) $\frac{3}{2} - \frac{1}{2} + \frac{1}{2} + \frac{3}{2}$ 2 Length-1 Λ string M+1(Two spinons) $\frac{M}{2}$ $-2 -1 \ 0 \ 1 \ 2$

Two fractional spinons: $\Delta S^{z}=1$ Fractional charge holon: $\Delta \eta^{z} = 0$

Spin incoherent liquid condition:

 $E_{spin} \ll K_B T \ll E_{charge}$

Effective Field Theory: separated spin and charge TLLs

 $H_{\nu} = \frac{1}{2\pi} \int dx \left[u_{\nu} K_{\nu} (\pi \Pi_{\nu}(x))^{2} + \frac{u_{\nu}}{K_{\nu}} (\nabla \varphi_{\nu}(x))^{2} \right], \nu = c$ Charge: $H_{\sigma} = \frac{1}{2\pi} \int dx \left[u_{\sigma} K_{\sigma} (\pi \Pi_{\sigma}(x))^2 + \frac{u_{\sigma}}{K} (\nabla \varphi_{\sigma}(x))^2 \right]$ Spin: $H_g = \frac{2g_1}{(2\pi\sigma)^2} \int dx \cos(\sqrt{8}\varphi_\sigma)$ Backward scattering

Separated pin and change excitations

Spin backward scattering

He, Jiang, Lin, Hulet, Pu, Guan, PRL 125, 190401 (2020)

Observation of Spin-coherent liquid: Spin-charge separation

Peak frequencies and velocities

$$v_p = \omega_p/q$$

 $\begin{pmatrix} \mathbf{H} \\ \mathbf{0} \\ \mathbf{0}$

Velocities of spin and charge shift in opposite directions!

Senaratne, et. al., Pu, Guan, Hulet, Science 376, 1305 (2022) Guan, Batchelor, Lee, Rev. Mod. Phys. 85, 163 (2013)

Charge(red) and spin(blue) dynamical structure factors

Finite temperature: spin-coherent and –incoherent Luttinger liquid

QC — Quantum criticality $|\boldsymbol{B} - \boldsymbol{B}_c| \ll K_B T$ $\frac{C_v}{T} = C_v^0 + T^{\frac{d}{z} + 1 - \frac{2}{vz}} K\left(\frac{\mu - \mu_c}{T^{1/vz}}\right) \quad z = 2, v = 1/2$

TLL—Tomonaga-Luttinger liquid $K_BT \ll E_{spin} \ll E_{charge}$

$$H_{\nu} = \int dx \left(\frac{\pi v_{\nu} K_{\nu}}{2} \Pi_{\nu}^2 + \frac{v_{\nu}}{2\pi K_{\nu}} (\partial_x \phi_{\nu})^2 \right), \nu = c, s$$

SILL — Spin incoherent TLL $E_{spin} \ll K_B T \ll E_{charge}$

$$C_{v} = \frac{\pi T}{3} \left(\frac{1}{v_{c}} + \frac{1}{v_{s}} \right) + \frac{7\pi^{3} T^{3}}{40 v_{s} \left(-\varepsilon_{1}(0) \right)^{2}} + O(T^{4})$$
$$G_{\sigma}^{SILL}(x,\tau) \sim \frac{e^{-2k_{F}|x|(\ln 2/\pi)}}{(x^{2} + v_{c}^{2}\tau^{2})^{\Delta_{K_{c}}}} \frac{e^{i\left(2k_{F}x - \phi_{K_{c}}^{+}\right)}}{v_{c}\tau - ix} + c.c.$$

New Result

Universal Scaling Functions near phase boundaries

$$\begin{aligned} \text{I-II:} \ f \ &= \ u + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \rho(0) \left(\frac{\kappa''(0)}{2} \right)^{-\frac{1}{2}} \text{Li}_{\frac{3}{2}} \left(-e^{-\frac{\kappa(0)}{T}} \right), \\ \text{II-III:} \ f \ &= \ f_0 + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \rho(\pi) \left(\frac{-\kappa''(\pi)}{2} \right)^{-\frac{1}{2}} \text{Li}_{\frac{3}{2}} \left(-e^{\frac{\kappa(\pi)}{T}} \right), \\ \text{V-III:} \ f \ &= \ f_0 + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \sigma_1(0) \left(\frac{\varepsilon_1''(0)}{2} \right)^{-\frac{1}{2}} \text{Li}_{\frac{3}{2}} \left(-e^{-\frac{\varepsilon_1(0)}{T}} \right), \\ \text{II-IV:} \ f \ &= \ f_0 - \frac{\pi T^2}{6v_c} + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \sigma_1(0) \left(\frac{\varepsilon_1''(0)}{2} \right)^{-\frac{1}{2}} \text{Li}_{\frac{3}{2}} \left(-e^{-\frac{\varepsilon_1(0)}{T}} \right), \\ \text{V-IV:} \ f \ &= \ f_0 - \frac{\pi T^2}{6v_s} + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \rho(\pi) \left(\frac{-\kappa''(\pi)}{2} \right)^{-\frac{1}{2}} \text{Li}_{\frac{3}{2}} \left(-e^{\frac{\kappa(\pi)}{T}} \right), \end{aligned}$$

 $m = m_0 + T^{d/z+1-1/(vz)}O_1\left[\frac{\mu - \mu_c}{T^{1/vz}}, \frac{B - B_c}{T^{1/vz}}, \frac{u - u_c}{T^{1/vz}}\right]$ $\chi_s = \chi_{s0} + T^{d/z+1-2/(vz)}O_2\left[\frac{\mu - \mu_c}{T^{1/vz}}, \frac{B - B_c}{T^{1/vz}}, \frac{u - u_c}{T^{1/vz}}\right]$

