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Abstract: The Markov gap [1], namely the difference between reflected entropy and
mutual information, is explicitly computed in the defect extremal surface model, JT gravity,
and the generic 2d extremal black holes, in vacuum states. The phases that contain various
island contributions are considered, and their existence is carefully checked. Moreover, we
show explicitly how the Markov gap originates from the OPE coefficient of the boundary
CFT. And, as a generalization of [1], the lower bound of the Markov gap is given by c

3 log 2

times the number of EWCS boundaries on minimal surfaces. We propose a boundary way
of counting the lower bound for the Markov gap, which states that the lower bound is given
by c

3 log 2 times the number of gaps between two boundary regions in vacuum states. We
discuss the limitation and possible generalization of the boundary counting, and its relation
to tripartite entanglement.
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1 Introduction

The von Neumann entropy is an excellent measure of quantum entanglement between two
subsystems in a pure state and thus is usually referred to as entanglement entropy. Based
on the development in holographic entanglement entropy [2–5], the island formula for en-
tanglement entropy is proposed as [6–10]

S(A) = min extIA

[
Area(∂IA)

4GN
+ Sbulk(A ∪ IA)

]
, (1.1)

where the region IA is known as A’s island as it separates from A, the second term is the
quantum entanglement of bulk matter. (1.1) stems from the QES formula for holographic
entanglement entropy in AdS/CFT correspondence [5], and is derived via gravitational path
integral in a specific JT gravity [10]. With (1.1), the unitary Page curves for many black
holes have been successfully recovered, making significant progress toward the information
paradox.1

However, the von Neumann entropy ceases to be a good measure of entanglement for
tripartite systems, or the mixed states. A measure of entanglement for mixed states is of
significant importance, as it can be used to probe the entanglement structure of the state,
and, on the other hand, the states we encounter are not always pure.

Many quantities have been proposed to measure the bipartite correlation in mixed
states and in tripartite systems, such as mutual information, entanglement of purification
Ep [37–39], balanced partial entanglement (BPE) sBPE [40, 41], logarithmic entanglement
negativity E [42–47], odd entanglement entropy [48], and reflected entropy SR [49]. Many
quantities in boundary CFT are found to have a geometric description in the dual gravity
side in terms of the entanglement wedge cross-section (EWCS) EW [38, 50], for instance,
Area[EW ]/4GN = 2

3E = Ep = 1
2SR = sBPE for holographic CFT in the ground state.

One can define the UV-regular version of these quantities, i.e. g = 2Ep − I and
h = SR − I [51], where I(A : B) is the mutual information. In particular, non-vanishing
g and h imply non-trivial tripartite entanglement [51]. For g = 0, the state must be in
the so-called triangle state up to local isometries. The triangle state is free of non-trivial
tripartite entanglement as it is formed by bipartite-entangled states [51]. For h = 0, the
state must be in the sum of triangle states. In general, g ≥ h, which means some types of
tripartite entanglement cannot be seen by h. In a holographic CFT at large c limit, the
two quantities coincide g = h. Specifically, for 1D spin chain, the authors of [51] found
that g = h = c

3 log 2, which is quite universal. A similar discovery was also made by Wen
with balanced partial entanglement [40]. Later on, h is shown to be related to the Markov
recovery map, and a non-vanishing h precludes a perfect Markov recovery map [1], because
of which h is termed as the Markov gap by Hayden, Parrikar, and Sorce (HPS). Using the
geometric approach, they proved that in pure AdS3, the lower bound of the Markov gap of
boundary regions is related to the number of boundaries of EWCS:

h(A : B) ≥ `

2GN
log 2× (# of EWCS boundaries), (1.2)

1See [7–35] and reference therein for a non-exhausted list of related researches and [36] for a review.
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which is nice and neat. ` is the AdS radius. A BPE version of (1.2) was proposed in [41],
and an ICFT version is studied in [52].

While (1.2) is proved to be valid for CFT2 with a pure AdS3 dual, it remains to be
explored in the other cases, among which the presence of islands is of great interest. Firstly,
it is natural to consider the presence of an island as it arises after Page time during black
hole evaporation. Secondly, the island formula for reflected entropy has been proposed in
[53, 54]. It is interesting to see if this island formula admits a lower bound for Markov
gap like (1.2). We explicitly compute the Markov gaps for various phases in a model based
on AdS/BCFT correspondence [55], called defect extremal surface (DES) model [56, 57].
In DES model, the RT formula is corrected by the quantum defect theory on a end-of-
the-world (EoW) brane in the bulk. This gives a simple description of the island via the
proposed DES formula, which is also compatible with the QES prescription. The reflected
entropy and entanglement negativity has been studied in this model [57–59]. Our results
favor the HPS inequality even in the presence of islands, if we do not take the boundary
of EWCS on brane into account. Even so, the geometric proof of (1.2) in our cases is not
a trivial extension of HPS’s, as generally the EoW brane in the bulk is neither necessarily
along geodesics nor at asymptotic infinity.

The inequalities (1.2) are stated from a bulk point of view, as it incorporates EWCS.
We expect that, for a vacuum state, one can also read off some lower bound for the Markov
gap from the boundary theory viewpoint. This thought, together with our results, prompts
us to conjecture that

h(A : B) ≥ c

3
log 2× (# of gaps between A ∪ IR,A and B ∪ IR,B), for I(A : B) > 0,

(1.3)

where c is the central charge, and IR is the reflected island for the corresponding region
at the asymptotic boundary [54, 56]. We test the boundary proposal (1.3) in DES model,
JT gravity, and generic 2d extremal black holes for various phases. And the results satisfy
(1.3) with the same lower bound. In addition, we show, using an explicit example, how the
lower bound of the Markov gap originates from the OPE coefficient, which may kindle the
general proof of (1.3) in future work. However, in the most general situations where the
boundary region contains multi-intervals, even though the inequality (1.3) is satisfied, the
lower bound given by counting gaps could be underestimated. We will discuss this in more
detail and provide a generalization for multi-interval regions in Sec.6.

This paper is organized as follows. In Sec.2, we first introduce reflected entropy, the
Markov gap, and the HPS inequality. Then we propose a DES version and a boundary
version of HPS inequality. In Sec.3, we calculate the Markov gap in the DES model for
several phases, both disjoint and adjacent, and compare the results with our proposal. In
Sec.4, we do a similar calculation in JT gravity, totally from a boundary point of view, using
the island formula. In Sec.5, we calculate the lower bound for the Markov gap in general
2D extremal black holes setups. In Sec.6, we discuss our results and proposal. Throughout
this paper, we consider only the ground states of the field, and all the phases are assumed
to be time-symmetric. We will use “a ' b” to indicate that a approaches b but a − b still
has a relatively small value.
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2 The Markov gap and its bulk and boundary inequalities

2.1 The Markov gap

Reflected entropy [49] was proposed as the von Neumann entropy in a canonically purified
state |√ρAB〉ABA∗B∗ in the doubled Hilbert space (HA ⊗H?A)⊗ (HB ⊗H?B), i.e.

SR(A : B) = S(AA∗)|√ρAB〉, (2.1)

which serves as a valid measure of entanglement between A and B. In [1], the difference
between reflected entropy SR(A : B) and mutual information I(A : B) = S(A) + S(B) −
S(A∪B) is called Markov gap h(A : B) ≡ SR(A : B)− I(A : B), as a non-vanishing h pre-
cludes a perfect Markov recovery map ρABB∗ = RB→BB∗(ρAB). Moreover, h is considered
as a smoking gun of certain tripartite entanglement, that is, a pure state |ψ〉ABC is a sum
of triangle states iff h(A : B) = 0 [51]. In [49], the Markov gap is identified with conditional
mutual information

h(A : B) = I(A : B∗|B) = I(B : A∗|A), (2.2)

where the conditional mutual information is defined as

I(A : C|B) = I(A : BC)− I(A : B). (2.3)

The Markov gap satisfies the following inequality in information-theoretic language

h ≥ − max
RB→BB∗

logF (ρABB∗ ,RB→BB∗(ρAB)) , (2.4)

where F is the quantum fidelity

F (ρ, σ) =

[
Tr
√√

ρσ
√
ρ

]2

. (2.5)

2.2 HPS inequality and its bulk and boundary version in presence of island

In AdS/CFT correspondence, Hayden, Parrikar and Sorce (HPS) show that the Markov
gap satisfies the following inequality

h(A : B) ≥ `

2GN
log 2× (# of cross-section boundaries)

=
c

3
log 2× (# of cross-section boundaries) (2.6)

to O(G0
N ) in pure AdS3 space by using geometric argument [1]. ` is the AdS radius. In the

second line of Eq. (2.6), we used Brown-Henneaux formula c = 3`/2GN [60].
The island contribution naturally arises in many situations, for example, for an evap-

orating black hole. So it should inevitably be taken into account. Based on AdS/BCFT
correspondence, the defect extremal surface (DES) model has been proposed as the holo-
graphic counterpart of the island formula [56, 57], that is, the island formula emerges when
we consider the effective 2D description of DES model by partial dimension reduction. Our
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observation in Sec.3 will indicate the HPS inequality (2.6) is also obeyed if we do not take
the EWCS boundary on brane into account. Or one can instead make a little modification
of HPS’s statement

h(A : B) ≥ `

2GN
log 2× (# of cross-section boundaries on the minimal surface of AB)

=
c

3
log 2× (# of cross-section boundaries on the minimal surface of AB).

(2.7)

We also provide a geometric interpretation of our claim (2.7) for DES model in Appendix.D
in the case that the brane tension is zero, but in general, this claim remains to be proved.

