

Holographic correlators on higher genus Riemann surface

何 松

Jilin University

第五届"场论与弦论"学术研讨会@彭桓武高能基础理论研究中心

Based on arXiv: JHEP 06 (2023) 116, JHEP 03 (2024) 02, 2311.09636, 2405.01255, 2406.04042

Collaborators:

Yi Li (Jilin U.) Yun-Ze Li (Jilin U.) (可 松
Jilin University
与弦论"学术研讨会@彭桓武高能基础的
EP 06 (2023) 116, JHEP 03 (2024) 02, 2311.09636, 2405.01255,
Yi Li (Jilin U.)
Yun-Ze Li (Jilin U.)
Yunda Zhang (Jilin U.)
Yunda Zhang (Jilin U.) (可 松
Jilin University
与弦论"学术研讨会@彭桓武高能基
EP 06 (2023) 116, JHEP 03 (2024) 02, 2311.09636, 2405.0
Yi Li (Jilin U.)
Yun-Ze Li (Jilin U.)
Yunda Zhang (Jilin U.)
Yunda Zhang (Jilin U.)

2024/06/25

Outline

- \square Motivations
- □ Holographic prescriptions
- 1.Holographic torus correlators
-
- Dutline
□ Motivations
□ Holographic prescriptions
1.Holographic torus correlators
2.High genus hCFT correlators
3.High genus correlators in Cutoff AdS3 □ Motivations
□ Holographic prescriptions
1.Holographic torus correlators
2.High genus hCFT correlators
3.High genus correlators in Cutoff AdS3
□ Summary and perspectives
- \square Summary and perspectives

Motivations

To understand holographic nature of Quantum Gravity Motivations
and holographic nature of Quantum Gravity
proposed by t' Hooft and Susskind

- AdS/CFT correspondence, Maldi
 $AdS_5 \times S^5 \iff N$

I. AdS5/CFT4

II. AdS4/CFT3 (ABJM) AdS/CFT correspondence, Maldace
 $AdS_5 \times S^5 \longleftrightarrow N =$

I. AdS5/CFT4

II. AdS4/CFT3 (ABJM)

III.AdS3/CFT2 AdS/CFT correspondence, Maldacena 1997
 $AdS_5 \times S^5 \longrightarrow N = 4$ SYM theory AdS/CFT correspondence, Maldacena 1997
 $AdS_5\times S^5\longleftrightarrow N=4\;\mathrm{SYM}$

I. AdS5/CFT4 Symme

II. AdS4/CFT3 (ABJM) Partion

III.AdS3/CFT2 Lower

IV. nAdS2/nCFT1, nAdS2/SYK4 function

V. Non-AdS/CFT (Celestial Holography) Higher-1
	-
	-
	- III.AdS3/CFT2
	-
	- $AdS_5\times S^5\longleftrightarrow N$

	I. AdS5/CFT4

	II. AdS4/CFT3 (ABJM)

	III.AdS3/CFT2

	IV. nAdS2/nCFT1, nAdS2/SY1

	V. Non-AdS/CFT (Celestial

	Holography)

	VI.DS/CFT I. AdS5/CFT4
II. AdS4/CFT3 (ABJM)
III.AdS3/CFT2
IV. nAdS2/nCFT1, nAdS2/SY1
V. Non-AdS/CFT (Celestial
Holography)
VI.DS/CFT
VII....
	-

VII.…

Symmetry, field contents SYM theory
Symmetry, field contents
Partion function
Lower point correlation

Lower point correlation function, & application

Higher-point correlation Function (more concrete)…

AdS/CFT correspondence, Maldacena 1997
Dictionary: GKPW S. S. Gubser, I. R. Klebanov and A. M. Polyakov, 9802109
E. Witten, 9802150 **Dictionary:** GKPW S. S. Gubser, I. R. Klebanov and A. M. Polyakov, 9802109 **S. S. Gubser, I. R. Klebanov and A. M. Polyakov, 9802109**
E. Witten, 9802150
 $\begin{bmatrix} dG & |[d\mathbf{A}]_0 - S_{grav}[G_{\mu\nu},\Phi] \end{bmatrix}$ E. Witten, 9802150

$$
Z_{\text{CFT}}[g_{ij},J] = \int_{G_{\mu\nu}|_{\text{bdy}}=g_{ij},\Phi|_{\text{bdy}}=J} [dG_{\mu\nu}][d\Phi]e^{-S_{\text{grav}}[G_{\mu\nu},\Phi]}
$$

To check ("Prove") the AdS3/CFT2 correspondence: $\langle O \rangle = -i \frac{\delta Z[\phi_0]}{\delta \phi_0} = \frac{\delta S[\phi_0]}{\delta \phi_0}$

Partition functions, generic correlation functions, etc.

