Black holes from Supercharge Cohomology

张其明 (Chi-Ming Chang)

清华大学

第五届全国场论与弦论学术研讨会 中国科学技术大学, 合肥, 安徽

Talk based on collaboration with

[2209.06728,](https://arxiv.org/abs/2209.06728) [2306.04673,](https://arxiv.org/abs/2306.04673) [2310.20086,](https://arxiv.org/abs/2310.20086) [2402.10129](https://arxiv.org/abs/2402.10129)

See also:

- Choi, Choi, Kim, Lee, Lee, Lee, Park [CCKLLLP] [2209.12696,](https://arxiv.org/abs/2209.12696) [2304.10155,](https://arxiv.org/abs/2304.10155) [2312.16443](https://arxiv.org/abs/2312.16443)
- Budzik, Murali, Vieira [BMV] [2306.04693](https://arxiv.org/abs/2306.04693)

• Li Feng, Ying-Hsuan Lin, Yi-Xiao Tao, Jingxiang Wu, Xi Yin [1305.6314](https://arxiv.org/abs/1305.6314),

• Budzik, Gaiotto, Kulp, Williams, Wu, Yu [BGKWWY] [2306.01039,](https://arxiv.org/abs/2306.01039) and

Motivation and Backgrounds

- CFT in the **AdS/CFT correspondence**.
- Sitter space (AdS) and conformal field theory (CFT) on the boundary.
- with $\mathrm{SU}(N)$ gauge group.
- state/operator in CFT: BPS state \longleftrightarrow BPS operators

• We would like to understand black holes and their microstates using the dual

• AdS/CFT: A non-perturbative duality between quantum gravity in anti-de

• Main focus in this talk: Large BPS (supersymmetric) black holes in AdS_5 [[Gutowski-Reall '04](https://arxiv.org/abs/hep-th/0401129), [Chong-Cvetic-Lu-Pope '05](https://arxiv.org/abs/hep-th/0506029), ...]. Their microstates are dual to BPS (supersymmetric) states in 4d maximal sper-Yang-Mills theory ($\mathcal{N}=4$ SYM)

1 to 1

Motivation

were reproduced by the superconformal index (a state counting with N^2 growth of the BPS black holes entropy $S = A/4G_N = \log (\# \, \mathrm{states})$

- The N^2 growth of the BPS black holes entropy (−1)^r). <u>[\[\(Cabo-Bizet\)-Cassani-Martelli-Murthy,](https://arxiv.org/abs/1810.11442) [Choi-Kim-Kim-Nahmgoong,](https://arxiv.org/abs/1810.12067) [Benini-Milan](https://arxiv.org/abs/1812.09613)</u> '18] *F*
- Given a non-perturbatively complete framework of AdS/CFT, we should be able to answer more refined questions:
	- What are the wave functions and dynamics of the microstates?
	- How do we distinguish a weakly bound state of N^2 gravitons from typical black hole microstates?
-

• Supercharge cohomology reveals much richer information beyond SCI.

Motivation and Main Results

- New information beyond the superconformal index (SCI):
	- Complete BPS spectrum (It counts BPS states without $(-1)^{F}$.) *F*
	- Information on the wave functions of BPS states (modulo exact terms in cohomology) and how they are related in theories at different ranks $N.$
- (One of the) main results: A classification of supercharge cohomology and their conjectural bulk duals [[CC-Lin '24\]](https://arxiv.org/abs/2402.10129):
	- Monotone (graviton) cohomology \longleftrightarrow smooth horizonless geometry
	-
	- Fortuitous (BH) cohomology \longleftrightarrow typical black hole microstate \longleftrightarrow

Outline

- Introduction to supercharge cohomology
- A classification: monotone (graviton) and fortuitous (black holes)
- Bulk duals of supercharge cohomologies
- Preliminary results on D1D5 CFT

- Supercharge cohomology can be defined very generally. It only needs a supercharge Q that is nilpotent $Q^2=0$. The main focus in this talk: Q that is nilpotent $Q^2=0$
	- 4d maximal SYM with SU(N) gauge group
- Pick a pair $Q \& S = Q^{\dagger}$ out of 16 Q and 16 S . BPS bound: BPS states saturate the bound. (spins J_i , R-charges q_i) $\Delta = 2\{Q, Q^\dagger\}$ } = $E - (J_1 + J_2 + q_1 + q_2 + q_3) \ge 0$

• Nilpotency $Q^2 = 0$.

