

Holographic correlators on higher genus Riemann surface

何松

Jilin University

第五届"场论与弦论"学术研讨会@彭桓武高能基础理论研究中心

Based on arXiv: JHEP 06 (2023) 116, JHEP 03 (2024) 02, 2311.09636, 2405.01255, 2406.04042

Collaborators:

Yi Li (Jilin U.) Yun-Ze Li (Jilin U.) Yun-Fei Xie (Jilin U.) Yunda Zhang (Jilin U.)

2024/06/25

Outline

- **D** Motivations
- □ Holographic prescriptions
- **1.Holographic torus correlators**
- 2. High genus hCFT correlators
- **3. High genus correlators in Cutoff AdS3**
- □ Summary and perspectives

Motivations

To understand holographic nature of Quantum Gravity proposed by t' Hooft and Susskind AdS/CFT correspondence, Maldacena 1997

- $AdS_5 \times S^5 \iff N = 4$ SYM theory
- I. AdS5/CFT4
- II. AdS4/CFT3 (ABJM)
- III.AdS3/CFT2
- IV. nAdS2/nCFT1, nAdS2/SYK4
- V. Non-AdS/CFT (Celestial Holography)
- VI.DS/CFT

VII....

Maldacena Symmetry, field contents Partion function

Lower point correlation function, & application

Higher-point correlation Function (more concrete)... AdS/CFT correspondence, Maldacena 1997

Dictionary: GKPW

S. S. Gubser, I. R. Klebanov and A. M. Polyakov, 9802109 E. Witten, 9802150

$$Z_{\mathsf{CFT}}[g_{ij}, J] = \int_{G_{\mu\nu}|_{\mathsf{bdy}}=g_{ij}, \Phi|_{\mathsf{bdy}}=J} [dG_{\mu\nu}] [d\Phi] e^{-S_{\mathsf{grav}}[G_{\mu\nu}, \Phi]}$$

To check ("Prove") the AdS3/CFT2 correspondence: $\langle O \rangle = -i \frac{\delta Z[\phi_0]}{\delta \phi_0} = \frac{\delta S[\phi_0]}{\delta \phi_0}$

Partition functions, generic correlation functions, etc.

0

$$\langle O(x_1) \dots O(x_n) \rangle_{CFT} \sim \frac{\delta^n I_{grav}}{\delta \psi_0(x_1) \dots \delta \psi_0(x_n)}$$

Recent Progress on Holographic correlators

- Most previous research focuses on holographic correlators in pure AdS
- Holographic correlators from Minkowski AdS planar blackhole

holographic transport coefficients (specify B.C. on the horizon, ingoing)

• Holographic correlators from Euclidean AdS planar blackhole Scalar operator correlators worked out (arXiv 2206.07720), Only near-boundary analysis for stress tensor correlators (JHEP 09 (2022), 234)

We focus on correlators in the Euclidean spacetime with nontrivial topology.

$$\langle T_{i_1 j_1}(x_1) \dots T_{i_n j_n}(x_n) \rangle_{CFT} \sim \frac{\delta^n I_{grav}}{\delta \gamma^{i_1 j_1}(x_1) \dots \delta \gamma^{i_n j_n}(x_n)}$$

Boundary Value Problem

Bulk space M with metric

 $g\,$ and gauge field $\,A\,$

Conformal boundary ∂M with boundary metric γ and gauge field \mathcal{A} $\gamma = r^2 g|_{r=0}, \mathcal{A} = A|_{r=0}$

- In general, for the given conformal boundary e.g., torus, we need to consider all gravity saddles with different bulk topology and metric.
- Near boundary geometry is well-understood [Charles Fefferman, C. Robin Graham, arXiv: 0710.0919, Commun. Math. Phys. 217 (2001) 595-622)]
- The global boundary value problem is much more difficult.

