

ARIZONA STATE UNIVERSITY

# Chiral anomalous effects in magnetars

#### Igor Shovkovy Arizona State University

June 21, 2024 University of Science and Technology of China



## **CHIRAL PLASMA**

[Miransky & Shovkovy, Phys. Rep. 576, 1 (2015)] [Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. 88, 1 (2016)]

Igor Shovkovy, Chiral anomalous effects in magnetars @ USTC



# Chiral plasmas in nature

- Heavy-ion collisions (high temperature) [Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. 88, 1 (2016)]
- Super-dense matter in compact stars (high density) [Yamamoto, Phys. Rev. D 93, 065017 (2016)]
- Early Universe (high temperature) [Boyarsky, Frohlich, Ruchayskiy, Phys. Rev. Lett. 108, 031301 (2012)]
- Electron plasma in Dirac/Weyl (semi-)metals

[Gorbar, Miransky, Shovkovy, Sukhachov, *Electronic Properties of Dirac and Weyl Semimetals*, World Scientific, Singapore, 2021]

- Other: cold atoms, superfluid <sup>3</sup>He-A, etc. [Volovik, JETP Lett. 105, 34 (2017)]
- Magnetospheres of magnetars [Gorbar & Shovkovy, arXiv:2110.11380] (electron-positron plasma at moderately high temperature)













# Basics of chiral plasma

- Chiral relativistic plasma may allow  $n_L \neq n_R$  to persist on *macroscopic* time/distance scales
- Slow evolution of  $n = n_R + n_L$  and  $n_5 = n_R n_L$  is controlled by the continuity equations

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot \vec{j} = 0$$

and

$$\frac{\partial n_5}{\partial t} + \vec{\nabla} \cdot \vec{j}_5 = \underbrace{\frac{e^2 \vec{E} \cdot \vec{B}}{2\pi^2}}_{P_m} - \Gamma_m n_5$$

[Boyarsky et al., PRL 126, 021801 (2021)]

Chiral anomaly can produce *macroscopic* effects in plasma

where the chirality flip rate:  $\Gamma_m \propto \alpha^2 T(m/T)^2$ 



Image credit: NASA

### **PULSARS**



## Neutron stars

- Neutron stars are laboratories of matter under extreme conditions
- Prediction

[Baade & Zwicky, Proc. Nat. Acad. Sci. 20, 259 (1934)]

• Observation

[Hewish, Bell, Pilkington, Scott & Collins, Nature 217, 709 (1968)]

- Pulsars are neutron stars that are
  - rapidly rotating ( $P \sim 1 \text{ ms to } 10 \text{ s}$ )
  - strongly magnetized ( $B \sim 10^8$  to  $10^{15}$  G)



• Pulsar radiation is beamed along the magnetic field direction (the "lighthouse" effect)



Pulsars in  $P-\dot{P}$  plane

• Characteristic age

 $\tau \simeq \frac{P}{2\dot{P}}$ 

• Spin-down luminosity

 $-\dot{E} \simeq 4\pi^2 I \frac{\dot{P}}{P^3}$ 

• Characteristic magnetic field

$$B \simeq 3 \times 10^{19} \left(\frac{P\dot{P}}{s}\right)^{1/2} \mathrm{G}$$



Image credit: Condon & Ransom, "Essential Radio Astronomy" (2016)



Image credit: Aurore Simonnet, Sonoma State University

#### MAGNETOSPHERES



Pulsar electrodynamics (VDM)

- Vacuum dipole model (VDM) ( $\rho = 0 \& J = 0$  outside the star)
- Stellar interior (good conductor):

$$\vec{E}'_{in} = \vec{E}_{in} + \frac{\vec{\Omega} \times \vec{r}}{c} \times \vec{B}_{in} = 0$$

• Fields outside the pulsar are

$$\vec{B} = \frac{B_0 R^3}{2r^3} (3(\hat{m} \cdot \hat{r})\hat{r} - \hat{m})$$

 $\vec{E} = \cdots$  [see Deutsch, Ann. Astrophys. 18, 1 (1955)]



where  $\boldsymbol{m}$  is the magnetic moment and  $\boldsymbol{\Omega}$  is the angular frequency

