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Based on my recent work:
Balanced Partial Entanglement and the Entanglement Wedge Cross
Section, Qiang Wen, JHEP 04 (2021)

* Fine structure in holographic entanglement and entanglement
contour, Qiang Wen, Phys.Rev.D 98 (2018)

» Towards the generalized gravitational entropy for spacetimes with
non-Lorentz invariant duals, Qiang Wen, JHEP 01 (2019) 220

« Entanglement contour and modular flow from subset
entanglement entropies, Qiang, JHEP 05 (2020)

« Formulas for Partial Entanglement Entropy, Qiang Wen,
Phys.Rev.Res. 2 (2020)
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* Introducing the partial entanglement entropy
« Several approaches to PEE

* PEE in condensed matter and quantum information
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Entropy
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» Reduced density matrix pa=Tr e (

w) (V)

» Entanglement entropy Sa=—Tra( palogpa)
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The Simplest Example: two spins (2 qubits)
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Holographic entanglement entropy in AdS /CFT

Ryu-Takayanagi formula 06’
AdS space

Area(€E4)
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SEE =

Quantum entanglement == Bulk geometry
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Entanglement contour quantifies the contribution distribution from
each degree of freedom in the region to the total entanglement entropy.

Entanglement contour function
AC

SA:/ falxy, - -xg_1)dxy---drg_q
A A

Partial entanglement entropy

sA(Az) = y falzy, - xg1)dzy - drg_y
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Physical requirements for the contour

Y. Ch d G. Vidal, 2014’; QW 2019’
So far there enan aal ;Q

is no 1. Additivity: if A2U A? = A; and A% N A® = @, by definition we should have
fundamenta

| definition sa(A;) = sa(A7) +sa(A}). (1.5)
for this

function!!l o rpyariance under local unitary transformations: sa(A;) should be invariant under

any local unitary transformations inside A; or A.

3. Symmetry: for any symmetry transformation 7 under which 7A = A" and T A; = A,
we have s4(A4;) = sa(A)).

4. Normalization: Sq = sa(Ai)|a,—A -
5. Positivity: sa(A;) > 0.
6. Upper bound: sa(A;) < Sa, .

7. Symmetry under the permutation: T(A, A;)=1Z(A;, A), which implies s4(A4;) :3;11,(/_1).
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4 Proposals

* The Gaussian Formula

 The additive linear combination proposal

* PEE from the fine structure of the entanglement wedge
 Determine PEE for Poincare invariant theories
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Proposal 1: The additive linear combination proposal for
PEE

QW, 1803.05552 PRD

QW, 1902.06905 JHEP ﬂC ﬂl ﬂ") ﬂB ﬂc

o

1
sa(Az) = 5 (SauAy + Sasuds — Sa, — Sas)

1
sA(A3) = 5 M SAUA, — A, —M :
1 ) sa(Ay) = sa(A3) +sa(A3)
sA(A3z) = 2 (SA1UA2 +\57t§5,4‘3\—\5717&4;\— SAS)
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 For a general quantum system, the entanglement entropies will
always obey certain inequalities.

(a) Subadditivity: S(A) + S(B) = S(AB),

(b) Araki-Lieb: S(AB) = |S(A) — S(B)|,

(¢) Strong subadditivity 1: S(AB)+ S(BC)=S(ABC)+
S(B),

(d) Strong subadditivity 2: S(AB)+S(BC)=S(A)+

S(O). . . ‘
Lieb and Ruskai, 1973
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Positivity: The strong subadditivity S4,04, +S54,045 — 5S4, —S4, = 0 for any three
regions indicates s4(Az) > 0= fa(z1, - x4-1) >0

Normalization: s4(A2)| 4,4 =S4

Invariance under local transformations: All the subset entanglement entropies
are invariant under local transformations that only act on A, so s4(A2) is also

invariant.
Upper bound: subadditivity S4, +54, > Sa,u4, and Sa,+S4, > Sa,0A4, indicates

sA(Az) < Sy, -

Symmetry: Since T is a symmetry, the subsets 4; and A, should play the equivalent
role, in other words we have S4, = 5S4/, S4,u4; = Sarua,- This means
1 t J

SA1uAr + 545043 — SAr — Say = Saua, + Saua, —Sa—Sa,
=s5.4(A2) = 54(A3) .
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Comments on the ALC proposal

* Applies for general theory (holographic, CFT, non CFT, lattice model...)
* Relies on a definite order of the degrees of freedom in the region