 α

$$
\langle O(x_1) \dots O(x_n) \rangle_{CFT} \sim \frac{\delta^n I_{grav}}{\delta \psi_0(x_1) \dots \delta \psi_0(x_n)}
$$

Recent Progress on Holographic correlators

- 9 Recent Progress on Holographic correlators
• Most previous research focuses on holographic correlators in
• Holographic correlators from Minkowski AdS planar blackhole pure AdS **Recent Progress on Holographic correlators
• Most previous research focuses on holographic correlators in
pure AdS
• Holographic correlators from Minkowski AdS planar blackhole
• Holographic correlators from Euclidean AdS Cent Progress on Holographic correlators
Most previous research focuses on holographic
pure AdS
Holographic correlators from Minkowski AdS p
holographic transport coefficients (specify B.C. on the horizon, ingoing)
Hologr** Content Progress on Holographic correlators

Most previous research focuses on holographic corre

pure AdS

Holographic correlators from Minkowski AdS plana

holographic correlators from Euclidean AdS plana

Scalar operato Cent Progress on Holographic correlators

Most previous research focuses on holographic correlator

pure AdS

Holographic correlators from Minkowski AdS planar blad

holographic tensport coefficients (specify B.C. on the h Most previous research focuses on holographic correlators in
pure AdS
Holographic correlators from Minkowski AdS planar blackh
holographic transport coefficients (specify B.C. on the horizon, ingoing)
Holographic correlat
-

• Holographic correlators from Euclidean AdS planar blackhole

with nontrivial topology.

$$
\langle T_{i_1j_1}(x_1)\dots T_{i_nj_n}(x_n)\rangle_{CFT} \sim \frac{\delta^n I_{grav}}{\delta \gamma^{i_1j_1}(x_1)\dots \delta \gamma^{i_nj_n}(x_n)}
$$

Boundary Value Problem

Bulk space M with metric

g and gauge field A

Conformal boundary ∂M with boundary metric y and gauge field $\mathcal A$ $\gamma = r^2 g|_{r=0}, \mathcal{A} = A|_{r=0}$

- In general, for the given conformal boundary e.g., torus, we need to consider all gravity saddles with different bulk topology and metric.
- Near boundary geometry is well-understood [Charles Fefferman, C. Robin Graham, arXiv: 0710.0919, Commun. Math. Phys. 217 (2001) 595-622)]
- The global boundary value problem is much more difficult.

Lower Dimensional: AdS3/CFT2 Warm up torus.

AdS3/CFT2

 I

In AdS3/CFT2, the partition function

Alexander Maloney, Edward Witten, 0712.0155

$$
\sum_{\alpha} e^{-\int_{on-shell}^{(\alpha)}} = Z_{CFT}
$$
\na labels the saddle points.

\n3. The final AdS3 for low temperature of moduli parameter **BTZ** black hole for high temperature **2. The total number of interval θ** is a constant of the interval **2. The total number of interval θ** is a constant of **2. The total number of interval θ** is a constant of **2. The total number of interval θ** is a constant of **2. The total number of interval θ is a constant of θ and **3. The total number of interval θ is a constant of θ and **4. The total number of interval θ is a constant of θ and **5. The total number of interval θ is a constant of θ and **6. The total number of interval θ is a constant of θ and **7. The total number of interval θ is a constant of θ and **8. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **9. The total number of interval θ is a constant of θ and **1. The total number of interval θ is a constant of θ and **1. The total number of interval θ is a constant of θ and **1. The total number of interval θ is a constant of θ and **1. The total number of interval θ is a constant of**

Holographic stress tensor correlators:

AdS3 gravity $s_E = -\frac{1}{16\pi G} \int \sqrt{g(R-2\Lambda)}$

Fefferman-Graham $ds^2 = \frac{dr^2}{r^2}$

Banados space-time $g_{ij}(x,r) = \frac{1}{\sqrt{r}} \int \frac{f(x)}{x} dx$ **AdS3 gravity** $S_E = -\frac{1}{16\pi G} \int \sqrt{g(R-2\Lambda)} - \frac{1}{8\pi G} \int \sqrt{\gamma}K + \frac{1}{8\pi G} \int \sqrt{\gamma}K$ $\begin{split} E_{E} = & -\frac{1}{16\pi G} \int \sqrt{g} (R-2\Lambda) - \frac{1}{8\pi G} \int \sqrt{\gamma} K + \frac{1}{8\pi G l} \int \sqrt{\gamma} . \ dz^2 = & \frac{dr^2}{r^2} + \frac{1}{r^2} g_{ij}(x,r) dx^i dx^j . \ \end{split}$
 $ds^2 = \frac{dr^2}{r^2} + \frac{1}{r^2} g_{ij}(x,r) dx^i dx^j .$
 $\tan \alpha$
 $\langle T_{ij} \rangle = \frac{1}{8\pi G} \Big(g_{ij}^{(2)} - g^{(0)kl} g_{kl}$ Fefferman-Graham series truncates as truncates Thermal AdS3: $\rho = 0$ conformal boundary at rho = ∞ or r = 0 $ds^{2} = \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}} \left[dz d\bar{z} - r^{2} \pi^{2} (dz^{2} + d\bar{z}^{2}) + r^{4} \pi^{4} dz d\bar{z} \right]$ $\rho = \infty$

Top-down approach

To the first order $ds^2 = (1 + \epsilon \mathcal{L}_{V^{[1]}})(d\rho^2 + \cosh^2 \rho dt^2 + \sinh^2 \rho d\phi^2) + \epsilon g_{ij}^{FG[1]}dx^i dx^j$. **Op-down approach**

the first order $ds^2 = (1 + \epsilon \mathcal{L}_{V^{[1]}})(d\rho^2 + \cosh^2 \rho \sigma)$

C. Fefferman and C. R. Graham,

Ann. Math. Stud. 178, 1 (2011),

arXiv:0710.0919 [math.DG]
 $V = \sum_{n=0}^{\infty} \epsilon^n V^{[n]}$ Ann. Math. Stud. 178, 1 (2011), arXiv:0710.0919 [math.DG] boundary preserving diffeomorphism Thermal AdS3: ensures solution is well-behaved Regularity boundary conditions: bulk metric at rho=0 be regular.

$$
\int_{\mathcal{T}^2} d^2 z \, g_{0t\phi}^{FG[1]} = 0. \qquad \qquad \int_{\mathcal{T}^2} d^2 z \, g_{2\phi\phi}^{FG[1]} = 0
$$

Hard to obtain the higher point correlation function by using top-down approach !!! Alternative way to obtain higher point correlation function, Please refer to …

Higher genus surface: AdS3/CFT2 Without X **AdS3/CFT2**
SH, Yun-Ze Li, Yunfei Xie, 2406.04042

14

$$
I[g] = \frac{-1}{16\pi G} \left[\int_{\mathcal{M}} d^3 x \sqrt{g} (R+2) + 2 \int_{\partial \mathcal{M}} d^2 x \sqrt{\gamma} (\kappa - 1) - 2\pi \chi \left(1 + \log \frac{4R_0^2}{\epsilon^2} \right) \right]
$$

Construction of boundary space: Schottky Uniformization

$$
\mathbf{L'}_{\mathcal{G}} \quad \frac{L_i(z) - a_i}{L_i(z) - b_i} = \lambda_i \frac{z - a_i}{z - b_i}, \quad 0 < |\lambda_i| < 1
$$

Holographic correlators

Holographic correlators
\nFefferman-Graham gauge in AdS3:
\n
$$
ds^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho}g_{ij}(x,\rho) dx^{i} dx^{j}
$$
\n
$$
g_{ij}(x,\rho) = g_{ij}^{(0)}(x) + g_{ij}^{(2)}(x)\rho + g_{ij}^{(4)}(x)\rho^{2}
$$
\nEinstein equation:
\n
$$
g_{ij}^{(4)} = \frac{1}{4}g_{ik}^{(2)}g^{(0)kl}g_{lj}^{(2)},
$$
\nConservation
\nConservation
\n
$$
g_{ij}^{(4)} = \frac{1}{4}g_{ik}^{(2)}g^{(0)kl}g_{lj}^{(2)},
$$

$$
g_{ij}^{(4)} = \frac{1}{4} g_{ik}^{(2)} g^{(0)kl} g_{lj}^{(2)},
$$

$$
\nabla^{(0)i} g_{ij}^{(2)} = \nabla_j^{(0)} g^{(2)i},
$$

$$
g^{(2)i} = -\frac{1}{2} R[g^{(0)}].
$$

York tensor

\nBoundary CFT

\n
$$
\langle T_{ij} \rangle = -\frac{1}{8\pi G} (K_{ij} - Kh_{ij} + h_{ij})
$$

\n
$$
\langle T_{ij} \rangle = \frac{1}{8\pi G} \left(g_{ij}^{(2)} - g^{(0)kl} g_{kl}^{(2)} g_{ij}^{(0)} \right)
$$