• There is a nonzero charge density and a strong electric field on the surface  $(E_{surf} \sim \Omega R B_0 \sim 10^{12} \text{ to } 10^{15} \text{ V/m})$ 



# Pulsar electrodynamics (VDM)

- Charged particles (electrons)
  - i. pulled up from the surface  $(\vec{E} \neq 0)$
  - ii. move along curved trajectories  $(\vec{B} \neq 0)$
  - iii. produce curvature  $\gamma$ -radiation
  - iv.  $\gamma$ -quanta produce  $e^+e^-$  pairs

$$l_{\gamma} \simeq \frac{2R_c}{15} \frac{B_c}{B} \frac{m_e}{\varepsilon_{\gamma}}$$

- v. Secondary particles produce synchrotron & curvature radiation
- Outcome: Strongly magnetized vacuum is opaque for photons with  $\varepsilon_{\gamma} \gtrsim 2m_e$  and, thus, turns into a plasma

 $(\mathbf{V})$ 

 $\vec{E}$ 

(iii)



# Pulsar electrodynamics (RMM)

• Rotating magnetosphere model (RMM) (assuming a highly conducting plasma outside the star)

$$\vec{E}' = \vec{E} + \frac{\vec{\Omega} \times \vec{r}}{c} \times \vec{B} = 0$$

i.e.,  $E_{\parallel}=0$ 

• Plasma motion is determined by

$$\vec{\boldsymbol{v}}_{\text{drift}} = c \frac{\vec{\boldsymbol{E}} \times \vec{\boldsymbol{B}}}{B^2} = \vec{\boldsymbol{\Omega}} \times \vec{\boldsymbol{r}} + j_{\parallel} \vec{\boldsymbol{B}}$$

• Corotating plasma is charged

$$\rho_{\rm GJ} = \vec{\nabla} \cdot \vec{E} = -\frac{2}{c} \vec{\Omega} \cdot \vec{B}$$

[Goldreich & Julian, Astrophys. J. 157, 869 (1969)]





## Gaps in magnetosphere

• If one assumes that  $E_{\parallel}=0$  everywhere, the magnetic field lines are equipotential (V = const)

- Then,  $0 = \oint \vec{E} \cdot d\vec{l} = \int (\vec{\nabla} \times \vec{E}) \cdot d\vec{s} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{s}$
- Thus,  $E_{\parallel}=0$  cannot be enforced everywhere if  $\vec{B}$  changes in time
- Regions ("gaps") with unscreened  $E_{\parallel}$  will necessarily develop (they result from dynamical charge/current starvation)

[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]



# Gaps in magnetosphere

- Gaps can develop at various locations
- Intermittent gaps are caused by rapid outflow of charge
- The **gap size** *h* grows at a speed close to the speed of light
- Electric **potential** difference grows like  $\Delta V = E_{\parallel}h \propto h^2$
- $\Delta V$  & photon flux cause an avalanche production of **electron-positron** pairs



[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]

• Since  $B \propto 1/r^3$ , anomalous effects are strongest near **polar caps** 



## Pulsar gaps

• Estimates for the **electric field** and the **gap size** 

$$h \simeq 3.6 \text{ m} \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{-3/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{-4/7}$$

where  $R_{LC} = c/\Omega$  is the radius of light cylinder

The field scales with pulsar parameters as follows

$$E_{\parallel} \approx 2.7 \times 10^{-8} E_c \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{3/7}$$

where  $E_c = m_e^2 / e = 1.3 \times 10^{18} \text{ V/m}.$ 

 $E_{\parallel} \simeq Bh/R_{LC}$ 

[Ruderman & Sutherland, Astrophys. J. 196, 51 (1975)]