On the other hand, (2.6) and (2.7) are counting the lower bound of the Markov gap
from the bulk point of view. In principle, this lower bound can be obtained from boundary
theory. Furthermore, we expect that one is also able to read off some lower bounds from the
topology of the boundary regions. Therefore, based on our observation, we propose that

h(A : B) ≥ c

3
log 2× (# of gaps between A ∪ IR,A and B ∪ IR,B), for I(A : B) > 0,

(2.8)

where IR is the island for reflected entropy. In fact, our inequality (2.8) also works without
an island. As shown in Fig.1, for pure AdS3, there are two gaps between two disjoint
boundary intervals and one gap between two adjacent boundary intervals and thus according
to our inequality (2.8), we have h ≥ 2c

3 log 2 for disjoint intervals and h ≥ c
3 log 2 for adjacent

intervals, which are consistent with the explicit calculation [38, 51] and HPS inequality (2.6).
Mind that on a time slice of vacuum CFT, a region containing infinity ∞ is also regarded
as a gap.

In Sec.3 and Sec.4, we will show that (2.8) holds generally for DES model, JT gravity
and generic 2D extremal black holes. Phases with disjoint and adjacent intervals will be
considered separately. Before going deep into the detailed calculations of the Markov gap for
DES models, we will also qualitatively analyze the recovery map of these phases, following
the analysis in [1], which will enlighten the physical origin of the Markov gap of these
phases.

3 The Markov gap in DES model

We calculate the Markov gap in DES model for both disjoint and adjacent phases. To
derive the lower bound of Markov gap, sometimes we must use the conditions for the phase
to exist, which will be listed if necessary.

3.1 Review of DES

We consider AdS/BCFT. There is a brane Q in the bulk, on which Neumann boundary
condition is imposed. The AdS3 geometry is given by

ds2 = dρ2 + `2 cosh2 ρ

`

−dt2 + dw2

w2
(3.1)

=
`2

y2

(
−dt2 + dx2 + dy2

)
, (3.2)
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A BEW

A B

EW

Figure 1. The gap (denoted by purple curves) between two boundary regions A and B of a time
slice of AdS3 vacuum.

where these coordinates are related via

y = − w

cosh(ρ/`)
, x = w tanh

ρ

`
. (3.3)

Then the entanglement entropy for an interval [0, L] on BCFT in the ground state is given
by the area of the RT surface

S([0, L]) =
c

6
log

2L

ε
+
c

6
arctanh(sin θ0), (3.4)

where θ is defined as (cos θ)−1 = cosh(ρ/`).
If the brane has zero tension or no matter is on the brane, the brane is orthogonal to

the BCFT at the boundary of CFT, which is our origin. Now we add CFT matter on it
and turn on the tension, and the brane will no longer be orthogonal to BCFT. This brane
can be regarded as defect in the bulk. The matter also contributes to the entanglement
entropy of a BCFT region.

3.1.1 Entanglement entropy

Intervals on the brane

The entanglement entropy for an interval [x1, 0] on the brane is

Sbulk([x1, 0]) =
c′

6
log

(
2`

εw cos θ0

)
+ log g, (3.5)

where log g = limn→1
log(gn)

1−n corresponds to the boundary entropy [55], c′ is the central
charge for CFT on the brane. In this paper, we take c′ = c and log g = 0. We see that
entanglement entropy does not depend on the length of the interval on the brane. This nice
fact makes the calculation in this model tractable with ease.

The entanglement entropy for an interval [x1, x2] on the brane has two phases

S([x1, x2]) =
c

3
log

2`

εw cos θ0
, η > 1 (3.6)
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and

S([x1, x2]) =
c

6
log

(
`2

ε2w

(x1 − x2)2

x1x2 cos θ0

)
, η < 1, (3.7)

where η is given by

η(x1, x2) =
(x1 − x2)2

4x1x2
. (3.8)

Intervals on BCFT

The DES proposal for generalized entanglement entropy is

SDES = min
γ,X

{
extγ,X

[
Area(γ)

4GN
+ SDefect[D]

]}
, X ≡ γ ∩D, (3.9)

in which γ is the corresponding minimal surface, D is a region on the brane. Since SDefect is
irrelevant to length or position on the brane, the extremization and minimization procedures
reduce to finding a shortest geodesic distance between brane and a boundary point. For an
interval [0, L], the result is

SDES =
c

6
log

2L

ε
+
c

6
arctanh(sin θ0) +

c

6
log

(
2`

εw cos θ0

)
=
c

6
log

2L

ε
+
c

6
T (θ0) +

c

6
W (θ0), (3.10)

where we defined
T (θ) = arctanh(sin θ), W (θ) ≡ log

2`

εw cos θ
. (3.11)

For an interval [M,L], there are two channels

SDES =
c

3
log

L−M
ε

, η(M,L) < ηc(M,L), (3.12)

and

SDES =
c

6

[
log

4LM

ε2
+ 2arctanh (sin θ0) + 2 log

2`

εw cos θ0

]
, η(M,L) > ηc(M,L) (3.13)

where the critical point is

ηc(M,L) = exp [2T (θ0) + 2W (θ0)] > 1. (3.14)

Note that there is an extremal value for SDES only when η > 1, which is automatically
satisfied as ηc > 1.

One can also seek for the effective 2D boundary description for DES model by taking
partial dimension reduction, then the island formula emerges and gives the same result for
entanglement entropy as DES formula [56].
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3.1.2 Reflected entropy

In DES model, the reflected entropy can be understood in both boundary theory and bulk
theory viewpoints. In boundary island point of view, the reflected entropy is proposed to
be [57]

Sbdy
R (A : B) = min extΓ

[
Seff
R (A ∪ IA : B ∪ IB) +

Area(Γ)

2Gbrane
N

]
, (3.15)

where Γ = ∂IA ∩ ∂IB is the intersection of entanglement wedge cross-section and brane Q.
In bulk point of view, the reflected entropy is given by

Sbulk
R (A : B) = min extEW

{
S

(eff)
R (A : B) +

Area[EW(A : B)]

2GN

}
. (3.16)

The two proposals are equivalent.
For phase-D1 (Fig.2) where the entanglement wedge2 of AB is just the disconnected

union of entanglement wedges of A and B, the reflected entropy vanishes

SR = 0 = EW . (3.17)

Throughout this paper, without loss of generality, we assume that region B is large enough
so that it always receives the island contribution.

In phase-D2 (Fig.3), the entanglement wedge of AB is connected (B has entanglement
island while A does not), and the entanglement wedge cross-section is the minimal geodesic
with two endpoints on RT surfaces of [0, b1] and [b2, b3]. The reflected entropy is given by

SR(A : B) =
c

6
log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

]
. (3.18)

(3.18) is just twice the distance between two parallel geodesics in hyperbolic space ds2 =

`2(dx2 + dy2)/y2 in unit of 1
4GN

. We leave the derivation of (3.18) in Appendix.A. (3.18)
can be also obtained by employing the cross-section formula in [38]

EW =
1

2
SR =

c

6
log
(

1 + 2z + 2z
√

1 + 1/z
)
, (3.19)

with the cross-ratio here 3

z =
(b3 + a1)(b2 − b1)

(b1 + a1)(b3 − b2)
, (3.20)

2In this paper, we refer to the codimension-1 surface bounded by the boundary region and its
codimension-2 minimal surface as entanglement wedge because we assume time-symmetry.

3The correct expression of the cross-ratio z is vital for our calculation. z here is different from that in
[57]. The authors of [57] obtain the formula by using the result in [38, 61], but the situation here is slightly
different. In [38], the authors calculated the cross section between two intervals [a1, a2] and [b1, b2] and thus
the cross ratio there is z = (a2−a1)(b2−b1)

(b1−a2)(b2−a1)
, while here in phase-D2, we calculate the cross section between

two intervals [b1, b2] and [b3,−a1] and thus the cross ratio here is z = (b3+a1)(b2−b1)
(b1+a1)(b3−b2)

.
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b3A B




b1 b2

Figure 2. Phase-D1. The blue and yellow regions are the entanglement wedges of A and B,
respectively.

where a1 is the island boundary for [0, b1], or simply b1. One can also compute the reflected
entropy from boundary field theory by applying the replica method in [49] via correlation
functions of twist operators to get the same result

SR(A : B) =
2c

3
log

(
1 +
√

1− x√
x

)
, x =

(b1 + a1)(b3 − b2)

(a1 + b2)(b3 − b1)
. (3.21)

Again, the cross-ratio x here should be also chosen carefully and one can easily check that
(3.21) gives the same result as (3.18).

For phase-D4 (Fig.5) where A and B both have their islands and the entanglement
wedge of AB is connected, the reflected entropy is [57]

SR(A : B) =
c

3
log

(b3 + a′)(b2 + a′)

(b3 − b2)a′
+
c

3
T (θ0) +

c

3
W (θ0) (3.22)

where a′ =
√
b2b3 is the island cross-section.

3.2 The Markov gap

In the following, we compute the Markov gap in several phases in DES model. The goal
of this section is to show that the Markov gap in DES model satisfies the inequalities (2.7)
and (2.8). In some phases, we will present the conditions for the dominance of the phase.
These conditions are given by some inequalities that will be useful for later calculation.

3.2.1 Disjoint intervals

We first consider the two regions A = [b1, b2] and B = [b3, b4] are disjoint. We assume that
b4 is large enough so that B always admits the island.