Universal Scaling Functions

Spin incoherent liquid in 1D Hubbard model

Distinguishing TLL and SILL:

$$G^{\uparrow} = \left\langle \phi_{\uparrow}(x,t)\phi_{\uparrow}^{\dagger}(0,0) \right\rangle$$
$$G^{p} = \left\langle \phi_{\downarrow}(x,t)\phi_{\uparrow}(x,t)\phi_{\uparrow}^{\dagger}(0,0)\phi_{\downarrow}^{\dagger}(0,0) \right\rangle$$

May be obtained near B_c from conformal field theory

$$\begin{split} \langle \phi(x,t)\phi(0,0)\rangle_0 &= \sum A(D_c, D_s, N_c^{\pm}, N_s^{\pm}) \frac{\exp(-2iD_c k_{F,\uparrow} x)\exp(-2i(D_c + D_s)k_{F,\downarrow} x)}{(x - iv_c t)^{2\Delta_c^+} (x + iv_c t)^{2\Delta_c^-} (x - iv_s t)^{2\Delta_s^+} (x + iv_s t)^{2\Delta_s^-}} \\ \langle \phi(x,t)\phi(0,0)\rangle_T &= \sum A(D_c, D_s, N_c^{\pm}, N_s^{\pm})\exp(-2iD_c k_{F,\uparrow} x)\exp(-2i(D_c + D_s)k_{F,\downarrow} x) \\ &\times \left(\frac{\pi T}{v_c \sinh(\pi T(x - iv_c t)/v_c)}\right)^{2\Delta_c^+} \left(\frac{\pi T}{v_c \sinh(\pi T(x + iv_c t)/v_c)}\right)^{2\Delta_c^-} \\ &\times \left(\frac{\pi T}{v_s \sinh(\pi T(x - iv_s t)/v_s)}\right)^{2\Delta_s^+} \left(\frac{\pi T}{v_s \sinh(\pi T(x + iv_s t)/v_s)}\right)^{2\Delta_s^-} \end{split}$$

Essler, Frahm, Göhman, Klümper and Korepin, the one-dimensional Hubbard model, Cambridge University Press, 2010

1D Hubbard model near *B_c*: Spin and charge coherent liquid at T=0

$$G_{B\to B_{c}}^{\uparrow} \approx \exp\left(-ik_{F,\uparrow}x\right) S_{\uparrow}^{-}(x-iv_{s}t) S_{\uparrow}^{+}(x+iv_{s}t) C_{\uparrow}^{-}(x-iv_{c}t) + h.c.$$

$$S_{\uparrow}^{\pm}(Z) = \frac{const}{Z^{2\Delta_{s}^{\pm}}} \qquad C_{\uparrow}^{\pm}(Z) = \frac{const}{Z^{2\Delta_{c}^{\pm}}} \qquad 2\Delta_{s}^{+} = \frac{1}{4} - \frac{3}{2\pi} \sqrt{1 - \frac{B}{B_{c}}}, 2\Delta_{s}^{-} = \frac{1}{4} + \frac{1}{2\pi} \sqrt{1 - \frac{B}{B_{c}}}, 2\Delta_{s}^{-} = \frac{1}{4} + \frac{1}{2\pi} \sqrt{1 - \frac{B}{B_{c}}}, 2\Delta_{c}^{-} = 1 - \frac{2}{\pi} \sqrt{1 - \frac{B}{B_{c}}}, 2\Delta_{c}^{+} = 0$$

$$G_{B \to B_{c}}^{p} \approx \exp\left(-i(k_{F,\uparrow} + k_{F,\downarrow})x\right) S_{p2}^{-}(x - iv_{s}t) S_{p2}^{+}(x + iv_{s}t) C_{p2}^{-}(x - iv_{c}t) C_{p2}^{+}(x + iv_{c}t) + h.c.$$

$$S_{p2}^{\pm}(Z) = \frac{const}{Z^{\Delta_{s}^{\pm}}} \qquad C_{p2}^{\pm}(Z) = \frac{const}{Z^{\Delta_{c}^{\pm}}} \qquad 2\Delta_{s}^{+} = \Delta_{s}^{-} = \frac{1}{2} - \frac{3}{\pi} \sqrt{1 - \frac{B}{B_{c}}} \\ 2\Delta_{c}^{-} = \frac{9}{4}, 2\Delta_{c}^{+} = \frac{1}{4}$$

Correlation functions show a power law decay of distance!

Spin incoherent liquid: Exponential decay $E_{spin} \ll K_B T \ll E_{charge}$

$$G_{B\to B_{c}}^{\uparrow} \approx e^{-ik_{F,\uparrow}x} C_{\uparrow}^{-}(x - iv_{c}t) \langle S_{R}^{+}(x,t)S_{R}(0,0) \rangle + h.c.$$

$$\langle S_{R}^{+}(x,t)S_{R}(0,0) \rangle \sim (2\pi\alpha k_{F})^{\frac{1}{2}-\frac{1}{\pi}} \sqrt{1-\frac{B}{B_{c}}} e^{-\pi\alpha \left(\frac{1}{2}-\frac{1}{\pi}\sqrt{1-\frac{B}{B_{c}}}\right)k_{F}x} \qquad C_{\uparrow}^{-}(Z) = \frac{const}{Z^{2\Delta_{c}^{-}}}$$

$$2\Delta_{c}^{-} = 1 - \frac{2}{\pi} \sqrt{1-\frac{B}{B_{c}}}$$

$$G_{B\to B_{c}}^{p} \approx e^{-i(k_{F,\uparrow}+k_{F,\downarrow})x} C_{p2}^{-}(x-iv_{c}t)C_{p2}^{+}(x+iv_{c}t)\langle S_{R}^{+}(x,t)S_{R}(0,0)\rangle + h.c.$$

$$\langle S_{R}^{+}(x,t)S_{R}(0,0)\rangle \sim (2\pi\alpha k_{F})^{\frac{1}{2}-\frac{3}{\pi}\sqrt{1-\frac{B}{B_{c}}}e^{-\pi\alpha\left(\frac{1}{2}-\frac{3}{\pi}\sqrt{1-\frac{B}{B_{c}}}\right)k_{F}x}$$

$$2\Delta_{c}^{-} = \frac{9}{4}, 2\Delta_{c}^{+} = \frac{1}{4}$$

Outline

I. 1D Hubbard model

Ground state, phase diagram at zero and finite T, critical scaling functions

II. Interaction driven criticality and Contact

III. Quantum transport

Spin and charge Drude weights at zero and finite temperature

IV. Quantum transport and discussion

To better capture the **interaction-driven** effects, we define:

New Result

Contact (interaction driven MIPT)

$$C = \frac{\partial f}{\partial u} = 4d - 2n_c + 1$$

 $d = \frac{1}{N} \sum_{i} \langle n_{i,\uparrow} n_{i,\downarrow} \rangle$ double occupancy

Contact Susceptibilities

$$f = e - \mu n_c - 2Bm - Ts - uC$$

Maxwell relations

$$\frac{\partial n_c}{\partial u} = -\frac{\partial C}{\partial \mu} \qquad \frac{\partial m}{\partial u} = -\frac{\partial C}{\partial (2B)} \qquad \frac{\partial s}{\partial u} = -\frac{\partial C}{\partial T}$$

Contour plot of the Contact @ T = 0.005 and u = 1

 Interaction-driven phase transitions (II-IV) and (V-IV)

$$f = f_0 - \frac{\pi T^2}{6\nu_c} + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \sigma_1(0) \left(\frac{\varepsilon_1''(0)}{2}\right)^{-\frac{1}{2}} \operatorname{Li}_{\frac{3}{2}}(-e^{-\frac{\varepsilon_1(0)}{T}})$$
$$f = f_0 - \frac{\pi T^2}{6\nu_s} + T^{\frac{3}{2}} \pi^{\frac{1}{2}} \rho(\pi) \left(\frac{-\kappa''(\pi)}{2}\right)^{-\frac{1}{2}} \operatorname{Li}_{\frac{3}{2}}(-e^{\frac{\kappa(\pi)}{T}})$$

 $\varepsilon_1(0), \kappa(\pi) = \alpha_B \Delta B + \alpha_\mu \Delta \mu + \alpha_u \Delta u$

$$\frac{\alpha_u}{\alpha_B} = -\frac{\partial B}{\partial u}, \qquad \frac{\alpha_u}{\alpha_\mu} = -\frac{\partial \mu}{\partial u}, \qquad \frac{\alpha_B}{\alpha_\mu} = -\frac{\partial \mu}{\partial B}$$

Entropy accumulation at phase transitions!

Upper: Contour plot of the entropy in T-u plane for B = 0.15, $\mu = -2.5$, a maximum entropy at QC. **Lower:** IV-V phase transition: density shows universal scaling behaviour driven by interaction.

• Contact susceptibilities and applications

Also see Adiabatic demagnetization cooling:

Wolf et. al. PNAS, 108, 6862 (2011)

Quantum Cooling

- Entropy peaks near phase boundaries.
- Isentropic process: maximum entropy → minimum T

A potentially novel way of cooling quantum gases in lattice!

Adiabatic interaction ramping cooling!

Contact susceptibilities and applications

Target material T_{tar} Substance: lattice model Hot Ambient T_C

2)

3)

4)

Ambient -5 IV 2.0815 2.085 2.078 V u

Isentropic lines

Quantum Cooling

- Entropy peaks near phase boundaries.
- Isentropic process: ٠ maximum entropy \rightarrow minimum T

A potentially novel way of cooling quantum gases in lattice!

Outline

I. 1D Hubbard model

Ground state, phase diagram at zero and finite T, critical scaling functions

II. Interaction driven criticality and Contact

III. Quantum transport

Spin and charge Drude weights at zero and finite T

IV. Conclusion and discussion

Transport in integrable systems:

Spin transport--magnetic field gradient Heat transport--temperature gradient Transport coefficients—dynamical correlation Kubo formulas for conductivities Generalized hydrodynamics Bosonization

Drude weight can be obtained from real-time equilibrium current-current correlation function:

 $\lim_{t\to\infty}\frac{1}{t}\int_0^t dt' < J(t')J(0) >$

 $\begin{cases} D \neq 0 & \text{conductor ballistic} \\ D = 0 & \text{insulator} \end{cases}$

Transport Coefficients in spin chain

$$\begin{pmatrix} \mathcal{J}^{\mathrm{th}} \\ \mathcal{J}^{s} \end{pmatrix} = \begin{pmatrix} \kappa_{\mathrm{th}} & C_{s}^{\mathrm{th}} \\ C_{\mathrm{th}}^{s} & \sigma_{s} \end{pmatrix} \begin{pmatrix} -\nabla T \\ \nabla h \end{pmatrix}$$

Thermal and Spin conductivities:

 κ_{th} σ_s $\sigma'_s(k=0,\omega) = 2\pi D_s \delta(\omega) + \sigma^{reg}_s(\omega)$ Thermal current: $\mathcal{T}^{th} = \mathcal{T}^E - \mathcal{T}^s$ Energy and spin currents

Bertini, et. al. Rev. Mod. Phys. **93**, 025003 (2021) Sirker, SciPost Phys. Lect. Notes 17, 2020