Lower Dimensional: AdS3/CFT2 Warm up

AdS3/CFT2

I

In AdS3/CFT2, the partition function

Alexander Maloney, Edward Witten, 0712.0155

$$\sum_{\alpha} e^{-\int_{on-shell}^{(\alpha)}} = Z_{CFT}$$
Thermal AdS3 for low temperature
s transformation of moduli parameter
BTZ black hole for high temperature
Handlebody & Non-Handlebody

$$fg] = \frac{-1}{16\pi G} \left[\int_{\mathcal{M}} d^3x \sqrt{g}(R+2) + 2 \int_{\partial \mathcal{M}} d^2x \sqrt{\gamma}(\kappa-1) - 2\pi \chi \left(1 + \log \frac{4R_0^2}{\epsilon^2}\right) \right]$$

Holographic stress tensor correlators:

AdS3 gravity $S_E = -\frac{1}{16\pi G} \int \sqrt{g}(R-2\Lambda) - \frac{1}{8\pi G} \int \sqrt{\gamma}K + \frac{1}{8\pi Gl} \int \sqrt{\gamma}.$ $ds^{2} = \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}}g_{ij}(x,r)dx^{i}dx^{j}.$ **Fefferman-Graham** series truncates as truncates **Banados space-time** $q_{ii}(x,r) = g_{ii}^{(0)}(x) + g_{ii}^{(2)}(x)r^2 + g_{ii}^{(4)}(x)r^4.$ $\langle T_{ij} \rangle = \frac{1}{8\pi C} \left(g_{ij}^{(2)} - g^{(0)kl} g_{kl}^{(2)} g_{ij}^{(0)} \right)$ $g_{ij}^{(4)} = \frac{1}{4} g_{ik}^{(2)} g^{(0)kl} g_{lj}^{(2)}.$ **Thermal AdS3:** $ds^2 = \frac{\mathrm{d}z^2 + \mathrm{d}s_X^2}{z^2} + \cdots$ $(z, zbar) \sim (z + 1, zbar + 1) \sim (z + \tau, zbar + \tau bar)$ $ds^2 = d\rho^2 + \cosh^2 \rho dt^2 + \sinh^2 \rho d\phi^2$ $\rho = 0$ $r = \frac{1}{\pi e^{\rho}}, \ z = \frac{\phi + it}{2\pi}, \ \bar{z} = \frac{\phi - it}{2\pi},$ conformal boundary at $\mathbf{rho} = \infty \text{ or } \mathbf{r} = \mathbf{0}$ $ds^{2} = \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}} \left[dz d\bar{z} - r^{2} \pi^{2} (dz^{2} + d\bar{z}^{2}) + r^{4} \pi^{4} dz d\bar{z} \right]$ $\rho = \infty$

Top-down approach

To the first order $ds^2 = (1 + \epsilon \mathcal{L}_{V^{[1]}})(d\rho^2 + \cosh^2 \rho dt^2 + \sinh^2 \rho d\phi^2) + \epsilon g_{ij}^{FG[1]} dx^i dx^j$. $\mathcal{EL}_{V^{[i_{1}, \cdot]}}$ $V = \sum_{n=1}^{\infty} \epsilon^{n} V^{[n]}$ $\langle T_{ij}^{\epsilon} \rangle = \sum_{n=1}^{\infty} \epsilon^{n} T_{ij}^{[n]}.$ ensures solution is well-behaved
wilk metric at rho=0 C. Fefferman and C. R. Graham, boundary preserving diffeomorphism Ann. Math. Stud. 178, 1 (2011), arXiv:0710.0919 [math.DG] **Thermal AdS3: Regularity boundary conditions: bulk metric at rho=0 be regular.** ∩

$$\rho = 0$$

$$\int_{\mathbf{T}^2} d^2 z \; g_{0t\phi}^{FG[1]} = 0. \qquad \qquad \int_{\mathbf{T}^2} d^2 z \; g_{2\phi\phi}^{FG[1]} = 0$$

Consistent with: T. Eguchi and H. Ooguri, Nucl. Phys. B 282, 308 (1987) SH and Y. Sun, arXiv:2004.07486

Hard to obtain the higher point correlation function by using top-down approach !!! Alternative way to obtain higher point correlation function, Please refer to ...

Higher genus surface: AdS3/CFT2 Without X

SH, Yun-Ze Li, Yunfei Xie, 2406.04042

14

$$I[g] = \frac{-1}{16\pi G} \left[\int_{\mathcal{M}} \mathrm{d}^3 x \sqrt{g} (R+2) + 2 \int_{\partial \mathcal{M}} \mathrm{d}^2 x \sqrt{\gamma} (\kappa-1) - 2\pi \chi \left(1 + \log \frac{4R_0^2}{\epsilon^2} \right) \right]$$