Phase-D1

In phase-D1, the entanglement wedge of AB is disconnected, Fig.2. The reflected entropy
and mutual information vanish

SR(A : B) = I(A : B) = 0. (3.23)

Thus the Markov gap is h = SR − I = 0.
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b1 b2

 B

 R
B,

� � �a b1 1



� � �a b3 3

A

B

A*

B*

AA*

BAA*

AB

Brane

Figure 3. Phase-D2. Left: The blue and yellow regions denote the entanglement wedges of A
and B, respectively. The green region denotes the shared entanglement wedge of AB. The black
dashed line denotes the entanglement wedge cross-section between A and B. From the 2d boundary
viewpoint, there are islands on the brane. I and IR denote the island for entanglement entropy and
reflected entropy, respectively. The purple dashed circles are the boundary gap between A ∪ IR,A

and B∪IR,B , and there are two gaps for phase-D2. Right: The canonical purification of ρAB and the
entanglement wedges for AB,AA∗, BAA∗. The red double-headed arrows denote the identification
between two spacelike surfaces of the entanglement wedges. The small tubular neighborhoods of two
blue jagged lines here are completely visible to BAA∗, while not to AB or AA∗. The entanglement
wedges satisfy W(AA∗B) ⊃W(AB)∪W(AA∗). This signals the non-vanishing Markov gap for this
phase.

Phase-D2

In phase-D2, on one hand, there is no island for A = [b1, b2] and C = [b2, b3], which leads
to the following inequalities

log
(b2 − b1)2

4b1b2
≤ 2T (θ0) + 2W (θ0), (3.24)

log
(b3 − b2)2

4b2b3
≤ 2T (θ0) + 2W (θ0). (3.25)

On the other hand, we require that the entanglement wedge of [−b1, b1] ∪ [b2, b3] is dis-
connected, which is equivalent to a non-vanishing mutual information between A and
B = [b3, b4]: I(A : B) ≥ 0. This condition gives

I(A : B) =
c

6
log

[
(b2 − b1)2

4b1b2

4b2b3
(b3 − b2)2

]
(3.26)

=
c

6
log

η(b1, b2)

η(b2, b3)
> 0

⇒ η(b1, b2) > η(b2, b3). (3.27)

Before going deep into the computation of the Markov gap, let us analyze the Markov recov-
ery ρBAA∗ = RA→AA∗(ρAB) first, using the same argument as in [1]. In Fig.3, we stretched
the canonical purification of ρAB and the entanglement wedges of AB,AA∗, BAA∗. For
phase-D2, the entanglement wedge of AB together with AA∗ cannot cover all the entangle-
ment wedge of BAA∗ so that there are two jagged lines whose small tubular neighborhoods
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are completely visible to BAA∗, but not to AA∗ and AB. Thus the Markov recovery
ρBAA∗ = RA→AA∗(ρAB) must be precluded and we expect a non-vanishing Markov gap for
phase-D2.

Now we compute the Markov gap. The entanglement entropy for A is

S(A) =
c

3
log

b2 − b1
ε

, (3.28)

and for B with an island

S(B) =
c

6

[
log

4b4b3
ε2

+ 2T (θ0) + 2W (θ0)

]
. (3.29)

And the entanglement entropy for AB is

S(AB) =
∑
i

SRTi + Sdefect. (3.30)

The areas of the RT and DES surfaces are given by

SRT1 =
c

6
log

2b4
ε

+
c

6
T (θ0), (3.31)

SRT2 =
c

6
log

2b1
ε

+
c

6
T (θ0), (3.32)

SRT3 =
c

3
log

b3 − b2
ε

. (3.33)

Then

S(AB) =
c

6
log

4b1b4(b3 − b2)2

ε4
+
c

3
T (θ0) +

c

3
W (θ0). (3.34)

The mutual information is then

I(A : B) =
c

6
log

[
b3
b1

(
b2 − b1
b3 − b2

)2
]
. (3.35)

The reflected entropy in this phase is given by (3.18), with which we get the Markov
gap

h =
c

6
log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

b1
b3

(b3 − b2)2

(b2 − b1)2

]
. (3.36)

It is direct to see that ∂b3h > 0. h monotonically increase with b3 with minimum at b3 ' b2.
Hereafter by “b3 ' b2” we mean we let b2 → b3 but assume the gap [b2, b3] still exists so
that the phase still makes sense. In the limit b3 ' b2, we obtain

h =
c

3
log

(√
b1
b2

+

√
b2
b1

)
+
c

3
log 2 ≥ 2c

3
log 2, (3.37)

which is saturated at b1 ' b2 ' b3. Note that the reflected entropy SR, the mutual
information I and thus h are independent of θ0. So one can always tune θ0 to make this
phase happen, that is, to satisfy (3.24) and (3.25).
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A

B

A*
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Figure 4. Phase-D3. A and B are disjoint. A admits no entanglement island but a reflected island.
There is one boundary of EWCS, denoted by a dashed curve, and one gap between A ∪ IR,A and
B ∪ IR,B , indicating h ≥ c

3 log 2. There is a jagged surface in this phase denoted in blue.

In Appendix.D, we also give a geometric interpretation of this lower bound in the case
that the brane tension is zero. For phase-D2, both boundaries of the cross-section are on
the minimal surfaces of AB and here both inequalities (2.6) and (2.7) give the same lower
bound 2c

3 log 2, which is consistent with our calculation above. On the other hand, from the
island boundary viewpoint, there are two gaps (the purple dashed circles in Fig.3) between
A ∪ IR,A and B ∪ IR,B, which also indicates the lower bound 2c

3 log 2 according to our
boundary inequality (2.8).

Phase-D3

It is possible that the cross-section of phase-D2 is anchored at the brane, that is phase-D3
(Fig.4). For this phase to exist, we require

log
(b2 − b1)2

4b1b2
≤ 2T (θ0) + 2W (θ0) (3.38)

log
(b3 − b2)2

4b2b3
≤ 2T (θ0) + 2W (θ0) (3.39)

SR(A : B) <
c

6
log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

]
. (3.40)

In this case, the mutual information is the same as (3.35). And the reflected entropy
is given by (3.22)

SR(A : B) =
c

3
log

(b3 + a′)(b2 + a′)

(b3 − b2)a′
+
c

3
T (θ0) +

c

3
W (θ0), (3.41)

where the island cross section a′ =
√
b2b3. The condition (3.40) becomes

f ≡ log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

(b3 − b2)2

(
√
b2 +

√
b3)4

]
− 2T (θ0)− 2W (θ0) > 0. (3.42)
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Apply (3.39) and (3.38), we have

f ≤ log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

(b3 − b2)2

(
√
b2 +

√
b3)4

4b1b2
(b2 − b1)2

]
, (3.43)

f ≤ log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

(b3 − b2)2

(
√
b2 +

√
b3)4

4b2b3
(b3 − b2)2

]
. (3.44)

We are only interested in the existence of this phase, then it is sufficient to pick a special
case. Set b1 = 1, b2 = 2×103 and b3 = 2×104. Then the R.H.S of (3.43) and (3.44) become
roughly log 10672 and log(2.6 × 106), which allow a positive f to exist. Taking θ0 = π/6,
` = 1 and εw = 0.01, we then have f ≈ log 33 > 0 and thus conditions (3.42), (3.43) and
(3.44) (or equivalently (3.38), (3.39) and (3.40) ) for phase-D3 to exist are satisfied.

As shown in Fig.4, the entanglement wedge of AB together with AA∗ does not cover
all BAA∗ and there is a jagged line for phase-D3. Thus a non-vanishing Markov gap is
expected. Now let us compute the Markov gap. Use (3.35) and (3.22), and we obtain

h(A : B) =
c

6
log

[
(
√
b2 +

√
b3)4

(b3 − b2)2

b1
b3

(
b3 − b2
b2 − b1

)2
]

+
c

3
T (θ0) +

c

3
W (θ0)

≥ c

6
log

[
(b3 + b2 + 2

√
b2b3)2

4b2b3

]
=
c

6
log

1

4

(√
b3
b2

+

√
b2
b3

+ 2

)2


≥ c

3
log 2 (3.45)

where we have used (3.38) in the second line. The equality in second line is taken at critical
point S(A)RT = S(A)island for A, which is dependent of θ0 that is in turn related to the
brane tension. So (3.45) is saturated when b2 ' b3 and near the critical point of A. To sum
up, h = c

3 log 2 iff

log
(b2 − b1)2

4b1b2
= 2T (θ0) + 2W (θ0), (3.46)

b2 ' b3. (3.47)

In fact, it is possible that we cannot take the equality, as if f is negative, phase-D2
takes over the reflected entropy. Then it is necessary to check this. First, at the critical
point, (3.43) takes equality. Then it is easy to see that in the limit b2 ' b3, we have

f = log

[
(b1 + b2)2

b1b2

]
≥ 2 log 2. (3.48)

Therefore, we deduce that f ≥ 2 log 2, implying there is no problem taking this limit. On
the other hand, (3.44) must be compatible with (3.48), and this can be seen explicitly by
inserting b3 = b2 + ε in (3.44)

f ≤ 2 log
(b2 − b1)2

b1ε
, (3.49)
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Figure 5. Phase-D4. In this phase, the entanglement islands for A and B are different from their
reflected island. One boundary of EWCS and one gap between A ∪ IR,A and B ∪ IR,B give the
lower bound h ≥ c

3 log 2. There is one jagged surface, with W(AA∗B) ⊃W(AA∗) ∪W(AB).

the R.H.S of which is divergent as ε→ 0.
In fact, for phase-D3, only one boundary of the cross-section is anchored at the minimal

surface of A ∪ B. Then the inequality (2.7) also implies h ≥ c
3 log 2. Besides, one can also

obtain the same lower bound using our boundary inequality (2.8). Note that although there
is no entanglement island for A, the cross-section for phase-D3 is anchored at the brane so
that there is an island of reflected entropy for A and thus only one gap between A ∪ IR,A
and B ∪ IR,B.