Linear response theory

$$\sigma'(\omega \to 0) \sim |\omega|^{\alpha} \quad \text{Conductor: } \alpha = -1$$

$$\sigma_{s}(\omega) = \frac{i}{\omega} \left[\frac{\langle H_{kin} \rangle}{N} - \frac{i}{N} \int_{0}^{\infty} dt \, e^{i\omega t} \langle [\mathcal{J}^{s}(t), \mathcal{J}^{s}(0)] \rangle \right]$$

$$\sigma'_{s}(\omega) = -\frac{\pi}{N} \sum_{n,m} \frac{p_{n} - p_{m}}{E_{n} - E_{m}} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega - (E_{m} - E_{n}))$$

$$= \frac{\beta \pi}{N} \sum_{E_{n} = E_{m}} p_{n} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega) + \frac{\pi}{N} \sum_{E_{n} \neq E_{m}} \frac{p_{n} - p_{m}}{E_{m} - E_{n}} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega - (E_{m} - E_{n}))$$

$$= \frac{\beta \pi}{N} \sum_{e_{n} = E_{m}} p_{n} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega) + \frac{\pi}{N} \sum_{E_{n} \neq E_{m}} \frac{p_{n} - p_{m}}{E_{m} - E_{n}} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega - (E_{m} - E_{n}))$$

$$= \frac{\beta \pi}{N} \sum_{e_{n} = E_{m}} p_{n} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega) + \frac{\pi}{N} \sum_{E_{n} \neq E_{m}} \frac{p_{n} - p_{m}}{E_{m} - E_{n}} |\langle n|\mathcal{J}^{2}|m \rangle|^{2} \delta(\omega - (E_{m} - E_{n}))$$

$$= \frac{\beta \pi}{1 - e^{-\beta \omega}} \int_{-\infty}^{\infty} dt e^{i\omega t} \left[(\mathcal{J}^{s} \mathcal{J}^{s})_{\infty} + C_{s}^{reg}(t) \right]$$

$$= 2\pi \frac{(\mathcal{J}\mathcal{J})_{\infty}}{2T} \delta(\omega) + \frac{1 - e^{-\beta \omega}}{2\omega}} C_{s}^{reg}(\omega).$$

$$= \frac{1 - e^{-\beta \omega}}{2T} \delta(\omega) + \frac{1 - e^{-\beta \omega}}{2\omega} C_{s}^{reg}(\omega).$$

$$= 2\pi \frac{(\mathcal{J}\mathcal{J})_{\infty}}{2T} \delta(\omega) + \frac{1 - e^{-\beta \omega}}{2\omega} C_{s}^{reg}(\omega).$$
Bertini, et. al. Rev. Mod. Phys. 93, 025003 (2021)

Nardis, Bernard, Doyon, SciPost Phys. 6, 049 (2019)

Ballistic, super diffusive and diffusive spin transport

Spin chain
$$H = -J \sum_{j=1}^{L} (S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + \Delta S_j^z S_{j+1}^z)$$

Easy plane $\Delta < 1$: DW $D_{DW} > 0$, ballistic transport Easy axis $\Delta > 1$: DW $D_{DW} = 0$, sub-ballistic transport Isotropic point $\Delta = 1$: super diffusive transport

KCuF.

- (a) Potassium copper tri-fluorine 1D spin chain;
- (b) Spinon exitiation;
- (c) different spin transports:

Ballistic z=1, supper diffusive z=3/2; diffusive z=2

Theoretical challenging!

 $\sigma'(\omega \rightarrow 0) \sim |\omega|^{\alpha}$

$$D_s = \frac{(\mathcal{J}^s \mathcal{J}^s)_{\infty}}{2T} = \lim_{t \to \infty} \lim_{N \to \infty} \frac{1}{2NT} \langle \mathcal{J}^s(t) \mathcal{J}^s(0) \rangle$$
$$\sigma_s^{\text{reg}}(\omega \to 0) = \beta \int_0^\infty dt \, C_s^{\text{reg}}(t) = \chi_s(\beta) \mathcal{D}_s$$

$$\alpha = -1$$
Conductor $-1 < \alpha < 0$ Super diffusive $\alpha \to 0$ Diffusive $\alpha > 0$ Subdiffusive

Kardar-Parisi-Zhang hydrodynamics!

 $D_s(t) \sim t^z$, z = ?

Wei, et. al. Science 376, 716 (2024) Scheie, et. al. Nat. Phys. 17, 726 (2021); Gopalakrishman, et. al., PRL 122, 1272020 (2019)

Super diffusive spin transport

Quantum gas
$$H = -J \sum_{j=1}^{L} (S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + \Delta S_j^z S_{j+1}^z)$$

Ferromagnetic

 $J = \frac{4\tilde{t}^2}{u}; \Delta \approx 1$

Super diffusive transport in Heisenberg chain at high T

Kardar-Parisi-Zhang hydrodynamics!

Polarization

$$P(t) = (P_L(t) - P_R(t))/2 \propto t^{1/z}$$

$$P_{L,R}(t) = 2 \sum_{i=L,R} \left(S_i^z(t) - S_i^z(0) \right)$$

KPZ dynamics: z=3/2

(A) The polarization transfer for a domain wall initial state with a contrast $\eta = 0.22$. The insets show spin profiles $2S^{z}(t)$ at t=0, 10, 26 J/h (B)Polarization transfer in log-log plot (C)Spatial spin profiles at times t=5-35 j/h

Wei, et. al. Science 376, 716 (2024)

Quantum transport in 1D Hubbard model

Kubo formula for interacting electrons

response
$$\begin{pmatrix} J^c \\ J^s \\ J^e \end{pmatrix} = \begin{pmatrix} \sigma^c & \dots & \dots \\ \dots & \sigma^s & \dots \\ \dots & \dots & \sigma^e \end{pmatrix} \begin{pmatrix} \nabla \mu \\ \nabla h \\ -\nabla T \end{pmatrix}$$
 perturbation

$$\operatorname{Re}(\sigma)(k=0,\omega) = \sigma' = 2\pi D\delta(\omega) + \sigma^{\operatorname{reg}}(\omega)$$

leading subleading

$$D = \sum_{k} \frac{\langle JQ_{k} \rangle^{2}}{\langle Q_{k}^{2} \rangle}, D^{c}, D^{s}, D^{e} \dots$$

dynamic process + equilibrium problem

Breakdown integrability 🛌

Nichols et. al., Science 363, 383 (2019)