Construction of boundary space: Schottky Uniformization

Loxodromic operator

arXiv: 0912.2090

Holographic correlators

Fefferman-Graham gauge in AdS3:

$$ds^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho}g_{ij}(x,\rho) dx^{i} dx^{j}$$
$$g_{ij}(x,\rho) = g_{ij}^{(0)}(x) + g_{ij}^{(2)}(x)\rho + g_{ij}^{(4)}(x)\rho^{2}$$

Einstein equation:

$$g_{ij}^{(4)} = \frac{1}{4} g_{ik}^{(2)} g^{(0)kl} g_{lj}^{(2)},$$
$$\nabla^{(0)i} g_{ij}^{(2)} = \nabla_j^{(0)} g^{(2)i}_{\ i},$$
$$g_{\ i}^{(2)i} = -\frac{1}{2} R[g^{(0)}].$$

$$\langle T_{ij} \rangle = -\frac{1}{8\pi G} (K_{ij} - Kh_{ij} + h_{ij})$$
$$\langle T_{ij} \rangle = \frac{1}{8\pi G} \left(g_{ij}^{(2)} - g^{(0)kl} g_{kl}^{(2)} g_{ij}^{(0)} \right)$$

Conservation equation & Weyl anomaly equation:

$$\nabla^{i} \langle T_{ij} \rangle = 0,$$

$$\langle T_{i}^{i} \rangle = \frac{1}{16\pi G} R[g^{(0)}].$$

$ds^2 = \frac{\mathrm{d}z^2 + \mathrm{d}s_X^2}{z^2} + \cdots$ Holographic correlators **Higher genus Rienman surface :** $\mathrm{d}s_X^2 = e^{2\phi(z,\bar{z})}\,\mathrm{d}z\,\mathrm{d}\bar{z}$ R = -1 Single valued = Automorphic form $8\partial_z \partial_{\bar{z}} \phi = e^{2\phi}$ $\phi(\gamma(z), \overline{\gamma(z)}) = \phi(z, \bar{z}) - \frac{1}{2} \ln |\gamma'(z)|^2, \quad \forall \gamma \in \Gamma_g$

Quasi-periodic boundary conditions

Metric variation and functional of higher point correlation

$$\delta g_{ij}^{(0)} dx^{i} dx^{j} = \epsilon \chi_{ij} dx^{i} dx^{j} \qquad \delta \langle T_{ij} \rangle = \sum_{i=1}^{n} \epsilon^{n} \langle T_{ij} \rangle^{[n]}$$

$$\begin{cases} \nabla^{i} \langle T_{ij} \rangle = 0, \\ \langle T_{i}^{i} \rangle = \frac{1}{16\pi G} R[g^{(0)}]. \end{cases} \qquad \delta g_{ij}^{(0)} dz^{i} dz^{j} = \sum_{\alpha=1}^{3g-3} \left(\phi_{\alpha z z} \delta \bar{\tau}_{\alpha} (dz)^{2} + \bar{\phi}_{\alpha z z} \delta \tau_{\alpha} (d\bar{z})^{2} \right).$$
First order variation
$$\delta_{z} \frac{\delta \langle T_{zz} \rangle^{[1]}(z)}{\delta \chi_{ww}(w)} + \frac{1}{16\pi G} e^{-2\phi(z)} (12(\partial_{z}\phi)^{2}\partial_{z} + 12\partial_{z}\phi\partial_{z}^{2}\phi - 8(\partial_{z}\phi)^{3} - 6\partial_{z}^{2}\phi\partial_{z} - 6\partial_{z}\phi\partial_{z}^{2} \\ - 2\partial_{z}^{3}\phi + \partial_{z}^{3}) \delta^{(2)}(z - w) = 0. \end{cases} \qquad (T_{zz}(z)T_{ww}(w))$$

Derivation of two point correlation function

$$\partial_{\bar{z}} \frac{\delta \langle T_{zz} \rangle^{[1]}(z)}{\delta \chi_{\bar{w}\bar{w}}(w)} + \frac{1}{16\pi G} e^{-2\phi(z)} \left(12(\partial_z \phi)^2 \partial_z + 12\partial_z \phi \partial_z^2 \phi - 8(\partial_z \phi)^3 - 6\partial_z^2 \phi \partial_z - 6\partial_z \phi \partial_z^2 - 2\partial_z^3 \phi + \partial_z^3 \right) \delta^{(2)}(z-w) = 0.$$