* Very powerful in 2-dimensional system and can be generalized to
higher dimensions with enough symmetries

* Works at the full guantum level in holography

o [ A2 13



Proposal 2: PEE from the fine structure of the entanglement
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Replica trick
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Modular slice

.'m

1, Each point in A determines a modular slice
2, The entanglement wedge is a slicing of the modular slices

HERR A BRI
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Replica trick on the modular slice with n=2

The replica on a point P in A turns on the contribution of a
partner point in the RT surface
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17



A time slice of the entanglement wedge
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Proposal 3: Solving all the requirements

Symmetry under

Additivity permutation

N

Z(A, A,-):f_ dovxf doy J(X,y)
A A,

I(A, Ai) = E E Jij
icA jJEA,
Casini and Huerta 0812.1773
Derivation for extensive mutual information o R 2R A A



Invariance under local unitary transformations

I(A,B):]dax“/day”.lw(x, y),
A B

With BEJ“U(X, y) =20

o R R
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Poincare invariant theories

* Invariance under Poincare symmetry:

JH(x,y) =

* Conservation:

(x—(})(f)_(;)z—dy) (0 — " i,)z(d 1)F(Z)

=) () - FO) = (@200

o R R
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ooy Sz, 3] >0

- Positivity s

for any time-like vectors ox and oy

* Furthermore implies: 2F () > G() >0

* It is convenient to define c(1) = G(1) — F(1),thus ¢’(1) <0

* Which implies C(l) deceases under the RG flow, hence is a c-
function.
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 Then we have

1C'(1)
d—1

')

Fl)=-33

+c@), G()=- +20()

Then it is convenient to define another function H(l) by
C(l) = (d—1)I23H'(I).
Thus
Jipll) = —0u0u H (1) + 90 0* H(L) .
At last, after we applied the Stokes’ theorem we arrive at the following formula for PEE

I(A,B) = / / dijx - dijy H(|x —y|),  General Formula!
0A JOB

where 7jx and 7], are the infinitesimal subsets on the boundaries A and 0B with an outward
pointing direction in the system and normal to 0A and 0B.
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PEE in conformal field theories

Things become much more determined in the case of conformal field theories. Since
C'(1) is a c-function, it should be a constant in CFTs. Let us define C(1) = 2C;(d—1)(d—2),
then we have
Cyg

H(‘X_y‘):_lx_y‘gd_4a

d>2, (4.16)

Cd is a constant that depend on the theory and dimension

When d=2 H(l) just gives the entanglement entropy for the single interval with
length I.

o R R K
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The impact of the PEE in other fields

* Primitive evaluation from PEE respect the same features as the EE
regulated by scale.

Very powerful for the

cases of corners and cones
[

Bueno, Myers and Witczak-Krempa, Universality of corner entanglement in conformal field theories
Phys. Rev. Lett., [1505.04804].
Bueno, Myers and Witczak-Krempa, Universal corner entanglement from twist operators,
JHEP, [1507.06997].
Bueno, H. Casini and Witczak-Krempa, Generalizing the entanglement entropy of singular regions
in conformal field theories, JHEP, [1904.11495].
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Kudler-Flam, MacCormack, Ryu,
J.Phys.A, 1902.04654

Entanglement contour in dynamical systems

The contour under thermalization
The contour under a local quench (global quench),
entanglement tsunami

Directly address the question of how quantum information locally flows in time

YMSC 26



 Also a similar contour construction for entanglement negativity is
Investigated by the group of Ryu.

Kudler-Flam, Shapourian, Ryu, 1908.07540, SciPost Phys
“The negativity contour: a quasi-local measure of entanglement for mixed states”

* The entanglement contour has been investigated for on-thermalizing
phases with novel properties of entanglement spreading beyond the
measure of the out-of-time-ordered correlator (OTOC).

MacCormack, Tan, Kudler-Flam, Ryu, 2001.08222
“Operator and entanglement growth in non-thermalizing systems: many-body localization and
the random singlet phase ”



Interaction with other information quantities
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A canonical purification for the entanglement wedge

cross-section

Souvik Dutta and Thomas Faulkner

Department of Physics, University of Illinois, Urbana-Champaign,
1110 W. Green St., Urbana IL 61801, U.S.A.

FE-mail: sdutta9@illinois.edu, tomf@illinois.edu
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Conclusion

* We introduce the concept of PEE and its physical requirements

* We introduce the approaches to construct the PEE in different
theories

« However the fundamental definition for PEE is still not clear
* The study of PEE is still at a primitive stage



Thank you!