 J^c : charge current J^s : spin current

 J^e : kinetic current

$$H_{0} = -\sum_{j=1}^{L} \sum_{a=\uparrow\downarrow} \left(c_{j,a}^{+} c_{j+1,a} + c_{j+1,a}^{+} c_{j,a} \right)$$
$$+ u \sum_{j=1}^{L} (1 - 2n_{j\uparrow}) (1 - 2n_{j\downarrow})$$
$$\longrightarrow + \Delta_{\downarrow} \sum_{j} j n_{j\downarrow} + \Delta_{\uparrow} \sum_{j} j n_{j\uparrow}$$

Inducing flux for spin & charge: Two U(1) symmetries

$$H = -\sum_{j=1}^{L} \sum_{a=\uparrow\downarrow} \left(e^{i\phi_a/L} c_{j,a}^+ c_{j+1,a} + \text{H.c.} \right) + u \sum_{j=1}^{L} (1 - 2n_{j\uparrow})(1 - 2n_{j\downarrow})$$

Twisted boundary condition: $c_{L+1,a}^{\dagger} = e^{i\phi_a}c_{1,a}^{\dagger}$

$$e^{ik_jL} = e^{i\phi_{\uparrow}} \prod_{L=1}^{M} \frac{\lambda_l - \sin k_j - iu}{\lambda_l - \sin k_j + iu}$$
$$e^{i(\phi_{\uparrow} - \phi_{\downarrow})} \prod_{j=1}^{N} \frac{\lambda_l - \sin k_j - iu}{\lambda_l - \sin k_j + iu} = -\prod_{m=1}^{M} \frac{\lambda_l - \lambda_m - 2iu}{\lambda_l - \lambda_m + 2iu}$$

$$D^{(l)} = \frac{L^{l}}{2Z} \sum_{l} e^{-\beta E_{i}} \frac{\partial^{l+1} E_{i}}{\partial \phi^{l+1}} \Big|_{\phi_{c,s}=0}$$

Linear Nonlinear

$$\overline{2Z} \sum_{l} e^{-pL_{l}} \overline{\partial \phi^{l+1}} \phi_{c,s} = 0$$

$$D^{(1)} \sim \langle J(t_{1})J(t_{2}) \rangle$$

$$D^{(3)} \sim \langle J(t_{1})J(t_{2})J(t_{3})J(t_{4}) \rangle$$

$$D^{(N)} \sim \langle J(t_{1}) \dots \dots J(t_{N+1}) \rangle$$

 $k_{j} = k_{j}^{\infty} + \frac{x_{1}}{L} + \frac{x_{2}}{L^{2}} + \frac{x_{3}}{L^{3}} + \frac{x_{4}}{L^{4}} \dots$ $\Lambda_{\alpha}^{n} = \Lambda_{\alpha}^{n\infty} + \frac{y_{1n}}{L} + \frac{y_{2n}}{L^{2}} + \frac{y_{3n}}{L^{3}} + \frac{y_{4n}}{L^{4}} \dots$ $\Lambda_{\alpha}^{\prime n} = \Lambda_{\alpha}^{\prime n\infty} + \frac{z_{1n}}{L} + \frac{z_{2n}}{L^{2}} + \frac{z_{3n}}{L^{3}} + \frac{z_{4n}}{L^{4}} \dots$ $\frac{E}{L} = E_0 + \frac{E_1}{L} + \frac{E_2}{L} + \frac{E_3}{L} + \dots$

$$(n_{\downarrow} + n_{\uparrow}) \rightarrow D^{c}: \phi_{\uparrow} = \phi_{\downarrow} = \phi_{c}$$
 for charge
 $(n_{\uparrow} - n_{\downarrow}) \rightarrow D^{s}: \phi_{\uparrow} = -\phi_{\downarrow}$ for spin

Luo, Pu, Guan, PRB **107**, L201103 (2023) Luo, Pu, Guan, arXiv: 2307.00890 Guan, Yang, Nucl. Phys. B 512, 601 (1998)

$$Dressed charge: q_{\alpha}^{dr}$$

$$x_{1} = g_{1}^{x} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$y_{1} = g_{1}^{y} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$y_{1} = g_{1}^{y} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$y_{1} = g_{1}^{y} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$x_{1} = g_{1}^{x} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$y_{1} = g_{1}^{y} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$z_{1} = g_{1}^{x} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$z_{1} = g_{1}^{x} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$y_{1} = g_{1}^{y} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$z_{1} = g_{1}^{x} \varphi; x_{n} = g_{n}^{x} \phi^{n}/n!$$

$$g_{1} = g_{1}^{$$

Bare charges *q*

 $\begin{array}{lll} q_a^{\text{bare}} \colon & \text{particle number , magnetization number, energy} \\ k \colon & o_k = 1 & m_k = 1/2 & e_k = -2\cos k - \mu - 2u - B \\ \Lambda \colon & o_{n|\Lambda} = 0 & m_{n|\Lambda} = -n & e_{n|\Lambda} = 2nB \\ k - \Lambda \colon & o_{n|k-\Lambda} = 2n & m_{n|k-\Lambda} = 0 & e_{n|k\Lambda} = 4\text{Re}\sqrt{1 - (\Lambda - \text{i}nu)^2} - 2n\mu - 4nu \end{array}$

$$q_a^{\mathrm{dr}} = (\mathbf{I} - \boldsymbol{B})_{ab}^{-1} * q_a^{\mathrm{bare}}$$

Dressed charges q^{dr} at T=0 ($k - \Lambda$ strings are gapped)

$$q_k^{\rm dr} = 1 + \int_{-A}^{A} d\Lambda a_1 (\sin k - \Lambda) q_{\Lambda}^{\rm dr}$$
$$q_{\Lambda}^{\rm dr} = \alpha + \int_{-Q}^{Q} dk \cos k a_1 (\Lambda - \sin k) q_k^{\rm dr} - \int_{-A}^{A} d\Lambda' a_2 (\Lambda - \Lambda') q_{\Lambda}^{\rm dr}$$