Green function:
$$\frac{1}{\pi} \partial_{\bar{z}} G^{z}_{ww}(z, \bar{z}; w, \bar{w}) = \delta^{(2)}(z - w) - p_{2}(z, \bar{z}; w)$$
 $p_{2}(z, \bar{z}; w) = \sum_{\alpha=1}^{3g-3} \mu^{z}_{\alpha \bar{z}}(z, \bar{z}) \phi_{\alpha ww}(w)$

μ: Beltrami differentialφ: holomorphic quadratic differential

$$\frac{\delta \langle T_{zz} \rangle^{[1]}(z)}{\delta \chi_{\bar{w}\bar{w}}(w)} = \int_{\mathcal{D}} d^2 z_0 \, \delta^{(2)}(z_0 - z) \frac{\delta \langle T_{zz} \rangle^{[1]}(z_0)}{\delta \chi_{\bar{w}\bar{w}}(w)} \\
= \int_{\mathcal{D}} d^2 z_0 \, \left(\frac{1}{\pi} \partial_{\bar{z}_0} G^{z_0}_{zz}(z_0, \bar{z}_0; z, \bar{z}) + p_2(z_0, \bar{z}_0; z) \right) \frac{\delta \langle T_{zz} \rangle^{[1]}(z_0)}{\delta \chi_{\bar{w}\bar{w}}(w)}$$

Derivation of two point correlation function

=

=

$$\begin{array}{ll} \textbf{Green function:} & \frac{1}{\pi}\partial_z G^z_{ww}(z,\bar{z};w,\bar{w}) = \delta^{(2)}(z-w) - p_2(z,\bar{z};w) \\ p_2(z,\bar{z};w) = \sum_{\alpha=1}^{3g-3} \mu_{az}^z(z,\bar{z})\phi_{\alpha a w}(w) \\ p_2(z,\bar{z};z) = \sum_{\alpha=1}^{3g-3} \mu_{az}^z(z,\bar{z})\phi_{\alpha a w}(w) \\ p_2(z,\bar{z};w) = \sum_{\alpha=1}^{3g-3} \mu_{az}^z(z,\bar{z})\phi_{\alpha w}(w) \\ p_2(z,\bar{z};w) = \sum_{\alpha=1}^{3g-3} \mu_{az}^z($$

Holographic two-point correlation function

$$\begin{split} \langle T_{zz}(z)T_{ww}(w)\rangle &= -\frac{1}{16\pi^2 G}\partial_w^3 G_{zz}^w(w,\bar{w};z,\bar{z}) + \sum_{\alpha=1}^{3g-3}\phi_{\alpha zz}\frac{\partial}{\partial\tau_\alpha}\left\langle T_{ww}\right\rangle,\\ \langle T_{zz}(z)T_{\bar{w}\bar{w}}(w)\rangle &= \frac{1}{16\pi G}(4\partial_w\phi\partial_{\bar{w}}\phi - \partial_w\phi\partial_{\bar{w}} + 2\partial_{\bar{w}}\phi\partial_w - 8\partial_w\partial_{\bar{w}}\phi - \partial_w\partial_{\bar{w}})\delta^{(2)}(w-z)\\ &+ \frac{3}{8\pi G}\partial_w\partial_{\bar{w}}\phi p_2(w,\bar{w};z) + \sum_{\alpha=1}^{3g-3}\phi_{\alpha zz}\frac{\partial}{\partial\tau_\alpha}\left\langle T_{\bar{w}\bar{w}}\right\rangle,\\ \langle T_{z\bar{z}}(z)T_{ww}(w)\rangle &= \frac{1}{16\pi G}(2\partial_z^2\phi - 2(\partial_z\phi)^2 - 2\partial_z\phi\partial_z + \partial_z^2)\delta^{(2)}(z-w),\\ \langle T_{z\bar{z}}(z)T_{w\bar{w}}(w)\rangle &= \frac{1}{16\pi G}(2\partial_z\phi\partial_{\bar{z}} + 2\partial_{\bar{z}}\phi\partial_z - 4\partial_z\phi\partial_{\bar{z}}\phi - \partial_z\partial_{\bar{z}})\delta^{(2)}(z-w). \end{split}$$