\nConservation equation

\n& Weyl anomaly equation:

\n
$$
\nabla^i \langle T_{ij} \rangle = 0,
$$

Conservation equation

$$
\nabla^i \langle T_{ij} \rangle = 0,
$$

$$
\langle T_i^i \rangle = \frac{1}{16\pi G} R[g^{(0)}].
$$

Holographic correlators $ds^2 = \frac{dz^2 + ds_X^2}{z^2} + \cdots$ **Higher genus Rienmman surface:** $ds_X^2 = e^{2\phi(z,\bar{z})} dz d\bar{z}$ $R = -1$ Single valued = Automorphic form $8\partial_z \partial_{\bar{z}} \phi = e^{2\phi}$
 $\phi(\gamma(z), \overline{\gamma(z)}) = \phi(z, \bar{z}) - \frac{1}{2} \ln |\gamma'(z)|^2, \quad \forall \gamma \in \Gamma_g$

Quasi-periodic boundary conditions

Holographic correlations
$$
ds^{2} = \frac{d\xi^{2}}{4\xi^{2}} + \frac{dy d\bar{y}}{\xi},
$$

$$
ds^{2} = e^{2\phi(z,\bar{z})} dz d\bar{z} \implies \left[\frac{\rho e^{-2\phi}}{(1 + \rho e^{-2\phi}|\partial_{z}\phi|^{2})^{2}}, \quad y = z + \partial_{z}\phi \frac{\rho e^{-2\phi}}{1 + \rho e^{-2\phi}|\partial_{w}\phi|^{2}}
$$

$$
\left(ds^{2} = \frac{d\rho^{2}}{4\rho^{2}} + \frac{1}{\rho}e^{2\phi} dz d\bar{z} + \mathcal{T}^{\phi} dz^{2} + \mathcal{T}^{\phi} dz^{2} + 2\mathcal{R} dz d\bar{z} + \rho e^{-2\phi} (\mathcal{T}^{\phi} dz + \mathcal{R} d\bar{z})(\bar{\mathcal{T}}^{\phi} d\bar{z} + \mathcal{R} dz)\right]
$$

$$
\mathcal{T}^{\phi} = \partial_{z}^{2}\phi - (\partial_{z}\phi)^{2}, \quad \mathcal{R} = \partial_{z}\partial_{\bar{z}}\phi
$$

$$
\left(\frac{\langle T_{z z} \rangle}{\langle T_{z z} \rangle} = \frac{1}{8\pi G} \mathcal{T}^{\phi} = \frac{1}{8\pi G} (\partial_{z}^{2}\phi - (\partial_{z}\phi)^{2}),
$$

$$
\left(\frac{\langle T_{z z} \rangle}{\langle T_{z z} \rangle} = \frac{1}{8\pi G} \overline{\mathcal{T}}^{\phi} = \frac{1}{8\pi G} (\partial_{z}^{2}\phi - (\partial_{z}\phi)^{2}),\right]
$$

$$
g^{(4)} = e^{-2\phi} \left(\frac{\mathcal{T}^{\phi} \mathcal{R}}{\frac{1}{2} (\mathcal{T}^{\phi} \mathcal{T}^{\phi} + \mathcal{R}^{2})} - \frac{1}{\mathcal{R} \mathcal{T}^{\phi}}\right)
$$

Metric variation and functional of higher point correlation

$$
\delta g_{ij}^{(0)} dx^{i} dx^{j} = \epsilon \chi_{ij} dx^{i} dx^{j}
$$
\n
$$
\delta \langle T_{ij} \rangle = \sum_{i=1}^{n} \epsilon^{n} \langle T_{ij} \rangle^{[n]}
$$
\n
$$
\nabla^{i} \langle T_{ij} \rangle = 0,
$$
\n
$$
\langle T_{i}^{i} \rangle = \frac{1}{16\pi G} R[g^{(0)}].
$$
\n
$$
\delta g_{ij}^{(0)} dz^{i} dx^{j} = \sum_{\alpha=1}^{3g-3} \left(\phi_{\alpha z} \delta \bar{\tau}_{\alpha} (dz)^{2} + \overline{\phi_{\alpha z}} \delta \bar{\tau}_{\alpha} (d\bar{z})^{2} \right).
$$
\nFirst order variation\n
$$
\phi_{z} \frac{\delta \langle T_{zz} \rangle^{[1]}(z)}{\delta \chi_{wv}(w)} + \frac{1}{16\pi G} e^{-2\phi(z)} (12(\partial_{z}\phi)^{2} \partial_{z} + 12\partial_{z}\phi \partial_{z}^{2} \phi - 8(\partial_{z}\phi)^{3} - 6\partial_{z}^{2}\phi \partial_{z} - 6\partial_{z}\phi \partial_{z}^{2}\right) \quad \text{(}T_{zz}(z)T_{ww}(w))}
$$
\n
$$
- 2\partial_{z}^{3}\phi + \partial_{z}^{3} \delta^{(2)}(z - w) = 0.
$$