# Charge in the gap

#### formation of the gap





# Charge in gap (simulations)

#### formation of the gap





• Quantitative estimate of the gap size and fields



where

$$E_c = m_e^2/e = 1.3 \times 10^{18} \text{ V/m}$$
  
 $B_c = m_e^2/e = 4.4 \times 10^{13} \text{ G}$ 



# Chiral charge production

• The evolution of the chiral charge is determined by

$$\frac{\partial n_5}{\partial t} + \vec{\nabla} \cdot \vec{j}_5 = \frac{e^2 \vec{E} \cdot \vec{B}}{2\pi^2} - \Gamma_m n_5$$

- While the chiral anomaly produces  $n_5$ , the chirality flipping tries to wash it away
- The chiral charge  $n_5$  approaches the steady-state value  $(t \gg \Gamma_m)$ :

$$n_5 = \frac{e^2}{2\pi^2 \Gamma_m} \vec{E} \cdot \vec{B}$$

• The estimates for the chirality flip rate in a hot plasma

$$\Gamma_m \simeq \frac{\alpha^2 m_e^2}{T}$$
  $(T \lesssim m_e/\sqrt{\alpha})$  and  $\Gamma_m \simeq \frac{\alpha m_e^2}{T}$   $(T \gg m_e/\sqrt{\alpha})$ 

[Boyarsky, Cheianov, Ruchayskiy, Sobol, Phys. Rev. Lett. 126, 021801 (2021)]



• The gap formation time

$$t_h \sim h/c \sim 10^{-8} {
m s}$$

• Timescale for chiral charge production

$$t^* \sim 1/\Gamma_m \sim 10^{-17} \text{ s}$$

• Note that

$$t_h \gg t^*$$

• Thus, the chirality production is nearly instantaneous

[Gorbar & Shovkovy, Eur. Phys. J. C 82, 625 (2022)]



• The estimate for the chiral charge is given by

$$n_5 \simeq \frac{e^2 E_{\parallel} B}{2\pi^2 \Gamma_m} \simeq 1.5 \times 10^{-5} \text{ MeV}^3 \left(\frac{T}{1 \text{ MeV}}\right) \\ \times \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{10/7}$$

• The corresponding chiral chemical potential is

$$\mu_5 \simeq \frac{3n_5}{T^2} \simeq 4.6 \times 10^{-5} \text{ MeV} \left(\frac{T}{1 \text{ MeV}}\right)^{-1} \\ \times \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{10/7}$$

[Gorbar & Shovkovy, Eur. Phys. J. C 82, 625 (2022)]



# Values of $n_5$ and $\mu_5$

• The corresponding numerical values for chiral charge and chiral chemical potential are

| B                                                                  | $10^{12} \mathrm{~G}$ | $10^{13} { m G}$     | $10^{14} \mathrm{~G}$ | $10^{15}~{ m G}$     |
|--------------------------------------------------------------------|-----------------------|----------------------|-----------------------|----------------------|
| h                                                                  | $50 \mathrm{m}$       | 13.4 m               | $3.6 \mathrm{m}$      | $0.97 \mathrm{\ m}$  |
| $\frac{E_{\parallel}}{E_c}$                                        | $3.8 \times 10^{-9}$  | $1.0 \times 10^{-8}$ | $2.7 \times 10^{-8}$  | $7.3 \times 10^{-8}$ |
| $\frac{\boldsymbol{E} \cdot \boldsymbol{B}}{E_c B_c}$              | $8.6 \times 10^{-11}$ | $2.3 \times 10^{-9}$ | $6.2 \times 10^{-8}$  | $1.7 \times 10^{-6}$ |
| $\left(\begin{array}{c} \frac{n_5}{m_e^3} \end{array}\right)$      | $1.6 \times 10^{-7}$  | $4.3 \times 10^{-6}$ | $1.1 \times 10^{-4}$  | $3.1 \times 10^{-3}$ |
| $\begin{array}{c} \underline{\mu_5} \\ \overline{m_e} \end{array}$ | $1.2 \times 10^{-7}$  | $3.4 \times 10^{-6}$ | $9.0 \times 10^{-5}$  | $2.4 \times 10^{-3}$ |
| ·                                                                  |                       |                      | ×/                    |                      |

[Gorbar & Shovkovy, Eur. Phys. J. C 82, 625 (2022)]