Phase-D4

For phase-D4 (Fig.5) where both intervals contain islands, the entanglement wedge of AB
together with that of AA∗ cannot cover all the entanglement wedge of BAA∗ so that there
is a jagged line and thus we also expect the non-vanishing Markov gap for phase-D4.

The entanglement entropies for A and B in phase-D4 are

S(A) =
c

6
log

2b1
ε

+
c

6
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0), (3.50)

S(B) =
c

6
log

2b3
ε

+
c

6
log

2b4
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.51)

And the entanglement entropy for A ∪B is

S(AB) =
c

6
log

4b1b4
ε2

+
c

3
log

b3 − b2
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.52)

Then the mutual information is given by

I(A : B) = S(A) + S(B)− S(AB)

=
c

6
log

[
4b2b3

(b3 − b2)2

]
+
c

3
T (θ0) +

c

3
W (θ0). (3.53)

The reflected entropy for phase-D4 is given by (3.22)

SR(A : B) =
c

3
log

(b3 + a)(b2 + a)

(b3 − b2)a
+
c

3
T (θ0) +

c

3
W (θ0), (3.54)
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Figure 6. Phase-A1. In this phase, the entanglement islands of A and B are identically their
reflected island.

where a =
√
b2b3. Then, the Markov gap is given by

h =
c

3
log

[
1

2

(√
b3
b2

+

√
b2
b3

+ 2

)]
≥ c

3
log 2, (3.55)

with the equality taken at b2 ' b3.
For phase-D4, the analysis of the lower bound in terms of our inequalities (2.7) and(2.8)

is similar to phase-D3 and they also give the lower bound c
3 log 2.

3.2.2 Adjacent intervals

Phase-A1

In phase-A1 (Fig.6), the two intervals A and B are adjacent and both contain island.
The entanglement entropies for A and B in phase-A1 read

S(A) =
c

6
log

2b1
ε

+
c

6
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0), (3.56)

S(B) =
c

6
log

2b2
ε

+
c

6
log

2b4
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.57)

The entanglement entropy for AB is

S(AB) =
c

6
log

2b1
ε

+
c

6
log

2b4
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.58)
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Then the mutual information is given by

I(A : B) =
c

3
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.59)

Now let us derive the reflected entropy. According to proposal (3.16), we have in large-c
limit

SR(A : B) = min extEW

{
Seff
R (IA : IB) +

Area[EW(A : B)]

2GN

}
. (3.60)

The first term can be computed via correlation functions of twist operators. We refer to
[57, 62] for details, and just quote the result here

S
(eff)
R (IA : IB) =

{
c
3 log 2`

ξεw cos θ0
, ξ > 1

c
3 log 2`

εw cos θ0
, ξ < 1

(3.61)

where ξ = 2ab1
a2−b21

. The second term in (3.60) is just twice the length of a geodesic connecting
b2 and −a, which is given by [55, 56]

c

3
log

2L′

ε
+
c

3
T (θ′0). (3.62)

The quantities L′ and θ′0 satisfy

L′ =
a2 + b22 + 2ab2 sin θ0

2(b2 + a sin θ0)
(3.63)

θ′ = arcsin
b22 + 2ab2 sin θ0 − a2 cos 2θ0

b22 + 2ab2 sin θ0 + a2
(3.64)

Then the reflected entropy is given by

SR(A : B) = min extEW

{
c
3 log 2`

ξεw cos θ0
+ c

3 log 2L′

ε + c
3T (θ′), ξ > 1

c
3 log 2`

εw cos θ0
+ c

3 log 2L′

ε + c
3T (θ′), ξ < 1

(3.65)

For ξ > 1, we find no real solution to ∂aSR = 0. For ξ < 1, the minimization process
reduces to finding the entanglement island for [0, b2], which is a = b2. Substitute a = b2 in
(3.63) and (3.64), and we get

L′ = b2, θ′ = θ0. (3.66)

Now the reflected entropy is given by

SR(A : B) =
c

3
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.67)

Thus the correct Markov gap is

h = 0. (3.68)

A vanishing Markov gap implies the existence of a perfect recovery map.
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One may notice that (3.59) can be obtained by the following replacement in (3.53)

b3 − b2 → ε. (3.69)

Naively, if we take the same replacement in reflected entropy (3.54), we get

SR(A : B) =
c

3
log

4b2
ε

+
c

3
T (θ0) +

c

3
W (θ0), (3.70)

which leads to

h =
c

3
log 2 (incorrect). (3.71)

This is owing to the fact that when we evaluate the reflected entropy, or equivalently the
entanglement wedge cross-section, we cannot take b3 = b2 + ε, otherwise the cutoff of y
coordinate would become yUV ∼ ε/2. We demonstrate this in Appendix.C. The factor 1/2

in yUV contributes the term c
3 log 2 in (3.70) and (3.71). Recall that all formulae should use

the standard cutoff yUV = ε. In this sense, we should really set b3 − b2 = 2ε, and this gives
us the correct result:

SR(A : B) =
c

3
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0), (3.72)

h(A : B) = 0. (3.73)

Based on above analysis, we conclude that when evaluating reflected entropy in the adjacent
limit, the x-axis gap between two intervals should be 2ε.

For phase-A1, there are no boundaries anchored at the minimal surfaces of A ∪B and
no boundary gaps between A∪IR,A and B∪IR,B, thus both the inequalities (2.7) and (2.8)
imply that the lower bound is zero.

Phase-A2

Phase-A2 (Fig.7) is just like phase-D3 except that A and B are now adjacent. On one
hand, we require A has no island. On the other hand, the area of entanglement wedge
cross-section should be less than that of phase-A3, which is given in next phase by (3.87)
The above conditions lead to the following inequalities

c

6
log

(b2 − b1)2

4b1b2
≤ c

3
T (θ0) +

c

3
W (θ0), (3.74)

c

3
log

2b1b2
b22 − b21

+
c

3
T (θ0) +

c

3
W (θ0) ≤ 0. (3.75)

Though, this phase is easy to calculate, we still show how to obtain this phase by taking
adjacent limit from phase-D3. First, let b3 − b2 = ε, and we obtain the mutual information
from (3.35)

I(A : B) =
c

6
log

[
b2
b1

(
b2 − b1
ε

)2
]
. (3.76)
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Figure 7. Phase-A2. The region A admits no entanglement island but a reflected island. The
entanglement wedges satisfy W(AA∗B) = W(AA∗)∪W(AB), but W(ABB∗) ⊃W(AB)∪W(BB∗).

Then let b3 − b2 = 2ε, and we have the reflected entropy from (3.22)

SR(A : B) =
c

3
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0). (3.77)

It is easy to confirm that the mutual information is indeed given by (3.76). The reflected
entropy for A : B is given by (3.67), which is exactly (3.77). Then the Markov gap is given
by

h =
c

6
log

4b1b2
(b2 − b1)2

+
c

3
T (θ0) +

c

3
W (θ0)

≥ 0, (3.78)

which is just the condition (3.74). Notably, in this case, the Markov gap between A and
B is just the difference between two different phases of S(A), and is guaranteed to be non-
negative. The equality in (3.78) is taken when the phase transition between phase-A1 and
phase-A2 happens. Away from the phase transition, we have h > 0 and thus an imperfect
Markov recovery for phase-A2.

We should also apply the second condition (3.75), and this leads to

h ≤ c

3
log

(√
b1
b2

+

√
b2
b1

)
. (3.79)
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Figure 8. Phase-A3. In this phase, A and B are adjacent, and A admits no island.

Combine (3.78) and (3.79), and we have

0 ≤ h ≤ c

3
log

(√
b1
b2

+

√
b2
b1

)
. (3.80)

That is, the Markov gap is not only lower bounded, but also upper-bounded in this phase.
The analysis of Markov recovery for phase-A1 and phase-A2 is as follows. For both

phases, as shown in Fig.6 and Fig.7, the entanglement wedge of AB together with AA∗

covers all the entanglement wedge of BAA∗. However, this information is not enough to
tell us whether there is a perfect Markov recovery or not. In this case, one should resort
to the direct calculation of h, which informs us that there is a perfect Markov recovery
(h = 0) for phase-A1 while no perfect Markov recovery (h > 0) for phase-A2 away from the
phase transition. In fact, as shown in Fig.7, for another Markov recovery map ρABB∗ =

RB→BB∗(ρAB), the entanglement wedge of AB together with that of BB∗ cannot cover all
the entanglement wedge of ABB∗, which obviously signals an imperfect Markov recovery
for phase-A2.