Derivation of two point correlation function

$$
\begin{cases}\n\partial_z \frac{\delta \langle T_{zz} \rangle^{[1]}(z)}{\delta \chi_{\bar{w}\bar{w}}(w)} + \frac{1}{16\pi G} e^{-2\phi(z)} \Big(12 (\partial_z \phi)^2 \partial_z + 12 \partial_z \phi \partial_z^2 \phi - 8 (\partial_z \phi)^3 - 6 \partial_z^2 \phi \partial_z - 6 \partial_z \phi \partial_z^2 - 2 \partial_z^3 \phi + \partial_z^3 \Big) \delta^{(2)}(z-w) = 0.\n\end{cases}
$$

Green function:
$$
\frac{1}{\pi} \partial_{\bar{z}} G^z_{ww}(z,\bar{z};w,\bar{w}) = \delta^{(2)}(z-w) - p_2(z,\bar{z};w) \qquad p_2(z,\bar{z};w) = \sum_{\alpha=1}^{3g-3} \mu_{\alpha \bar{z}}^z(z,\bar{z}) \phi_{\alpha ww}(w)
$$

 μ : Beltrami differential ϕ : holomorphic quadratic differential

$$
\frac{\delta \left\langle T_{zz} \right\rangle^{[1]} (z)}{\delta \chi_{\bar{w}\bar{w}}(w)} = \int_{\mathcal{D}} d^2 z_0 \, \delta^{(2)}(z_0 - z) \frac{\delta \left\langle T_{zz} \right\rangle^{[1]} (z_0)}{\delta \chi_{\bar{w}\bar{w}}(w)}
$$
\n
$$
= \int_{\mathcal{D}} d^2 z_0 \, \left(\frac{1}{\pi} \partial_{\bar{z}_0} G^{z_0}_{zz}(z_0, \bar{z}_0; z, \bar{z}) + p_2(z_0, \bar{z}_0; z) \right) \frac{\delta \left\langle T_{zz} \right\rangle^{[1]} (z_0)}{\delta \chi_{\bar{w}\bar{w}}(w)}
$$

Derivation of two point correlation function

 \equiv

 $=$

Derivation of two point correlation function:
\nGreen function:
$$
\frac{1}{\pi} \partial_2 G^*_{ww}(z, \bar{z}; w, w) = \delta^{(2)}(z-w) - p_2(z, \bar{z}; w)
$$

\n $\frac{\delta(T_{x\bar{z}})^{[1]}(z)}{\delta \chi_{xx}(w)} = \int_D d^2 z_0 \frac{\delta^{(2)}(z_0 - z) \frac{\delta(T_{x\bar{z}})^{[1]}(z_0)}{\delta \chi_{xx}(w)}}{\delta \chi_{xx}(w)}$
\n $\frac{\delta(T_{x\bar{z}})^{[1]}(z)}{\delta \chi_{xx}(w)}$
\n $\frac{\delta(T_{x\bar{z}})^{[1]}(z)}{\delta \chi_{xx}(w)}$
\n $\frac{\delta(T_{x\bar{z}})^{[1]}(z)}{\delta \chi_{xx}(w)}$
\n $\frac{\delta(T_{x\bar{z}})^{[1]}(z_0)}{\delta \chi_{xx}(w)}$
\n $\frac{\delta(T_{x\bar{z}})^{[1]}(z_$

Holographic two-point correlation function

$$
\langle T_{zz}(z)T_{ww}(w)\rangle = -\frac{1}{16\pi^2 G} \partial_w^3 G_{zz}^w(w,\bar{w};z,\bar{z}) + \sum_{\alpha=1}^{3g-3} \phi_{\alpha zz} \frac{\partial}{\partial \tau_{\alpha}} \langle T_{ww} \rangle ,
$$

$$
\langle T_{zz}(z)T_{\bar{w}\bar{w}}(w)\rangle = \frac{1}{16\pi G} (4\partial_w \phi \partial_{\bar{w}} \phi - \partial_w \phi \partial_{\bar{w}} + 2\partial_{\bar{w}} \phi \partial_w - 8\partial_w \partial_{\bar{w}} \phi - \partial_w \partial_{\bar{w}}) \delta^{(2)}(w-z)
$$