Image credit: European Southern Observatory

#### **CHIRAL PLASMA INSTABILITY**



Plasma with  $\mu_5 \neq 0$ 

• Nonzero  $\mu_5$  and  $\vec{B}$  drive the chiral magnetic effect (CME)  $\vec{e}^2 \vec{B}$ 

$$\vec{j} = \frac{\sigma}{2\pi^2} \mu_5$$

- The effect comes from the spinpolarized LLL ( $s=\downarrow$ )
  - L-handed states ( $p_3 < 0 \& |E| < \mu_5$ ) are empty (holes with  $p_3 > 0$ )
  - R-handed states ( $p_3 < 0 \& E < \mu_5$ ) are occupied



• However, plasma at  $\mu_5 \neq 0$  is unstable



• The total current (CME + Ohm)

$$\boldsymbol{j} = \left(\frac{2\alpha}{\pi}\mu_5\mathbf{B} + \sigma\mathbf{E}\right)$$

• By substituting **j** into Ampere's law

$$oldsymbol{
abla} imes \mathbf{B}=oldsymbol{j}+rac{\partial \mathbf{E}}{\partial t}$$
 .

and solving for the electric field, one derives

$$\mathbf{E} = \frac{1}{\sigma} \left( \boldsymbol{\nabla} \times \mathbf{B} - k_{\star} \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} \right) \qquad \text{where} \quad \mathbf{k}_{\star} =$$

• Finally, by calculating the curl and using Faraday's law,

$$\frac{\partial \mathbf{B}}{\partial t} = -\frac{1}{\sigma} \left( \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \mathbf{B}) - k_{\star} \boldsymbol{\nabla} \times \mathbf{B} + \frac{\partial^2 \mathbf{B}}{\partial t^2} \right)$$

 $2\alpha\mu_{5}$ 

π



# Helical modes at $\mu_5 \neq 0$

• Search for a solution as a superposition of helical eigenstates

$$\mathbf{\nabla} \times \mathbf{B}_{\lambda,k} = \lambda k \mathbf{B}_{\lambda,k}$$

e.g.,

$$\mathbf{B}_{\lambda,k} = B_0 \left( \hat{\boldsymbol{x}} + i\lambda \hat{\boldsymbol{y}} \right) e^{-i\omega t + ikz}$$

Then, for a fixed eigenmode, the evolution equation reads  $D^{2}$ 

$$\frac{d\mathbf{B}_{\lambda,k}}{dt} = \frac{1}{\sigma} \left( \lambda k_{\star} k - k^2 - \frac{\partial^2}{\partial t^2} \right) \mathbf{B}_{\lambda,k}$$

• The two solutions for the frequency are

$$\omega_{1,2} = -\frac{i}{2} \left( \sigma \pm \sqrt{\sigma^2 + 4k(\lambda k_\star - k)} \right)$$



## Long-wavelength modes

• For a plasma with high conductivity

$$\omega_{1,2} \simeq \begin{cases} -i\left(\sigma + \frac{k(\lambda k_{\star} - k)}{\sigma}\right) \\ i\frac{k(\lambda k_{\star} - k)}{\sigma} \end{cases}$$

[Joyce & Shaposhnikov, PRL 79, 1193 (1997)] [Boyarsky, Frohlich, Ruchayskiy, PRL 108, 031301 (2012)] [Tashiro, Vachaspati, Vilenkin, PRD 86, 105033 (2012)] [Akamatsu & Yamamoto, PRL 111, 052002 (2013)] [Tuchin, PRC 91, 064902 (2015)] [Manuel & Torres-Rincon, PRD 92, 074018 (2015)] [Hirono, Kharzeev, Yin, PRD 92, 125031(2015)] [Sigl & Leite, JCAP 01, 025 (2016)]

• The 1<sup>st</sup> mode is damped by charge screening:

 $B_{k,1} \propto B_0 e^{-\sigma t}$ 

• The 2<sup>nd</sup> mode is unstable when  $k < \lambda k_{\star}$ :

$$B_{k,2} \propto B_0 e^{+tk(\lambda k_\star - k)/\sigma}$$

 $\frac{1}{2}k_{\star}$ 

• The momentum of the fastest growing mode  $B_{k,2}$  is



Instability in pulsars

• The estimate for  $k_{\star}$ [Gorbar & Shovkovy, Eur. Phys. J. C 82, 625 (2022)]  $k_{\star} \simeq 2.2 \times 10^{-7} \text{ MeV} \left(\frac{T}{1 \text{ MeV}}\right)^{-1} \left(\frac{R}{10 \text{ km}}\right)^{2/7} \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{4/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{2}$  $10^{15} {
m G}$  $10^{12} {
m G}$  $10^{13} {
m G}$  $10^{14} {
m G}$ Bh0.97 m 50 m 13.4 m 3.6 m  $\frac{E_{\parallel}}{E_c}$  $3.8 \times 10^{-9}$  $1.0 \times 10^{-8}$  $2.7 \times 10^{-8}$  $7.3 \times 10^{-8}$  $\frac{\boldsymbol{E} \cdot \boldsymbol{B}}{\boldsymbol{E}_c \boldsymbol{B}_c}$  $8.6 \times 10^{-11}$  $2.3 \times 10^{-9}$  $6.2 \times 10^{-8}$  $1.7 \times 10^{-6}$  $1.6 \times 10^{-7}$  $4.3 \times 10^{-6}$  $1.1 \times 10^{-4}$  $3.1 \times 10^{-3}$  $rac{n_5}{m_e^3}$  $1.2 \times 10^{-7}$  $9.0 \times 10^{-5}$  $3.4 \times 10^{-6}$  $2.4 \times 10^{-3}$  $\mu_5$  $m_e$  $5.8 \times 10^{-10}$  $k_{\star}$  $1.6 \times 10^{-8}$  $4.2 \times 10^{-7}$  $1.1 \times 10^{-5}$  $m_e$ 



• Unstable plasma in the gaps produces **helical** (circularly polarized) **modes** in the frequency range

 $0 \lesssim \omega \lesssim k_\star$ 

- For magnetars, these span **radio frequencies** and may reach into the **near-infrared** range
- Available energy is of the order of  $\Delta \mathcal{E} \sim \mu_5^2 T^2 h^3$ , i.e.,

$$\Delta \mathcal{E} \simeq 2.1 \times 10^{25} \text{ erg} \left(\frac{T}{1 \text{ MeV}}\right) \left(\frac{R}{10 \text{ km}}\right)^{6/7} \\ \times \left(\frac{\Omega}{1 \text{ s}^{-1}}\right)^{-9/7} \left(\frac{B}{10^{14} \text{ G}}\right)^{2/7}$$

• The energy is sufficient to feed the fast radio bursts (?)



- Interplay of chiral charge and electron-positron pair **production** induced by energetic photons should be studied in detail
- The modification of the **chiral flip rate**  $\Gamma_{\rm m} \simeq \frac{\alpha^2 m_e^2}{T}$  by the strong magnetic field (extra suppression?)
- The role of the **inverse magnetic cascade** and the **chiralmagnetic turbulence** should be quantified
- Self-consistent **dynamics** of chiral plasma in the gap regions should be simulated in detail
- Detailed mechanism of the **energy transfer** from unstable helical modes to radio emission (FRBs or other types)

[Caleb et al., An emission-state-switching radio transient with a 54-minute period. Nat. Astron. (2024)]



# Summary

- Chiral anomaly can have *macroscopic* implications in pulsars
- It leads to a *significant* chiral charge production (up to 10<sup>34</sup> m<sup>-3</sup>) in strongly magnetized magnetospheres
- The chiral chemical potential  $\mu_5$  can be up to  $10^{-3}$  MeV
- This is sufficient to trigger emission of helical waves with frequencies up to about  $k_{\star} \simeq \frac{2}{\pi} \alpha \mu_5$  (radio to infrared range)
- Helical waves can affect the pulsar jets and observable features of the fast radio bursts
- For quantitative effects, further detailed studies are needed