Phase-A3

Phase-A3 (Fig.8) is like phase-D2 except that now A and B are adjacent. Unlike phase-D2,
there is only one jagged surface due to the vanishing spacing between A and B. The Markov
recovery is precluded and a non-vanishing Markov gap is expected. The condition for this
phase to dominate is

log
(b2 − b1)2

4b1b2
≤ 2T (θ0) + 2W (θ0) (3.81)

SR(A : B) <
c

3
log

2b2
ε

+
c

3
T (θ0) +

c

3
W (θ0), (3.82)

where the first inequality follows from that A has no entanglement island, while the second
inequality follows from that its reflected entropy should be smaller than (3.67).
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We can do adjacent limit from phase-D2 to get the result of this phase. First, let
b3 = b2 + ε to get the mutual information from (3.35)

I(A : B) =
c

6
log

[
b2
b1

(
b2 − b1
ε

)2
]
. (3.83)

And then we let b3 = b2 + 2ε to get the reflected entropy

SR(A : B) =
c

3
log

b22 − b21
b1ε

. (3.84)

We can also obtain these from direct calculation. In this phase, the mutual information
is given by (3.76). And the reflected entropy equals twice the minimum length of geodesics
that connect b2 and the RT surface of [0, b1]. The minimum length can be derived with
simple geometric relation

SR(A : B) =
c

3
log

2(b2 − L)

ε
+
c

3
arctanh

(
b2 − L
L

)
, (3.85)

where L reads

L =
b21 + b22

2b2
. (3.86)

We leave the derivation of the above result in Appendix.A. Inserting (3.86) into (3.85), we
obtain

SR(A : B) =
c

3
log

b22 − b21
εb1

. (3.87)

So we obtain the same result as from the adjacent limit.
Now we consider if this phase could exist. Rewrite (3.82) as

c

3
log

2b1b2
b22 − b21

+
c

3
T (θ0) +

c

3
W (θ0) > 0. (3.88)

Obviously, this can be satisfied for b2 very close to b1, and (3.81) can be fulfilled by tuning
θ0.

Subtract the mutual information from reflected entropy, and we have the Markov gap

h =
c

6
log

(√b2
b1

+

√
b1
b2

)2
 ≥ c

3
log 2, lim

b2→b1
h =

c

3
log 2. (3.89)

As we have said, if b1 is close to b2, the requirement (3.82) can be satisfied.

4 The Markov gap in JT gravity

In this section, we consider the JT gravity model in [6, 10], where the AdS2 JT gravity,
coupled with CFT matters, is glued with a flat CFT. We do not apply the double holography
description [54]. Instead, we work in a pure boundary way to testify (2.8).
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4.1 Entanglement entropy for extremal JT black holes coupled to a bath

Consider a system where a 2D Jackiw-Teitelboim (JT) gravity with CFT matters glues
with a flat 2D CFT bath along its boundary, x = 0. The action is

S =
1

4π

∫
d2x
√−g [φR+ 2 (φ− φ0)] + ICFT (4.1)

For extremal JT black holes, the metric and the dilaton in the gravity region are given by

ds2 = −4
dx+dx−

(x− − x+)2 , φ = φ0 + 2
φr

x− − x+
, (4.2)

where x± = t± x, x ∈ (−∞, 0].
The entanglement entropy is given by the generalized entropy with the island:

S([0, b]) = Sgen([−a, b]) = φ0 +
φr
a

+ Seff , Seff =
c

6
log

(a+ b)2

a
, (4.3)

where a is given by extremization and minimization

ã =
1

2

(
1 + b̃+

√
1 + 6b̃+ b̃2

)
, (4.4)

where ã = a/q, b̃ = b/q and q = 6φr/c.
For arbitrary interval [b1, b2], the entanglement entropy is given by the minimum of the

area of RT surface and corresponding generalized entropy:

S([b1, b2]) = min
{ c

3
log(b2 − b1), Sgen(b1) + Sgen(b2)

}
, (4.5)

where Sgen(b1) is short for Sgen([−a(b1), b1]).

4.2 The Markov gap

We consider only the phases in which A and B are disjoint. The adjacent cases can be
obtained by taking the adjacent limit, that is, set b3 − b2 = ε in mutual information and
b3 − b2 = 2ε in reflected entropy.

Phase-D2

Consider phase-D2 (Fig.9) where A = [b1, b2] and C = [b2, b3] have no entanglement island
and reflected island, but B admits both entanglement and reflected island. The conditions
are

c

6
log

(b2 − b1)2a1a2

(b2 + a2)2(b1 + a1)2
≤ 2φ0 + φr

(
1

a1
+

1

a2

)
, (4.6)

c

6
log

(b3 − b2)2a3a2

(b2 + a2)2(b3 + a3)2
≤ 2φ0 + φr

(
1

a3
+

1

a2

)
. (4.7)

For the entanglement wedge of A ∪B to be connected, we require the mutual information
I(A : B) > 0.
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Figure 9. Phase-D2 for JT gravity. The purple dashed circles denote the boundary gaps between
A ∪ IR,A and B ∪ IR,B

The entanglement entropies for A, B and A ∪B are

S(A) = S([b1, b2]) =
c

3
log

b2 − b1
ε

, (4.8)

S(B) = Sgen(b3) + Sgen(b4), (4.9)

S(AB) = Sgen(b1) + Sgen(b4) +
c

3
log

b3 − b2
ε

. (4.10)

Then the mutual information is given by

I(A : B) =
c

3
log

b2 − b1
b3 − b2

+ Sgen(b3)− Sgen(b1) > 0

=
c

6
log

[
(b2 − b1)2

(b3 − b2)2

(b3 + a3)2

(b1 + a1)2

a1

a3

]
+ φr

(
1

a3
− 1

a1

)
> 0 (4.11)

In this case, the reflected entropy is given by (3.21). Physically speaking, since we are
working in a field theory manner, we should use (3.21), even though it is mathematically
equivalent to (3.18) and (3.19). Then the Markov gap is given by

h =
c

3
log

[(
1 +
√

1− x√
x

)2
(b3 − b2)(b1 + a1)

(b2 − b1)(b3 + a3)

√
a3

a1

]
+ φr

(
1

a1
− 1

a3

)
(4.12)

Notice that φ0 does not appear in (4.12) and mutual information (4.11), so we can always
tune φ0 to satisfy (4.6) and (4.7). It is not hard to find that ∂b3h > 0, so that h mono-
tonically increases with b3, the minimum is at b3 → b2. In this limit, the reflected entropy
reads

SR(A : B) ≈ c

3
log

(b2 − b1)(a1 + b2)

(b1 + a1)(b3 − b2)
+

2c

3
log 2. (4.13)

We write the reflected entropy in a suggestive way, in which the term 2c
3 log 2 is isolated,

and we explicitly include the divergent factor −(c/3) log(b3 − b2). The divergence in SR is
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Figure 10. The Markov gap h (4.12) for phase-D2 of JT model. We set φr = 100, c = 12000 and
b1 = 1. The horizontal axis is b2−b1, while the vertical axis is h/( 2c

3 log 2). Every curve corresponds
to a constant difference b3 − b2. At minima, we have b3 − b2 � b2 − b1.

guaranteed to be canceled by mutual information so that the Markov gap h is a well-defined
UV-regular quantity.

The Markov gap is then

h =
c

3
log

[
b2 + a1

b2 + a2

√
a2

a1

]
+ φr

(
1

a1
− 1

a2

)
+

2c

3
log 2. (4.14)

Again, we find h monotonically increases with b2, and the minimum now is taken at b2 '
b1. It is obvious that b1 = b2 is a solution to h = 2c

3 log 2, which turns out to be the
only acceptable solution. The other solution is either imaginary or excluded by b2 > b1.
Therefore, we conclude that

h ≥ 2c

3
log 2, (4.15)

with h→ 2c
3 log 2 when b1 ' b2 ' b3.

Notice that there is a subtlety. When taking the limit b2 → b3, we let b3− b2 � b2− b1,
and then we take b2 → b1. Therefore, in the limit b3 → b2 → b1, we still require that
b3 − b2 � b2 − b1 � b1. We can see this behavior in numerical computation. In Fig.10,
we show the Markov gap against b2 − b1 with a specific parameter setting, that is b1 = 1,
φr = 100 and c = 12000, the same as that used in [54]. For fixed b1, the minima are located
at positions that satisfy b3− b2 � b2− b1. As b3− b2 gets smaller, the minimum approaches
h = 2c

3 log 2 at b2 − b1 = 0.
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Figure 11. Phase-D3 for JT gravity. The purple dashed circle denotes the boundary gap between
A ∪ IR,A and B ∪ IR,B . a′ denotes the island cross-section.

Phase-D3

In this phase (Fig.11), we require A to have no entanglement island, but admits the reflected
island, which gives the conditions for this phase

S([b1, b2]) < Sgen(b1) + Sgen(b2), (4.16)

SR(A : B) <
2c

3
log

(
1 +
√

1− x√
x

)
. (4.17)

The entanglement entropies are

S(A) =S([b1, b2]), (4.18)

S(B) =Sgen(b3) + Sgen(b4), (4.19)

S(AB) =Sgen(b1) + Sgen(b4) + S([b2, b3]). (4.20)

Then the mutual information is given by

I(A : B) =
c

3
log

[
(b3 + a3)(b2 − b1)

(b1 + a1)(b3 − b2)

√
a1

a3

]
+ φr

(
1

a3
− 1

a1

)
. (4.21)

The reflected entropy can be derived via replica trick by the correlation functions of twist
operators, and the result is

SR(A : B) =
c

3
log

(b3 + a′)(b2 + a′)

a′(b3 − b2)
+ 2

φr
a′

+ 2φ0 +
c

3
log 2, (4.22)

in which a′ is island cross-section ∂IR,A ∩ ∂IR,B, given by the following equation

∂a′SR = 0⇒ 1

b2 + a′
+

1

b3 + a′
− 1

a′
− q

a′2
= 0. (4.23)

We arrive at the Markov gap

h =
c

3
log

[
(b3 + a′)(b2 + a′)(b1 + a1)

a′(b3 + a3)(b2 − b1)