$$
+ \frac{3}{8\pi G} \partial_w \partial_{\bar{w}} \phi p_2(w,\bar{w};z) + \sum_{\alpha=1}^{3g-3} \phi_{\alpha zz} \frac{\partial}{\partial \tau_{\alpha}} \langle T_{\bar{w}\bar{w}} \rangle ,
$$

$$
\langle T_{z\bar{z}}(z)T_{ww}(w)\rangle = \frac{1}{16\pi G} (2\partial_z^2 \phi - 2(\partial_z \phi)^2 - 2\partial_z \phi \partial_z + \partial_z^2) \delta^{(2)}(z-w),
$$

$$
\langle T_{z\bar{z}}(z)T_{w\bar{w}}(w)\rangle = \frac{1}{16\pi G} (2\partial_z \phi \partial_{\bar{z}} + 2\partial_{\bar{z}} \phi \partial_z - 4\partial_z \phi \partial_{\bar{z}} \phi - \partial_z \partial_{\bar{z}}) \delta^{(2)}(z-w).
$$

Holographic recurrence relations n-point correlation function

$$
\langle T_{zz}(z)T_{\bar{z}\bar{z}}(z_1)\cdots T_{\bar{z}\bar{z}}(z_n)\rangle = \frac{1}{\pi}\sum_{i=1}^n G_{zz}^{z_i}(z_i,\bar{z}_i;z,\bar{z})\partial_{\bar{z}_i}\langle T_{\bar{z}\bar{z}}(z_1)\cdots T_{\bar{z}\bar{z}}(z_n)\rangle
$$

$$
-\frac{2}{(n-2)!\pi}\sum_{\sigma\in S_n} G_{zz}^{z_{\sigma(1)}}(z_{\sigma(1)},\bar{z}_{\sigma(1)};z,\bar{z})\Big(2\langle T_{\bar{z}\bar{z}}(z_{\sigma(1)})\cdots T_{\bar{z}\bar{z}}(z_{\sigma(n-1)})\rangle \partial_{\bar{z}_{\sigma(1)}}\Big)
$$

$$
+\partial_{\bar{z}_{\sigma(1)}}\langle T_{\bar{z}\bar{z}}(z_{\sigma(1)})\cdots T_{\bar{z}\bar{z}}(z_{\sigma(n-1)})\rangle + 4\langle T_{\bar{z}\bar{z}}(z_{\sigma(1)})\cdots T_{\bar{z}\bar{z}}(z_{\sigma(n-1)})\rangle \partial_{\bar{z}_{\sigma(1)}}\phi\Big)\delta^{(2)}(z_{\sigma(1)}-z_{\sigma(n)})
$$

$$
+\sum_{\alpha=1}^{3g-3}\phi_{\alpha z z}(z)\frac{\partial}{\partial \tau_{\alpha}}\langle T_{\bar{z}\bar{z}}(z_1)\cdots T_{\bar{z}\bar{z}}(z_n)\rangle,
$$
(56)
Consistent with VOA construction: Zhu relation!!
Yongchange Zhu: Journal of the American Mathematical Society
Vol. 9, No. 1 (Jan., 1996), pp. 237-302

Consistent with VOA construction: Zhu relation!!

Vol. 9, No. 1 (Jan., 1996), pp. 237-302

Higher genus surface on Cutoff surface: AdS3/CFT2:Without X **Cutoff surface:**
 hout X

SH, Yun-Ze Li, Yunfei Xie, 2406.04042

Trbard relation
\n
$$
Z_G[g_{ij}^{(c)}] = \left\langle \exp\left[-\frac{1}{2}\int d^2z \sqrt{g^{(c)}g^{(c)ij}}T_{ij}\right] \right\rangle_{\text{EPT}}.
$$
\n**Hard radial cutoff**
\n
$$
\left(\frac{\text{cutoff-AdS}_3/T\bar{T}\text{-deformed CF}\,\overline{N}\|\}}{\text{AdS3}}\right)_{\text{A}} = -\frac{1}{4}\int d^2z \det[T_\lambda]
$$
\n**Brown-York Energy**
\n
$$
\frac{\sqrt{r_{ij}}}{\sqrt{r_{ij}}}\Big|_{\rho_c} = -\frac{1}{8\pi G}(K_{ij}^{(c)} - K^{(c)}h_{ij}^{(c)} + h_{ij}^{(c)})
$$
\n**Brown-York Energy**
\n**Homentum tensor**
\n
$$
\frac{\sqrt{r_{ij}}}{\sqrt{r_{ij}}}\Big|_{\rho_c} = 0,
$$
\n
$$
\frac{1}{\sqrt{r_{ij}}}\int d^{(c)} - 8\pi G\rho_{\text{c}}\text{det}[T]_{\rho_c}.
$$
\n**Conserved equation,**
\n**Normally equation**
\n**Radial flow effect of the stress tensor within the same FG coordinate system**