Holographic recurrence relations n-point correlation function

$$\frac{1}{\pi} \sum_{i=1}^{n} G_{zz}^{i}(z_{i}, \overline{z}_{i}; z, \overline{z}) \partial_{\overline{z}_{i}} \langle T_{\overline{z}\overline{z}}(z_{1}) \cdots T_{\overline{z}\overline{z}}(z_{n}) \rangle
- \frac{2}{(n-2)!\pi} \sum_{\sigma \in S_{n}} G_{zz}^{z\sigma(1)}(z_{\sigma(1)}, \overline{z}_{\sigma(1)}; z, \overline{z}) \Big(2 \langle T_{\overline{z}\overline{z}}(z_{\sigma(1)}) \cdots T_{\overline{z}\overline{z}}(z_{\sigma(n-1)}) \rangle \partial_{\overline{z}_{\sigma(1)}} \\
+ \partial_{\overline{z}_{\sigma(1)}} \langle T_{\overline{z}\overline{z}}(z_{\sigma(1)}) \cdots T_{\overline{z}\overline{z}}(z_{\sigma(n-1)}) \rangle + 4 \langle T_{\overline{z}\overline{z}}(z_{\sigma(1)}) \cdots T_{\overline{z}\overline{z}}(z_{\sigma(n-1)}) \rangle \partial_{\overline{z}_{\sigma(1)}} \phi \Big) \delta^{(2)}(z_{\sigma(1)} - z_{\sigma(n)}) \\
+ \sum_{\alpha=1}^{3g-3} \phi_{\alpha z z}(z) \frac{\partial}{\partial \tau_{\alpha}} \langle T_{\overline{z}\overline{z}}(z_{1}) \cdots T_{\overline{z}\overline{z}}(z_{n}) \rangle,$$
(56)

Consistent with VOA construction: Zhu relation!!

Yongchang Zhu: Journal of the American Mathematical Society Vol. 9, No. 1 (Jan., 1996), pp. 237-302

Higher genus surface on Cutoff surface: AdS3/CFT2:Without X

SH, Yun-Ze Li, Yunfei Xie, 2406.04042

TTbar deformation

$$Z_{G}[g_{ij}^{(c)}] = \left\langle \exp\left[-\frac{1}{2}\int d^{2}z\sqrt{g^{(c)}}g^{(c)ij}T_{ij}\right]\right\rangle_{\text{EFT}},$$
Hard radial cutoff
AdS3

$$(utoff-AdS_{3}/T\overline{T}\text{-deformed CFT} \forall f \parallel \quad \lambda = 16\pi G\rho_{c}) \qquad \frac{dS_{\lambda}}{d\lambda} = -\frac{1}{4}\int d^{2}z \det[T_{\lambda}]$$

$$(T_{ij})_{\rho_{c}} = -\frac{1}{8\pi G}(K_{ij}^{(c)} - K^{(c)}h_{ij}^{(c)} + h_{ij}^{(c)})$$

$$\nabla^{i}\langle T_{ij}\rangle_{\rho_{c}} = 0,$$

$$\langle T_{i}^{i}\rangle_{\rho_{c}} = \frac{1}{16\pi G}R^{(c)} - 8\pi G\rho_{c}\det[T]_{\rho_{c}},$$

$$\partial_{\rho_{c}}\langle T_{ij}\rangle_{\rho_{c}} = 4\pi G[2\langle T_{k}^{k}\rangle_{\rho_{c}}\langle T_{ij}\rangle_{\rho_{c}} - \det[T]_{\rho_{c}}g_{ij}^{(c)}]$$
Brown-York Energy
Momentum tensor
Conserved equation,
Wely anomaly equation

Radial flow effect of the stress tensor within the same FG coordinate system

Variation of energy momentum tensor

Choose Conformal gauge on the cutoff surface:

 $g_{ij}(\rho, z, \bar{z}) \mathrm{d}x^i \mathrm{d}x^j = e^{2\omega_{\rho}(z, \bar{z})} \mathrm{d}z \mathrm{d}\bar{z}$

Ensure the invariance of the line element under the action of Schottky group $\Gamma_q \subset \mathrm{PSL}(2,\mathbb{C})$

$$\omega_{\rho}(\gamma_{\rho}(z), \overline{\gamma_{\rho}(z)}) = \omega_{\rho}(z, \overline{z}) - \frac{1}{2} \ln |\gamma_{\rho}'(z)|^2,$$

ge during the radial flow

=1, 2, ..., 3g - 3.