√
a3

a1

]
+ φr

(
2

a′
− 1

a3
+

1

a1

)
+ 2φ0 +

c

3
log 2

≥ c

3
log

[√
a2a3(b3 + a′)(b2 + a′)

a′(b3 + a3)(b2 + a2)

]
+ φr

(
2

a′
− 1

a3
− 1

a2

)
+
c

3
log 2, (4.24)
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Figure 12. Phase-D4 for JT gravity. The purple dashed circle denotes the boundary gap between
A ∪ IR(A) and B ∪ IR(B). a′ denotes the island cross-section.

where we have used (4.16).
If q � 1, we get a simple solution to island cross section (4.23), that is

a′ ≈
√
b2b3. (4.25)

This is reminiscent of the DES result. In the limit q → 0, the second term φr/a in gener-
alized entropy (4.3) can be ignored, so that the generalized entropy is given by an effective
term plus a constant area term φ0. This is indeed similar to the boundary QES description
of the DES model [56]. In addition, we also have

a2 ≈ b2, a3 ≈ b3 (4.26)

Inserting (4.25) and (4.26) into (4.24), we get

h ≥ c
3

log
(
√
b2 +

√
b3)2

4
√
b2b3

+
cq

6

(
2√
b2b3

− 1

b3
− 1

b2

)
+
c

3
log 2

&
c

3
log

(
√
b2 +

√
b3)2

4
√
b2b3

+
c

3
log 2

≥ c
3

log 2. (4.27)

For general q, it is hard to analytically solve the lower bound of the Markov gap.
Numerically we find that the R.H.S of (4.24) grows with b3, and clearly, if b3 = b2 the
second line of (4.24) equals c

3 log 2, as a′ in this case reduces to a2. Therefore, we conclude
that

h >
c

3
log 2, lim

b3→b2
h =

c

3
log 2. (4.28)

Phase-D4

In phase-D4 (Fig.12), both A and B have their islands, and the mutual information I(A :

B) > 0. The entanglement entropies for A, B and AB are

S(A) =Sgen(b1) + Sgen(b2), (4.29)

S(B) =Sgen(b3) + Sgen(b4), (4.30)

S(AB) =Sgen(b1) + Sgen(b4) + S([b2, b3]). (4.31)
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Then the mutual information is given by

I(A : B) = Sgen(b2) + Sgen(b3)− S([b2, b3])

= 2φ0 + φr

(
1

a2
+

1

a3

)
+
c

6
log

(b2 + a2)2(b3 + a3)2

a2a3(b3 − b2)2
. (4.32)

The reflected entropy for this phase is given by

SR(A : B) =
c

3
log

(b3 + a′)(b2 + a′)

a′(b3 − b2)
+ 2

φr
a′

+ 2φ0 +
c

3
log 2, (4.33)

Then the Markov gap is

h = SR − I

= φr

(
2

a′
− 1

a2
− 1

a3

)
+
c

3
log

[√
a2a3

a′
(b3 + a′)(b2 + a′)

(b2 + a2)(b3 + a3)

]
+
c

3
log 2

>
c

3
log 2, (4.34)

where the second line is just the second line in (4.24). So we conclude that

h >
c

3
log 2, lim

b3→b2
h =

c

3
log 2. (4.35)

5 The Markov gap for generic 2D extremal black holes

In this section, we derive the Markov gap in a rather generic 2D extremal black hole coupled
to CFT at large central charge limit. The computation is performed using the correlation
functions of twist operators.

5.1 Setups

The metric of generic 2d extremal black holes can be written in a conformally-flat vacuum
coordinate4, that is,

ds2 = − 1

Ω2
dx+dx−, (5.1)

where x± = t± x. At the static time slice, the generalized entropy is given by

Sgen([−a, b]) =
A(−a)

4G
(2)
N

+ Seff([−a, b]), (5.2)

where A is the area term and the effective entropy is

Seff([−a, b]) =
c

6
log

d2
−ab

Ω−aΩb
, (5.3)

where
d−ab ≡ |xb − x−a| (5.4)

4Note that for AdS black holes, to make black holes evaporate, we glue the original AdS spacetime with
a flat spacetime along the boundary and impose the transparent boundary condition.
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is the distance on the time slice ta = tb of the flat spacetimes ds2 = −dx+dx−. The
minimization of the generalized entropy (5.2) with respect to a gives the entanglement
entropy of the interval [0, b], that is

S([0, b]) = Min{Exta{Sgen([−a, b])}}. (5.5)

For an interval [b, c] which does not admit an entanglement island, the entanglement entropy
is

S([b, c]) = Seff([b, c]) =
c

6
log

d2
bc

ΩcΩb
. (5.6)

This reduces to c
3 log dbc for flat CFT with Ω = 1.

5.2 The Markov gap

Without loss of generality, we consider only phase-D2 and phase-D4.

Phase-D2

For phase-D2 (Fig.9), the Markov gap is

h =
c

3
log

[(
1 +
√

1− x√
x

)2
db3b2d−a1b1
db2b1d−a3b3

√
Ω−a3
Ω−a1

]
+
A(−a1)

4GN
− A(−a3)

4GN
, (5.7)

where the cross-ratio is given by

x =
d−a1b1db3b2
d−a1b2db3b1

. (5.8)

It is easy to find that as b2 → b3, the Markov gap (5.7) decreases. Thus it is enough to
prove our boundary inequality (2.8) in the limit of b2 → b3. The reflected entropy in this
limit is reduced to

SR(A : B) =
2c

3
log

2√
x

=
c

3
log

db3b1d−a1b2
d−a1b1db3b2

+
2c

3
log 2,

(5.9)

which can be further written as

SR(A : B) =
c

6

(
log

d2
b3b1

Ωb3Ωb1

+ log
d2
−a1b2

Ωb2Ω−a1
− log

d2
−a1b1

Ωb1Ω−a1
− log

d2
b3b2

Ωb3Ωb2

)
+

2c

3
log 2.

(5.10)
Using (5.2), (5.3) and (5.6), (5.10) can be written as

SR
math
= S([b1, b3]) + Sgen([−a1, b2])− Sgen([−a1, b1])− S([b2, b3]) +

2c

3
log 2, (5.11)

where math
= means that the equal sign should be understood from the mathematical aspect

rather than the physical aspect. Notice that we have

S([b1, b3]) ≥ S(A), (5.12)

S([b2, b3]) + Sgen([−a1, b1]) = S(AB)− Sgen([−a4, b4]). (5.13)
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Then the reflected entropy should satisfy

SR ≥ S(A) + Sgen([−a1, b2]) + Sgen([−a4, b4])− S(AB) +
2c

3
log 2

≥ S(A) + S(B)− S(AB) +
2c

3
log 2

= I(A : B) +
2c

3
log 2. (5.14)

where the second line is from the fact that Sgen([−a2, b2]) is the minimum in varying a, i.e.
Sgen([−a1, b2]) > Sgen([−a2, b2]), and S(B) = Sgen([−a2, b2]) + Sgen([−a4, b4]). The result
is just as expected from our boundary inequality (2.8). And the equality h = 2c

3 log 2 is
taken at b3 ' b2 ' b1.

Phase-D4

For phase-D4 (Fig.12), the reflected entropy at large c limit is

SR(A : B)

=2
A(−a′)
4G

(2)
N

+ lim
n,m→1

1

1− n log

〈
σgA (b1)σg−1

A
(a1)

〉〈
σg−1

A
(b2)σgB (b3)σgAg−1

B
(−a′)

〉
CFT⊗mn(〈

σgm (b1)σg−1
m

(a1)
〉〈

σg−1
m

(b2)σgm (b3)
〉
CFT⊗m

)n ,

(5.15)

where σgA , σgAg−1
B
, σgm are twist operators living at the endpoints of the intervals (branch

points in the replica manifold) with the scaling dimensions [49]

∆gAg
−1
B

=
c

12n
(n− 1)(n+ 1) = 2∆n, ∆gA = ∆g−1

A
= n∆m =

cn(m2 − 1)

24m
. (5.16)

We drop the twists at b4 and a4, as they factorize and will be canceled in the Markov gap
h. Note that in the limit m→ 1, we have scaling dimension ∆gA = ∆g−1

A
= ∆m = 0 . Thus

only the 3-point function contributes and (5.15) is reduced to

SR(A : B)
m→1
= 2
A(−a′)
4G

(2)
N

+ lim
n→1

1

1− n log
〈
σg−1

A
(b2)σgB (b3)σgAg−1

B

(
−a′
)〉

=2
A(−a′)
4G

(2)
N

+
c

6
log

(
d2
−a′b3

Ω−a′Ωb3

d2
−a′b2

Ω−a′Ωb2

Ωb2Ωb3

d2
b2b3

)
+ C ′n→1,m→1,

(5.17)

where
C ′n,m ≡

1

1− n logCn,m (5.18)

and Cn,m = (2m)−4∆n is the structure constant of 3-point correlation function and

C ′n→1,m→1 =
c

3
log 2. (5.19)

Using (5.2), (5.3) and (5.6), (5.17) can be written as

SR
math
= Sgen([−a′, b3]) + Sgen([−a′, b2])− S([b2, b3]) +

c

3
log 2 (5.20)
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Again, the equal sign here should be understood from the mathematical aspect rather than
the physical aspect. With the same argument as in the previous phase, we can arrive at

SR ≥ I(A : B) +
c

3
log 2, (5.21)

where we used

Sgen([−a′, b3]) ≥ Sgen([−a3, b3]) = S(B)− Sgen([−a4, b4]), (5.22)

Sgen([−a′, b2]) + Sgen([−a1, b1]) ≥ S(A), (5.23)

Sgen([−a1, b1]) + S([b2, b3]) = S(AB)− Sgen([−a4, b4]). (5.24)

The equality in (5.21) is taken at b2 ' b3. As expected from (2.8), the lower bound is c
3 log 2

as there is only one gap between A ∪ IR,A and B ∪ IR,B.
From the above analysis for phase-D4, it is insightful to see that the lower bound of

Markov gap c
3 log 2 stems from the 3-point structure constant from the boundary viewpoint.