 α = 0, -2 for charge and spin transport

Beyond the bosonization result: finite magnetic field at T=0

New Result

Bosonization at $H = 0$	$D^{c} = \frac{K_{c}v_{c}}{\pi}, \chi^{c} = \frac{2K_{c}}{\pi v_{c}}$ $D^{s} = \frac{K_{s}v_{s}}{\pi}, \chi^{s} = \frac{K_{s}}{2\pi v_{s}}$	spin rotation symmetry $K_s = 1$
Drude weight at $H \neq 0, \mu \neq 0$ for Phase IV	$D^{c} = \frac{1}{2\pi} q_{k}^{c, dr^{2}} v_{k} _{Q} + \frac{1}{2\pi} q_{\Lambda}^{c, dr^{2}} v_{\Lambda} _{A}$ $D^{s} = \frac{1}{2\pi} q_{k}^{s, dr^{2}} v_{k} _{Q} + \frac{1}{2\pi} q_{\Lambda}^{s, dr^{2}} v_{\Lambda} _{A}$	Contributions from another degrees of states $\{Z_{\alpha\beta}\}$ are the dressed charges
Susceptibility at $H \neq 0$	$\begin{aligned} \chi_c _B &= \frac{Z_{cc}^2}{\pi v_c} + \frac{Z_{cs}^2}{\pi v_s}, \\ \chi_s _\mu &= \frac{(Z_{cc} - 2Z_{sc})^2}{4\pi v_c} + \frac{(Z_{cs} - 2Z_{ss})^2}{4\pi v_s} \end{aligned}$	$Z = \begin{pmatrix} \xi_{cc}(Q) & \xi_{cs}(A) \\ \xi_{sc}(Q) & \xi_{ss}(A) \end{pmatrix}$ $\xi_{ab}(x_b) = \delta_{ab} + \sum_d \int_{-X_d}^{X_d} dx_d \xi_{ad}(x_d) K_{db}(x_d, x_b)$
General result: arbitrary H , μ For all phases	$ \begin{array}{rcl} D^{c} & = & \frac{K_{c}v_{c}}{\pi} + \frac{K_{cs}v_{s}}{\pi}, \chi^{c} = \frac{2K_{c}}{\pi v_{c}} + \frac{2K_{cs}}{\pi v_{s}} \\ D^{s} & = & \frac{K_{s}v_{s}}{\pi} + \frac{K_{sc}v_{c}}{\pi}, \chi^{s} = \frac{K_{s}}{2\pi v_{s}} + \frac{K_{sc}}{2\pi v_{c}} \end{array} $	$q_{k}^{c,dr} = \xi_{cc}, \qquad q_{\Lambda}^{c,dr} = \xi_{cs}$ $q_{k}^{s,dr} = \xi_{cc} - 2\xi_{sc}, \qquad q_{\Lambda}^{s,dr} = \xi_{cs} - 2\xi_{ss}$

Crossing Luttinger parameters: *K_{cs}*, *K_{sc}*

Luttinger parameters v.s. Dressed charges Cover the bosonization result at vanishing magnetic field. $K_{c} = q_{k}^{c,dr^{2}} = Z_{cc}^{2} = 1$ Phase II free lattice **Phase V** $K_s = \frac{q_{\Lambda}^{s,dr^2}}{4} = Z_{ss}^2 \xrightarrow{h=0}{1} \frac{1}{2}$ spin chain $\{Z_{\alpha\beta}\}$ are the dressed charge **Phase IV** $K_c = \frac{q_k^{c,dr^2}}{2} = \frac{Z_{cc}^2}{2}$ free lattice **XXX spin chain** 1.5 IV $\begin{array}{c} \bigstar K_c \\ \bullet K_s \\ \bullet K_{cs} \\ \bullet K_{sc} \end{array}$ B = 0.6, u = 1 K_c, K_s, K_{cs}, K_{sc} $K_s = \frac{q_{\Lambda}^{s,dr^2}}{2} = \frac{(Z_{cs} - 2Z_{ss})^2}{2} \xrightarrow{h=0}{\longrightarrow} 1$ $K_{cs} = \frac{q_{\Lambda}^{c,dr^2}}{2} = \frac{Z_{cs}^2}{2} \xrightarrow{h=0}{\to} 0$ V 0 $K_{sc} = \frac{q_k^{s,dr^2}}{2} = \frac{(Z_{cc} - 2Z_{sc})^2}{2} \xrightarrow{h=0}{\longrightarrow} 0$ -2.2 -1.2 -0.2 μ

For fixed B and u

Dressed charges at infinite interaction

Phase IV $K_c = \frac{q_k^{c,dr^2}}{2} = \frac{Z_{cc}^2}{2} \xrightarrow{c=\infty} \frac{1}{2}$

 $K_{s} = \frac{q_{\Lambda}^{s,dr^{2}}}{2} = \frac{(Z_{cs} - 2Z_{ss})^{2}}{2}$

 $K_{cs} = \frac{q_{\Lambda}^{c,dr^2}}{2} = \frac{Z_{cs}^2}{2} \xrightarrow{c=\infty} 0$

$D^{c} = \frac{K_{c}v_{c}}{\sqrt{\pi}} + \frac{K_{cs}v_{s}}{\pi}$ $D^{s} = \frac{K_{s}v_{s}}{\pi} + \frac{K_{sc}v_{c}}{\pi}$ $v_{s} \stackrel{c=\infty}{\longrightarrow} 0$ Drude Weights displays a feature of spin charge coupling!

DWs v.s. interaction for fixed n and m

DWs essentially depends on polarization and filling factor!