SJij = SpSij + Ie Sij piff

One-Point function with deformation

Apply Green function & Single valued to guess

$$\partial_{\bar{z}}\epsilon_{\rho}^{z} = -8\pi G e^{-2\omega_{\rho}} \langle T_{\bar{z}\bar{z}} \rangle_{\rho} \delta\rho, \quad \partial_{\bar{z}}\epsilon_{\rho}^{\bar{z}} = -8\pi G e^{-2\omega_{\rho}} \langle T_{\bar{z}\bar{z}} \rangle_{\rho} \delta\rho \qquad \tau_{\alpha} = \tau_{\alpha}(\rho), \quad \alpha = 1, 2, ..., 3g - 3.$$

$$f_{\alpha}^{z} : \text{Bers potential}$$

$$\frac{1}{\pi} \partial_{\bar{z}} f_{\alpha}^{z} = \mu_{\alpha\bar{z}}^{z}, \quad \alpha = 1, 2, ..., 3g - 3.$$

$$f_{\alpha}^{z} : \text{Bers potential}$$

$$\frac{1}{\pi} \partial_{\bar{z}} f_{\alpha}^{z} = \mu_{\alpha\bar{z}}^{z}, \quad \alpha = 1, 2, ..., 3g - 3.$$

$$\frac{d\tau_{\alpha}}{d\rho} = 8\pi G \int_{D_{\rho}} e^{-2\omega_{\rho}(w,\bar{w})} \langle T_{\bar{w}\bar{w}} \rangle_{\rho} \phi_{\alpha ww} d^{2}w, \quad \alpha = 1, 2, ..., 3g - 3.$$

$$Modular flow equation with respect to radial cutoff$$
Plug into
$$\delta\omega_{\rho} = \frac{1}{2} e^{-2\omega_{\rho}[\partial_{z}(e^{2\omega_{\rho}}\epsilon_{\rho}^{z}) + \partial_{\bar{z}}(e^{2\omega_{\rho}}\epsilon_{\rho}^{z}) - 16\pi G \langle T_{z\bar{z}} \rangle_{\rho} \delta\rho]}{\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta \langle T_{zz} \rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{\bar{z}}\epsilon$$

One-Point function with deformation(Perturbative)

$$\begin{split} \omega_{0}(z,\bar{z}) &= \phi(z,\bar{z}) + \sum_{n=1}^{\infty} \rho_{c}^{n} \phi_{n}(z,\bar{z}), \quad \langle T_{ij}(z,\bar{z}) \rangle_{\rho_{c}} = \sum_{n=0}^{\infty} \rho_{c}^{n} \langle T_{ij}(z,\bar{z}) \rangle_{n} \\ \omega_{\rho_{c}}(z,\bar{z}) &= \phi(z,\bar{z}), \quad \Gamma_{\rho_{c}} = \Gamma. \end{split}$$