6 Discussion

We have studied the Markov gap in the DES model, JT gravity and generic 2d extremal
black holes in the presence of islands for different phases. Some of these phases are not
considered in the literature. For example, phase-D3, where A has no entanglement island
but admits a reflected island. In doing this, we correct some little errors in literature
as by-products. Then, all the results respect the bulk inequality (2.7) and the boundary
inequality (2.8). However, the rigorous proof remains unknown, either from the bulk gravity
side or the boundary theory side. We point out the obstacle. In [1], this inequality is proved
by using a property of the right-angled pentagon. That is, for a right-angled pentagon in
hyperbolic space, the lengths of its three sides satisfy α + β − σ ≥ log 2, where α and β

are adjacent, and σ is non-adjacent to α and β. The right-angled pentagon is enclosed by
geodesics and degenerate sides at infinity. In the DES model, the EoW brane, which locates
along θ0 in bulk, is neither a geodesic nor asymptotic infinity in Poincaré half-plane5.

While all the results respect (2.8), there are some points we would like to stress. For
two single intervals A and B, whereas AB admits entanglement island IAB, there could be
no island cross-section a′6, like in phase-D2 and phase-A3. Since IR,A ∪ IR,B = IAB, we
have either IR,A = IAB, IR,B = ∅, or IR,B = IAB, IR,A = ∅. This can be determined from
bulk using the entanglement wedge cross-section, which divides the entanglement wedge of
AB into two parts. Nevertheless, from the boundary topology, this is subtle. If only one of
them admits an entanglement island, it is natural to assign the reflected island to this one.
If both A and B have their entanglement island, there is always an island cross-section that
will divide the reflected island into their corresponding parts. To show this in DES model,
we just change the “≤” into “≥” in (3.43),

f ≥ log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

(b3 − b2)2

(
√
b2 +

√
b3)4

4b1b2
(b2 − b1)2

]
. (6.1)

5The only exception is when the brane has no tension. In this case, the brane is located at θ0 = 0, a
geodesic. We show the geometric proof for this case in Appdendix.D.

6By no island cross-section, we mean it would not give a minimum reflected entropy.
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 R
A,

 R
B,

Figure 13. The phase where AB has an island, but they do not admit an individual. The two
possible EWCSs are shown with dashed curves, the corresponding reflected islands are denoted with
the same color. These two give the same lower bound for the Markov gap h ≥ c

3 log 2.

A1
A2B1 B2 A1

A2B1 B2

Figure 14. Left: Both entanglement wedges of A and B are disconnected. Right: The en-
tanglement wedge of A is connected while B is disconnected. The black dashed line denotes the
cross-section.

If we prove the R.H.S is positive, then f is also positive, indicating an island cross-section’s
existence. Note that the R.H.S monotonically increases with b3 as long as b3 > b2. Thus
the R.H.S is always larger than its value at b3 = b2, which leads to

f ≥ 2 log

(√
b2
b1

+

√
b1
b2

)
≥ 2 log 2 > 0. (6.2)

So if both A and B have entanglement islands, they have reflected islands. Furthermore,
if none of them has an entanglement island, then we cannot tell whether IR,A = IR or
IR,B = IR from the simple topology of boundary regions. Fortunately, we do not need to
bother as they both have one gap. See Fig.13 for an illustration.

Nevertheless, the boundary statement (1.3) is not valid generally for multi-interval
regions with disconnected EWCS. An example is shown in Fig.14 on the left. The reason
is that we miss some information here. The HPS proposal (2.6) relies on the bulk object,
namely the entanglement wedge cross-section, which is determined after we know the states
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of the boundary regions. In contrast, the boundary statement considers only the topological
information of the two boundary regions with a non-vanishing mutual information. Even
if the inequality is satisfied, the lower bound might be underestimated due to missing
information. In order to get a more accurate lower bound, more information about the
regions is required to incorporate. That would make it more challenging.

However, we conjecture that the lower bound can also be obtained by counting gaps,
but in a more complicated way, as we should input the information about the lengths of
intervals. The basic idea is to decompose the disconnected region A = ∪iAi into different
multi-interval subregions Aj each with a closed contraction, like in [63] using the monodromy
method. In bulk, every subregion should correspond to its individual single connected
entanglement wedge [63, 64], which can be determined by their lengths in the vacuum state
of CFT. We denote the number of gaps between a subregion Aj and a subregion Bk in B
by Njk. Then the total number of gaps between A and B is given by N =

∑
j,kNjk. Note

that only gaps between two subregions with non-vanishing mutual information are counted.
Although this statement seems much more elaborate than the HPS inequality, determining
EWCS for generic two multi-interval regions is not direct. One should determine the whole
entanglement wedge first. In doing this, the decomposition into subregions Aj and Bk is
already done. See Fig.14 for two examples to demonstrate the above observation. On
the left, the EWCS is the three disconnected dashed geodesics with 3 boundaries. The
entanglement wedges of A = A1∪A2 and B = B1∪B2 are disconnected. So A1 = A1,A2 =

A2 and B1 = B1,B2 = B2. Then we count the gaps

N = N11 +N21 +N22 = 1 + 1 + 1 = 3, (6.3)

notice that N12 = 0 due to I(A1 : B2) = 0 . On the right, the entanglement wedge of A is
connected, while that of B is disconnected. So A1 = A1 ∪A2 and B1 = B1,B2 = B2. Then
the number of gaps is given by

N = N12 = 1. (6.4)

These are precisely the number of boundaries of EWCS. As far as the phases in this paper
are concerned, the decomposition is trivial: A = A ∪ IR,A and B = B ∪ IR,B.

In holographic CFT, a non-vanishing Markov gap h indicates the existence of non-
trivial tripartite entanglement. Since h quantifies the deviation from having a perfect
Markov recovery map, this suggests that tripartite entanglement prevents a perfect Markov
recovery map. Moreover, in the spirit of [65], tripartite entanglement serves to assign
boundaries to EWCS in the dual spacetime [1]. On the boundary, this is realized by adding
gaps between the two regions, which can be rephrased as a physical gap leads to a gap
in quantum recovery. To us, the boundary inequality (2.8) seems comprehensible, as the
tripartite entanglement can be interpreted as entanglement among A, B, and the gap.

However, a caveat is in order. This simple relation (2.8) should be considered as a
property of the vacuum state because we did not input much information about the state.
When the whole CFT is in a mixed state, there must be further tripartite entanglement
between A, B, and a generic purification. Then the lower bound is underestimated. In
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this sense, the HPS inequality (2.6) has more promising validity in general states, as the
information about the state is embedded in its gravity dual. For instance, while a vacuum
CFT on a circle corresponds to a pure AdS3, a thermal state corresponds to a black hole in
the bulk. The number of boundaries of EWCS in the later state is larger. The additional
boundaries of EWCS can be interpreted as a result of the tripartite entanglement between
A,B and a purification.

One final remark. The lower bound of h varies in a discontinuous way as we change
the length of an interval and undergo some phase transitions7. But this does not mean
the Markov gap h varies always discontinuously. For example, as we vary the length of
[b1, b2] in phase-D2 in fig.3, we will encounter a phase transition to phase-D3 in fig.4. The
lower bound changes immediately from 2c

3 log 2 to c
3 log 2. Though the EWCS undergoes

a discontinuous change, its area is continuous (so does the reflected entropy SR), as the
phase transition happens when the two possible areas of EWCS coincide. Therefore, h is
continuous.

7 Conclusion

In this paper, we studied the Markov gap h ≡ SR − I, especially its lower bound, in the
DES, JT gravity models, and generic 2d extremal black holes. Phases with different island
configurations are considered. To get reasonable results, we correct some formulae in the
literature. Explicitly, we show how the lower bound of the Markov gap stems from the
OPE coefficient. This may shed light on general proof of (2.8). Our results support the
HPS inequality (2.6), with a specification that the lower bound only counts the boundaries
of EWCS on minimal surfaces. So (2.6) could be a more general statement for holographic
CFT. However, the general geometric proof for DES model or for island dominance requires
further study.

We proposed a boundary statement (2.8), that the lower bound of the Markov gap
h(A : B) is given by c

3 log 2 times the number of gaps between IR,A ∪ A and IR,B ∪ B.
This statement is justified in all the phases we considered. An analysis of the relation
between a gap and c

3 log 2 is made in Appendix.C, where we find that the different cutoffs
for the gap in mutual information and reflected entropy give rise to c

3 log 2. However, (2.8)
breaks down in certain situations where the boundary regions contain multi-intervals and
EWCS is disconnected, as only topological information is included in (2.8). For multi-
interval regions, we provide a possible generalization in Sec.6, and (2.8) is a trivial case.
On the other hand, this statement does not work for states other than vacuum states. The
entanglement entropy of vacuum states is characterized by the length of a region, which
is not true for generic states where other parameters appear. A more generic proof and a
physical interpretation of (2.8) from boundary theory are desired, potentially belonging to
future exploration.