Subtle spin polarization!

$$K_{sc} = \frac{q_k^{s,dr^2}}{2} = \frac{(Z_{cc} - 2Z_{sc})^2}{2} \xrightarrow{c = \infty} \frac{2m^2}{n_c^2}$$

Linear Drude weight at finite temperature

New Result

Density, magnetization, energy

- Dressed charges:
- Universal laws in TLL

$$q_a^{\rm dr} = \operatorname{sign}(p_a') 2\pi (\rho_a + \rho_a^h) \frac{dx_a}{d\phi}$$

 $k-\Lambda$ strings has no contribution

$$D^{c,s} = \sum_{a=k,\Lambda,k-\Lambda} \left\{ \frac{1}{2\pi} \left(q_a^{c,s\,\mathrm{dr}} \right)^2 v_a \Big|_Q + \frac{\pi T^2}{12} \frac{\partial^2}{\partial \epsilon^2} \left[\left(q_a^{c,s\,\mathrm{dr}} \right)^2 v_a \right] \Big|_{\varepsilon(Q)=0} \right\}$$

Phase diagram: characteristic of Luttinger liquid

Universal scaling laws at quantum criticality

• II-IV
$$D_{\Lambda} = \frac{2}{\sigma(0)} \left(\frac{q_{\Lambda}^{dr}(0)}{2\pi} \right)^2 \left(\frac{\varepsilon''(0)}{2} \right) f_{1/2}$$

 $D_k = D^0 \left\{ 1 - f_{1/2} \frac{\sigma(0) q_{\Lambda}^{dr'}(0) - 2\sigma'(0) q_{\Lambda}^{dr}(0)}{\rho^0 q_k^{dr0}} \right\} + \frac{\pi^2 T^2}{6} \frac{\partial^2}{\partial \kappa^2} D^0 \Big|_{\kappa(k)=0}$

• IV-V

$$D_{k} = \frac{2}{\rho(\pi)} \left(\frac{q_{k}^{dr}(\pi)}{2\pi} \right)^{2} \left(-\frac{\kappa''(\pi)}{2} \right) k_{1/2}$$

$$D_{\Lambda} = D^{0} \left\{ 1 + k_{1/2} \frac{\rho(\pi) q_{k}^{dr'}(\pi) - 2\rho'(\pi) q_{k}^{dr}(\pi)}{\sigma^{0} q_{\Lambda}^{dr0}} \right\} + \frac{\pi^{2}T^{2}}{6} \frac{\partial^{2}}{\partial \varepsilon^{2}} D^{0} \Big|_{\varepsilon(\Lambda)=0}$$
General !
• I-II

$$D_{k} = \frac{2}{\rho(0)} \left(\frac{q_{k}^{dr}(0)}{2\pi} \right)^{2} \left(\frac{\kappa''(0)}{2} \right) \bar{k}_{1/2}$$
• II-III

$$D_{k} = \frac{2}{\rho(\pi)} \left(\frac{q_{k}^{dr}(\pi)}{2\pi} \right)^{2} \left(-\frac{\kappa''(\pi)}{2} \right) k_{1/2}$$
• III-V

$$D_{\Lambda} = \frac{2}{\sigma(0)} \left(\frac{q_{A}^{dr}(0)}{2\pi} \right)^{2} \left(\frac{\varepsilon''(0)}{2} \right) f_{1/2}$$
Also applied to other systems

$$K_{1/2} = -\frac{T^{1/2}}{2} \left(\frac{\kappa''(0)}{2} \right)^{-\frac{1}{2}} \pi^{\frac{1}{2}} \text{Li}_{\frac{1}{2}} (-e^{-\kappa(0)/T})$$

New Result

Universal scaling for phase transition from II to IV

Universal scaling for phase transition from IV to V

Excellent agreement between numerical and analytical results!

Nonlinear Drude weight

Universal laws at ground state

$$D^{(3)} = \sum \frac{\partial^2}{\partial \varepsilon^2} \frac{[2\rho^T g_1^4 \dot{\varepsilon}^3]}{\mathbf{c}} \Big|_{\varepsilon=0} - \frac{\partial}{\partial \varepsilon} \frac{[12\rho^T (g_1^4 \dot{\varepsilon} \ddot{\varepsilon} + 2g_1^2 g_2 \dot{\varepsilon}^2)]}{\mathbf{c}} \Big|_{\varepsilon=0} + 2\rho^T [(12g_2^2 + 24g_1g_3)\dot{\varepsilon} + 36g_1^2 g_2 \ddot{\varepsilon} + 4g_1^4 \ddot{\varepsilon} + 3g_1^4 \dot{\varepsilon}^2 / \dot{\varepsilon}] \Big|_{\varepsilon=0}$$

 $C = \frac{q^4 v^3}{\pi}, B = \frac{6q^2 v}{\pi} \left(\frac{q^2}{m} + \frac{q \dot{q} v}{2\pi\rho} \right)$

 $A = \frac{q^{3}}{\pi} \left(4q\lambda + \frac{3q}{m^{2}\nu} + \frac{9\dot{q}}{\pi om} \right) + \frac{q^{2}\dot{\nu}}{\pi(2\pi\rho)^{2}} \left(7\dot{q}^{2} + 4q\ddot{q} - \frac{4q\dot{q}\dot{\rho}}{\rho} \right)$

 $v, m, \lambda \dots q, \dot{q}, \ddot{q} \dots \rho, \dot{\rho}$... for nonlinear DW

A

$$v: d\varepsilon/dp$$
 velocity
 $m: d^2 \varepsilon/dp^2$ mass
 $\lambda: d^3 \varepsilon/dp^3$?