Radial flow effect of the stress tensor within the same FG coordinate system

Variation of energy momentum tensor

 $g_{ij}(\rho, z, \bar{z}) dx^i dx^j = e^{2\omega_\rho(z, \bar{z})} dz d\bar{z}$

Choose Conformal gauge on the cutoff surface: Ensure the invariance of the line element
under the action of Schottky group $\Gamma_q \subset \text{PSL}(2,\mathbb{C})$ Ensure the invariance of the line element **momentum tensor**
Ensure the invariance of the line element
under the action of Schottky group $\Gamma_g \subset \mathrm{PSL}(2,\mathbb{C})$
 $\omega_\rho(\gamma_\rho(z), \overline{\gamma_\rho(z)}) = \omega_\rho(z, \bar{z}) - \frac{1}{2} \mathrm{ln} |\gamma'_\rho(z)|^2,$

$$
\omega_{\rho}(\gamma_{\rho}(z), \overline{\gamma_{\rho}(z)}) = \omega_{\rho}(z, \bar{z}) - \frac{1}{2}\ln|\gamma_{\rho}'(z)|^2,
$$

$$
\delta_{\rho}g_{ij} = (g_{ij}^{(2)} + 2\rho g_{ij}^{(4)})\delta\rho = 8\pi G(\langle T_{ij}\rangle_{\rho} - g^{kl}\langle T_{kl}\rangle_{\rho}g_{ij})\delta\rho.
$$
\n
$$
\delta g_{ij} = \delta_{\rho}g_{ij} + \mathcal{L}_{\epsilon}g_{ij} = 2\delta\omega_{\rho}g_{ij}.
$$
\n
$$
\delta_{\bar{z}}\epsilon_{\rho}^{z} = -8\pi G e^{-2\omega_{\rho}}\langle T_{\bar{z}\bar{z}}\rangle_{\rho}\delta\rho, \quad \partial_{z}\epsilon_{\rho}^{\bar{z}} = -8\pi G e^{-2\omega_{\rho}}\langle T_{z\bar{z}}\rangle_{\rho}\delta\rho,
$$
\n
$$
\delta\omega_{\rho} = \frac{1}{2}e^{-2\omega_{\rho}}[\partial_{z}(e^{2\omega_{\rho}}\epsilon_{\rho}^{z}) + \partial_{\bar{z}}(e^{2\omega_{\rho}}\epsilon_{\rho}^{\bar{z}}) - 16\pi G\langle T_{z\bar{z}}\rangle_{\rho}\delta\rho].
$$
\n
$$
\delta\langle T_{z\bar{z}}\rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{z}\epsilon^{z})\langle T_{z\bar{z}}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{z\bar{z}}\rangle_{\rho} = (\epsilon^{k}\partial_{k} + 2\partial_{z}\epsilon^{z})\langle T_{z\bar{z}}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{z\bar{z}}\rangle_{\rho} = (\epsilon^{k}\partial_{k} + \partial_{k}\epsilon^{k})\langle T_{z\bar{z}}\rangle_{\rho} - 2\pi G e^{2\omega_{\rho}} det[T]_{\rho}\delta\rho.
$$
\nKeep the conformal gau