Apart from reflected entropy, the Markov gap can also be defined by other mixed-
state measures claimed to be dual to EWCS. It is interesting to see if there are similar
inequalities for other “Markov gaps”. For example, in a generic purification instead of

7We do not consider phase transition by removing a gap.
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Figure 15. The distance between two geodesics, denoted by black circles, is the geodesic length
between P1 and P2 on the green circle.

the canonical one that corresponds to the definition of reflected entropy, the authors of [41]
proposed a generalized Markov gap based on partial entanglement entropy. The holographic
entanglement negativity E also admits a “Markov gap” with a similar HPS inequality [66].
But the prefactor should be c

4 log 2. In some sense, this problem reduces to checking the
dualities between EWCS and these quantities. Nevertheless, they may provide further
insights and perspectives, as they have different physical origins.
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A The distance between two geodesics

As shown in Fig.15, the distance between two parallel geodesics is the distance between P1

and P2. A unique geodesic, drawn in green, is determined by these two points. For it to be
the shortest, the green geodesic must be perpendicular to the others. We can obtain two
equations by the Euclidean Pythagorean theorem:

b21 + r2 = Ω2, (A.1)

r2 +

(
b3 − b2

2

)2

=

(
b3 + b2

2
− Ω

)2

, (A.2)

where r is the radius of green geodesic and Ω is the x-coordinate of its center. Solve these
equations, and we arrive at

Ω =
b21 + b2b3
b2 + b3

(A.3)

r =
1

b2 + b3

√
(b22 − b21)(b23 − b21). (A.4)
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r

Figure 16. The distance between a boundary point b2 and a geodesic, the black half-circle, is the
length of the geodesic between P1 and b2.

The intersections of the green geodesic with x axis are denoted as P0 and P3. The coordi-
nates of Pi are given by

y(P0) = 0, x(P0) = Ω− r, (A.5)

y(P1) =
rb1
Ω
, x(P1) = Ω− r2

Ω
, (A.6)

y(P2) =
r(b3 − b2)

b3 + b2 − 2Ω
, x(P2) =

2r2

b2 + b3 − 2Ω
+ Ω, (A.7)

y(P3) = 0, x(P3) = Ω + r. (A.8)

The distance between P1 and P2 is given by

D(P1, P2) =

∣∣∣∣log
||P2 − P0|| ||P1 − P3||
||P1 − P0|| ||P2 − P3||

∣∣∣∣ , (A.9)

where ||P1 − P2|| =
√

(x1 − x2)2 + (y1 − y2)2 is the Euclidean distance. Insert (A.5)-(A.8)
into (A.9), and we find the explicit expression for D(P1, P2)

D(P1, P2) =
1

2
log

[
b2b3 − b21 +

√
(b22 − b21)(b23 − b21)

b2b3 − b21 −
√

(b22 − b21)(b23 − b21)

]
. (A.10)

Notice that we assume that the center of one geodesic is located at origin, so b1, b2, b3 here
are understood as the x coordinates relative to this center. This allows one to generalize to
any case.

B The distance between a boundary point and a geodesic

We calculate the minimum length of a geodesic that connects a boundary point b2 and a
half-circle centered at the origin with radius b1. As usual, we work in Poincaré half-plane
with the metric

ds2 =
1

y2
(dx2 + dy2). (B.1)
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The target geodesic is shown in green in Fig.16, and it must be perpendicular to the
circle with radius b1. Suppose the green half-circle is centered at x = Ω with a radius r =

b2 −Ω. We denote its intersection with the geodesic as P1. By the Euclidean Pythagorean
theorem, we have the following equation

r2 + b21 = Ω2. (B.2)

The solution is

Ω =
b21 + b22

2b2
, r =

b22 − b21
2b2

. (B.3)

Then the length of the geodesic between b2 and P1 is given by

D(P1, b2) = log
2r

ε
+ arctanh

( r
Ω

)
= log

2r

ε
+ log

b2
b1

= log
b22 − b21
b1ε

. (B.4)

C Adjacent limit

We sketched how to obtain the adjacent results from disjoint phases in Sec.3.2.2. Here we
present a more concrete example on this point.

In Poincaré half-plane, the metric is divergent near the boundary CFT y = 0, corre-
sponding to the IR divergence of the bulk space. Set the yUV = ε, and the entanglement
entropy for an interval with length 2l is given by the area of the RT surface in unit of
4GN [2]

S(A) =
c

3
log

2l

ε
. (C.1)

Setting this cutoff means that we only measure the length of geodesics above y = ε. Note
that the formula works in the limit ε→ 0.

We would like to get mutual information for the case in which A vanishes from that
where A is finite. Mutual information is just a combination of entanglement entropies, and
these entropies are given by the area of their RT surfaces (C.1). One can achieve this goal
by simply setting S(A) = 0, which is effectively equivalent to 2l = ε, even though (C.1)
may not work for 2l ∼ ε.

Now we consider the reflected entropy or entanglement wedge cross-section. Suppose
A and B are gapped by two small intervals, as in Fig.17. Then entanglement wedge cross-
section is shown in Fig.17 with two ends on the RT surfaces of AB. Holographically, the
reflected entropy is given by twice the area of entanglement wedge cross-section. When
evaluating the reflected entropy, we should also set the cutoff as yUV = ε to make sure
calculations are consistent. We let the two gaps to be [−L − l,−L + l] and [L − l, L + l].

– 35 –



EW

AB B
0 L−L

2 2l � �

ε

Figure 17. A and B are gapped by two small intervals. The green line and red line denote
RT surfaces for A and B, respectively. The black dashed line denotes the entanglement wedge
cross-section EW between A and B. The cutoff is yUV = ε, which requires a gap of length 2ε.

The reflected entropy is given by (3.19)

SR(A : B) =
c

3
log

(
2L2 − l2 + 2L

√
L2 − l2

l2

)
. (C.2)

We would like to see the vanishing limit of the two gaps. This cannot be obtained from
letting the length of the gap to be 2l = ε, as the corresponding y-cutoff becomes yUV = ε/2,
see Fig.17. This is not consistent with yUV = ε we set for entanglement entropy. In this
sense, we have to set l = ε, that is b3 − b2 = 2ε in Sec.3.2.2, to get the adjacent limit. For
there is no gap between A and B, we have

SR(A : B) = 2S(A) =
2c

3
log

2L

ε
. (C.3)

We can see exact agreement between (C.2) and (C.3) if l = ε.
In a word, we can effectively take 2l = ε in mutual information and l = ε in reflected

entropy to get the results in corresponding adjacent phases. It is manifest that this proce-
dure results in an additional term − c

3 log 2 in the Markov gap, as the cutoff ε is doomed
to be canceled there. This partially explains why the lower bound of the Markov gap is
related to the number of gaps between A and B.

D Geometric interpretation of the lower bound with no brane tension

In this section, we will give a geometric interpretation of the lower bound of SR − I when
the brane is tension free. Without loss of generality, we will only consider phase-D2 and
phase-D4. As shown in Fig.18, the Markov gap for phase-D4 is

h = SR − I =
Area(EW ) + Area(RT (AB1))−Area(RT (A2))

4GN

+
Area(EW ) + Area(RT (AB2))−Area(RT (B2))

4GN
.

(D.1)
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Figure 18. Left: Two right-angled pentagons and thus the lower bound c
3 log 2 for phase-D4.

Right: Four right-angled pentagons and thus the lower bound 2c
3 log 2 for phase-D2.

Since the brane is orthogonal to x-axis, it is along a geodesic, and thus the RT surfaces
EW , A2, B2, AB1 together with the brane form a right-angled pentagon 8 with a degenerate
side at the asymptotic boundary of AdS3. There are two right-angled pentagons for phase-
D4. The key point is that for two adjacent sides α and β and a non-adjacent side σ of a
right-angled hyperbolic pentagon, they satisfy [1]

α+ β − σ ≥ log 2. (D.2)

Using this inequality, then we have

Area(EW ) + Area(RT (AB1))−Area(RT (A2)) ≥ log 2,

Area(EW ) + Area(RT (AB2))−Area(RT (B2)) ≥ log 2,
(D.3)

thus
h ≥ c

3
log 2, (D.4)

where we have used the relation c = 3`/2GN . For phase-D2, the Markov gap is given by

h = SR − I =
Area(EW ) + Area(RT (AB1)) + Area(RT (AB3))−Area(RT (A))

4GN

+
Area(EW ) + Area(RT (AB2)) + Area(RT (AB4))−Area(RT (B2))

4GN
.

(D.5)

Unlike phase-D4, the RT surfaces EW , A,AB1, AB3 form a right-angled hexagon. We can
draw a geodesic (pink dashed line in Fig.18) to decompose a hexagon into two right-angled

8Different from the proof of the lower bound in pure AdS3 where all sides of the pentagon are made up of
RT surfaces or asymptotic degenerate sides, here one side of the pentagon comes from the brane. Note that
if the brane has a non-zero tension, our geometric interpretation using the inequality of the right-angled
pentagon does not hold at all, because the brane is not along a geodesic now.
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pentagons. Then we have four right-angled pentagons for phase-D2. Using the inequality
for each pentagon, the Markov gap

h >
4 log 2

4GN
=

2c

3
log 2. (D.6)

In fact, similar to pure AdS3, here one may also obtain the lower bound by counting the
number of the boundaries of EWCS. However, for AdS/BCFT, only the boundary on the
minimal surfaces of A∪B contributes to the lower bound while the boundary on the brane
does not, as we can see from phase-D4. This is why we generalize the original HPS inequality
to (2.7).
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