 $2\pi\rho^t g_1 = q^{dr},$ $g_n = g_1 \partial g_{n-1} / n$

 $x_1 = g_1 \phi; x_n = g_n \phi^n / n!$

$$D^{(1)} = \sum \frac{1}{2\pi} \left(q_a^{\mathrm{dr}} \right)^2 v_a \Big|_Q$$

$$D^{(3)} = \left[A - \frac{\partial B}{\partial \varepsilon} + \frac{\partial^2 C}{\partial \varepsilon^2} \right] \Big|_{\varepsilon=0} + \frac{\pi^2 T^2}{6} \frac{\partial^2}{\partial \varepsilon^2} \left[A - \frac{\partial B}{\partial \varepsilon} + \frac{\partial^2 C}{\partial \varepsilon^2} \right] \Big|_{\varepsilon=0}$$

The general features in linear and nonlinear Drude weight

Image: Image in the systemImage in the systemImage in the systemImage in the systemImage in the systemT=0 results $D_0^{(1)}$ $D_0^{(3)}$ $D_0^{(3)}$ $D_0^{(l)}, l > 3$ parameters q^{dr}, v $q^{dr}, \dot{q}^{dr}, \ddot{q}^{dr}; v, m, \lambda; \rho, \dot{\rho}$ $\partial^{l-1}q^{dr}, d^{l}\varepsilon/dp^{l}, \partial^{l-2}\rho$ TLL areas $D_0^{(1)} + \frac{\pi^2 T^2}{6} \frac{\partial^2}{\partial \epsilon^2} D_0^{(1)}$ $D_0^{(3)} + \frac{\pi^2 T^2}{6} \frac{\partial^2}{\partial \epsilon^2} D_0^{(3)}$ $D_0^{(l)} + \frac{\pi^2 T^2}{6} \frac{\partial^2}{\partial \epsilon^2} D_0^{(l)}$

Conjecture

Motion of the center of the charge and spin

$$H_{0} = -\sum_{j=1}^{L} \sum_{a=\uparrow\downarrow} \left(c_{j,a}^{+} c_{j+1,a} + c_{j+1,a}^{+} c_{j,a} \right) \\ +u \sum_{j=1}^{L} (1 - 2n_{j\uparrow})(1 - 2n_{j\downarrow}) \\ +\Omega \sum_{j=1}^{L} x_{j}^{2} n_{j} \\ x_{j} = \frac{L}{2} - j \\ \mathbf{Quench} \\ H_{t} = -\sum_{j=1}^{L} \sum_{a=\uparrow\downarrow} \left(c_{j,a}^{+} c_{j+1,a} + c_{j+1,a}^{+} c_{j,a} \right) \\ +u \sum_{j=1}^{L} (1 - 2n_{j\uparrow})(1 - 2n_{j\downarrow}) \\ +\Omega \sum_{j=1}^{L} (x_{j} - \delta)^{2} n_{j} \\ x_{j} = \frac{L}{2} - j \end{cases}$$

Motion of the center of the charge and spin

 $x_{\rm com} = \sum_j \frac{x_j n_j}{N};$

 $x_{\rm com}^{\uparrow} = \sum_{j} \frac{x_{j} n_{j}^{\uparrow}}{N};$ $x_{\rm com}^{Z} = \sum_{j} \frac{x_{j} (n_{j}^{\uparrow} - n_{j}^{\downarrow})}{N}$

where: $x_i = \frac{L}{2} - j$

Spin transport in a Mott insulator in Hubbard model

$$\begin{split} \hat{H} &= -t \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}_{\sigma,i}^{\dagger} \hat{c}_{\sigma,j} + h.c. \right) + U \sum_{i} \hat{n}_{\uparrow,i} \hat{n}_{\downarrow,i} \\ &- \mu_{\uparrow} \sum_{i} \hat{n}_{\uparrow,i} - \mu_{\downarrow} \sum_{i} \hat{n}_{\downarrow,i} \\ &+ \Delta_{\uparrow} \sum_{i} i_{x} \hat{n}_{\uparrow,i} + \Delta_{\downarrow} \sum_{i} i_{x} \hat{n}_{\downarrow,i}. \end{split}$$

Observation of spin conduction and spin diffusion

$$\Delta_{\uparrow\downarrow}$$
 present spin dependent tilt of the potential along x-direction
 $\frac{\Delta_{\uparrow}}{h} = \sim 41.1 Hz; \ \frac{\Delta_{\downarrow}}{h} = \sim 15.4 Hz; \ \frac{t}{h} \sim 100 Hz; \ \frac{U}{h} \sim 1 kHz$

Aims:

Spin diffusion coefficients D_s

Spin conducting σ_s

Nichols et. al., Science 363, 383 (2019)

$$\begin{split} &\Delta_{\uparrow\downarrow} \text{ present spin dependent tilt} \\ &\frac{\Delta_{\uparrow}}{h} = \sim 41.1 \text{Hz}; \ \frac{\Delta_{\downarrow}}{h} = \sim 15.4 \text{ Hz}; \\ &\frac{t}{h} \sim 100 \text{Hz}; \ \frac{U}{h} \sim 1 \text{kHz} \end{split}$$

$$\mathcal{I}(\tau) = \sum_{L} \left\langle \hat{S}_{z,j}(\tau) \right\rangle - \sum_{R} \left\langle \hat{S}_{z,j}(\tau) \right\rangle$$
$$J_{S} = D_{S} \nabla \left\langle \hat{S}_{z,j=0} \right\rangle$$

 $\langle \hat{n} \rangle =$

Einstein relation: $\sigma_S = D_S \chi$ Nichols et al. 363, 383 (2019)

Conclusion and discussion

- 1. The 1D repulsive Hubbard model exhibits novel phases of Luttinger liquids and phase transitions driven by either external potentials or interaction.
- 2. The spin and charge Drude weights at low temperature have been analytically obtained, showing universal ballistic transport with spin polarization.
- 3. We have built up exact relations between Luttinger parameters and dressed charges.
- 4. The universal scaling laws of the Drude weight at quantum criticality obtained shed light on non-Fermi liquid behaviour.

The decade-old 1D Hubbard model continues to yield new and exciting physics!

Thanks for your listening!