uge during the radial flow

 $\alpha = 1, 2, ..., 3q - 3.$

 $S_{3:j} = S_{\rho} S_{ij} + \mathcal{L}_{\epsilon} S_{ij}$

One-Point function with deformation

Apply Green function & Single valued to guess

$$
\frac{\partial_z \epsilon_{\rho}^z = -8\pi G e^{-2\omega_{\rho}} \langle T_{\bar{z}z} \rangle_{\rho} \delta_{\rho}, \quad \partial_z \epsilon_{\rho}^z = -8\pi G e^{-2\omega_{\rho}} \langle T_{zz} \rangle_{\rho} \delta_{\rho}}{\epsilon_{\rho}^z = -8G \delta_{\rho} \int_{\mathcal{D}_{\rho}} e^{-2\omega_{\rho}(\mathbf{w}, \mathbf{w})} \langle T_{\bar{w}w} \rangle_{\rho} \left[G_{ww}^z + \sum_{\alpha=1}^{3g-3} f_{\alpha}^z \phi_{\alpha w w} \right]_{\Gamma_{\rho}} d^2 w}{\frac{1}{\pi} \partial_{\bar{z}} f_{\alpha}^z = \mu_{\alpha \bar{z}}^z, \quad \alpha = 1, 2, ..., 3g-3}
$$
\n
$$
\frac{\epsilon_{\rho}^z = -8G \delta_{\rho} \int_{\mathcal{D}_{\rho}} e^{-2\omega_{\rho}(\mathbf{w}, \mathbf{w})} \langle T_{ww} \rangle_{\rho} \left[G_{ww}^z + \sum_{\alpha=1}^{3g-3} f_{\alpha}^z \phi_{\alpha w w} \right]_{\Gamma_{\rho}} d^2 w}{\frac{1}{\pi} \partial_{\bar{z}} f_{\alpha}^z = \mu_{\alpha \bar{z}}^z, \quad \alpha = 1, 2, ..., 3g-3}
$$
\n**Modular flow equation with**\n
$$
\mathbf{P} \mathbf{H} \mathbf{u} = 8\pi G \int_{\mathcal{D}_{\rho}} e^{-2\omega_{\rho}(\mathbf{w}, \mathbf{w})} \langle T_{\bar{w}w} \rangle_{\rho} \phi_{\alpha w w} d^2 w, \quad \alpha = 1, 2, ..., 3g-3.
$$
\n**Modular flow equation with**\n
$$
\mathbf{P} \mathbf{u} = 8 \pi G \int_{\delta \langle T_{zz} \rangle_{\rho}} e^{-2\omega_{\rho}(\mathbf{w}, \mathbf{w})} \langle T_{\bar{w}w} \rangle_{\rho} \phi_{\alpha w w} d^2 w, \quad \alpha = 1, 2, ..., 3g-3.
$$
\n**Modular flow equation with**\n
$$
\frac{\delta_{\langle \sqrt{z}, \mathbf{w} \rangle_{\rho}} = e^{-2\omega_{\rho
$$

One-Point function with deformation(Perturbative)

$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho}, \qquad \delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = 2\pi G e^{2\omega_{\rho}} \det[T]_{\rho}\delta\rho.
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k\partial_k + 2\partial_z e^z)\langle T_{zz}\rangle_{\rho},
$$
\n
$$
\delta\langle T_{zz}\rangle_{\rho} = (e^k
$$

k-Point functions up to first order

To obtain the k-Point function:

k-Point functions up to first order deformation

$$
\langle T_{z\bar{z}}\rangle_{1}^{[k]} = 8\pi G e^{-2\phi} (\langle T_{\bar{z}\bar{z}}\rangle_{0}^{[0]} \langle T_{zz}\rangle_{0}^{[k]} + \langle T_{zz}\rangle_{0}^{[0]} \langle T_{\bar{z}\bar{z}}\rangle_{0}^{[k]}) + \mathcal{F}_{z\bar{z}1}^{[k]},
$$

\n
$$
\partial_{\bar{z}} \langle T_{zz}\rangle_{1}^{[k]} = -8\pi G e^{2\phi} \partial_{z} [e^{-4\phi} (\langle T_{\bar{z}\bar{z}}\rangle_{0}^{[0]} \langle T_{zz}\rangle_{0}^{[k]} + \langle T_{zz}\rangle_{0}^{[0]} \langle T_{\bar{z}\bar{z}}\rangle_{0}^{[k]})]
$$

\n
$$
+ \mathcal{F}_{z\bar{z}1}^{[k]} - e^{2\phi} \partial_{z} [e^{-2\phi} \mathcal{F}_{z\bar{z}1}^{[k]}],
$$

\n
$$
\partial_{z} \langle T_{\bar{z}\bar{z}}\rangle_{1}^{[k]} = -8\pi G e^{2\phi} \partial_{\bar{z}} [e^{-4\phi} (\langle T_{\bar{z}\bar{z}}\rangle_{0}^{[0]} \langle T_{zz}\rangle_{0}^{[k]} + \langle T_{zz}\rangle_{0}^{[0]} \langle T_{\bar{z}\bar{z}}\rangle_{0}^{[k]})]
$$

\n
$$
+ \mathcal{F}_{\bar{z}z1}^{[k]} - e^{2\phi} \partial_{\bar{z}} [e^{-2\phi} \mathcal{F}_{z\bar{z}1}^{[k]}].
$$

Summary

- Proposed prescription to study Holographic torus/higher genus stress tensor correlator, which are consistent with CFTs data. **The Control of Server Control Control**
- Offer a precise a check (Proof) AdS3/CFT2.
-
- deformation first-order.
- \Box Other topologies (X: cross cap), Mixing operators, etc.

Thanks