$$\delta\langle T_{zz} \rangle_{\rho} &= (e^{k}\partial_{k} + 2\partial_{z}e^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta\langle T_{zz} \rangle_{\rho} &= (e^{k}\partial_{k} + 2\partial_{z}e^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta\langle T_{zz} \rangle_{\rho} &= (e^{k}\partial_{k} + 2\partial_{z}e^{z}) \langle T_{zz} \rangle_{\rho}, \\\delta\langle T_{zz} \rangle_{\rho} &= (e^{k}\partial_{k} + \partial_{k}e^{k}) \langle T_{zz} \rangle_{\rho} - 2\pi Ge^{2\omega_{\rho}} \det[T]_{\rho} \delta\rho. \\ \epsilon_{\rho}^{z} &= -8G\delta\rho \int_{D_{\rho}} e^{-2\omega_{\rho}(w,\bar{w})} \langle T_{ww} \rangle_{\rho} \left[\overline{G}_{ww}^{z} + \sum_{\alpha=1}^{3g-3} f_{\alpha}^{z} \phi_{\alpha ww} \right]_{\Gamma_{\rho}} d^{2}w, \\\epsilon_{\rho}^{z} &= -8G\delta\rho \int_{D_{\rho}} e^{-2\omega_{\rho}(w,\bar{w})} \langle T_{ww} \rangle_{\rho} \left[\overline{G}_{ww}^{z} + \sum_{\alpha=1}^{3g-3} f_{\alpha}^{z} \phi_{\alpha ww} \right]_{\Gamma_{\rho}} d^{2}w, \\ \left(\frac{\phi_{1}(z,\bar{z}) = \frac{1}{2\pi} \left[-\frac{\pi}{4} + \int_{D} e^{-2\phi(w,\bar{w})} \left((\partial_{w}^{z}\phi - (\partial_{\bar{w}}\phi)^{2}) (\partial_{z} + 2\partial_{z}\phi) (G_{ww}^{z} + \sum_{\alpha=1}^{3g-3} f_{\alpha}^{z} \phi_{\alpha ww}) \right]_{\sigma} d^{2}w, \\ + (\partial_{w}^{2}\phi - (\partial_{w}\phi)^{2}) (\partial_{z} + 2\partial_{\bar{z}}\phi) (\overline{G}_{ww}^{z} + \sum_{\alpha=1}^{3g-3} f_{\alpha}^{z} \phi_{\alpha ww}) d^{2}w \right], \\ \langle T_{zz} \rangle_{1} = \frac{1}{16\pi^{2}G} \left[\frac{\pi}{4} (\partial_{z}^{2}\phi - (\partial_{z}\phi)^{2}) + \int_{D} e^{-2\phi(w,\bar{w})} (\partial_{w}^{2}\phi - (\partial_{w}\phi)^{2}) \partial_{z}^{2} (\overline{G}_{ww}^{z} + \sum_{\alpha=1}^{3g-3} f_{\alpha}^{z} \phi_{\alpha ww}) d^{2}w \right], \\ \langle T_{z\bar{z}} \rangle_{1} = \frac{1}{16\pi^{2}G} \left[\frac{\pi}{4} (\partial_{z}^{2}\phi - (\partial_{z}\phi)^{2}) + \int_{D} e^{-2\phi(w,\bar{w})} (\partial_{w}^{2}\phi - (\partial_{w}\phi)^{2}) \partial_{z}^{2} (\overline{G}_{ww}^{z} + \sum_{\alpha=1}^{3g-3} f_{\alpha}^{z} \phi_{\alpha ww}) d^{2}w \right], \\ \langle T_{z\bar{z}} \rangle_{1} = -\frac{1}{8\pi G} \left[\frac{1}{4} e^{2\phi(z,\bar{z})} - e^{-2\phi(z,\bar{z})} | \partial_{z}^{2}\phi - (\partial_{w}\phi)^{2} |^{2} \right]. \end{split}$$

k-Point functions up to first order

To obtain the k-Point function:

k-Point functions up to first order deformation

$$\begin{split} \langle T_{z\bar{z}} \rangle_{1}^{[k]} &= 8\pi G e^{-2\phi} (\langle T_{\bar{z}\bar{z}} \rangle_{0}^{[0]} \langle T_{zz} \rangle_{0}^{[k]} + \langle T_{zz} \rangle_{0}^{[0]} \langle T_{\bar{z}\bar{z}} \rangle_{0}^{[k]}) + \mathcal{F}_{z\bar{z}1}^{[k]}, \\ \partial_{\bar{z}} \langle T_{zz} \rangle_{1}^{[k]} &= -8\pi G e^{2\phi} \partial_{z} [e^{-4\phi} (\langle T_{\bar{z}\bar{z}} \rangle_{0}^{[0]} \langle T_{zz} \rangle_{0}^{[k]} + \langle T_{zz} \rangle_{0}^{[0]} \langle T_{\bar{z}\bar{z}} \rangle_{0}^{[k]})] \\ &+ \mathcal{F}_{zz1}^{[k]} - e^{2\phi} \partial_{z} [e^{-2\phi} \mathcal{F}_{z\bar{z}1}^{[k]}], \\ \partial_{z} \langle T_{\bar{z}\bar{z}} \rangle_{1}^{[k]} &= -8\pi G e^{2\phi} \partial_{\bar{z}} [e^{-4\phi} (\langle T_{\bar{z}\bar{z}} \rangle_{0}^{[0]} \langle T_{zz} \rangle_{0}^{[k]} + \langle T_{zz} \rangle_{0}^{[0]} \langle T_{\bar{z}\bar{z}} \rangle_{0}^{[k]})] \\ &+ \mathcal{F}_{\bar{z}\bar{z}1}^{[k]} - e^{2\phi} \partial_{\bar{z}} [e^{-2\phi} \mathcal{F}_{z\bar{z}1}^{[k]}]. \end{split}$$

Summary

- **D**Proposed prescription to study Holographic torus/higher genus stress tensor correlator, which are consistent with CFTs data.
- **D**Offer a precise a check (Proof) AdS3/CFT2.
- **D**TTbar deformed holographic correlators up to
- deformation first-order.
- **Other topologies (X: cross cap), Mixing operators, etc.**

Thanks