-cohomology =

• Hodge theory argument:

(Recall: de Rham cohomology classes \longleftrightarrow harmonic forms) 1 to 1

Q -cohomology = $\frac{\{O \mid QO = 0\}}{Q \cap Q}$ ${O|O = QO'}$

-cohomology classes \longleftrightarrow BPS states ($\Delta = 2\{Q,Q^\dagger\} = 0$) Q -cohomology classes $\xleftarrow{\hspace{0.1cm}}$ BPS states ($\Delta=2\{{\cal Q},{\cal Q}^\dagger\}=0$

1 to 1

- The non-renormalization conjecture: Q -cohomology is independent of the Yang-Mills coupling $g_{\rm YM}$ as long as $g_{\rm YM}\neq 0.$
	- Evidence:
	- 1. Matching BPS spectrum at infinite N (see later)
		- 2. Consistency with S-duality of N=4 SYM [**CC**-Choi-Dong-Yan WIP]
- We will compute Q -cohomology at weak coupling $g_{\text{YM}} \ll 1$.

Weak-Coupling Setup

- At weak couplings, local operators could be written in terms of multitraces of fundamental fields with covariant derivatives (both $N\times N$ matrices) and modulo trace relations.
- Trace relations play an important role in the study of supercharge cohomology. A simple example of trace relations is e.g. for any 2×2 matrix X, $2 \text{Tr} X^3 = 3 \text{Tr} X \text{Tr} X^2 - (\text{Tr} X)^3$. 2×2 matrix *X*, $2 \text{Tr} X^3 = 3 \text{Tr} X \text{Tr} X^2 - (\text{Tr} X)^3$
- A property of trace relations we will use later: - I_N = (space of trace relations for $N \times N$ matrices) . We have $\ I_{N+1} \subsetneq I_N$

Weak-Coupling Setup

• At weak coupling, it suffices to work with fundamental fields that are BPS in free theory. They can be assembled into a superfield $\Psi(z^{\alpha},\theta_i)$ on superspace $\mathbb{C}^{\mathbb{Z} | \mathbb{S}}$ with two bosonic coordinates z^α ($\alpha = \pm$) and three fermionic coordinates θ_i ($i=1,2,3$). <u>[CC-Yin '13</u>] Ψ(*z^α* θ ^{*j*} θ </sup>*j* $)$ $\mathbb{C}^{2|3}$ with two bosonic coordinates z^{α} ($\alpha = \pm$

$$
Q(\Psi) = \Psi^2 \quad \text{and} \quad \text{g}
$$

$$
\Psi(z^{\alpha},\theta_i) \sim \lambda_{\alpha} z^{\alpha} + \phi^i \theta_i + \epsilon^{ijk} \psi_i \theta_j \theta_k + F_{++} \theta^3 + \cdots,
$$

• The Q action takes a very concise form

 gauginos *λα* complex scalars complex fermions F_{++} self-dual field strength covariant derivatives (⋯) $\phi^i = (X, Y, Z)$ *ψi*

 $Q(AB) = Q(A)B \pm AQ(B)$

A Classification of Cohomologies: Monotone and Fortuitous

A Classification of Cohomologies

- Some definitions/notations:
	- \mathscr{H} : the space of formal multi-traces (without imposing trace relations) $\widetilde{\mathscr{H}}$ ℋ
	- \mathscr{H}_{N} : space of local operators in the $\mathrm{SU}(N)$ theory
	- I_N : space of trace relations at rank N
- A short exact sequence (SES): ($\mathscr{H}_{N} \simeq \mathscr{H} / I_{N}$)

$$
\mathscr{U}_N \simeq \widetilde{\mathscr{H}}/I_N
$$

$$
0 \to I_N \xrightarrow{i}
$$

 i : inclusion map, τ : quotient map that imposes the trace relations

$$
\begin{array}{c}\n\mathbf{i} \\
\rightarrow \mathcal{H} \rightarrow \mathcal{H}_N \rightarrow 0\n\end{array}
$$

A Classification of Cohomologies

- Taking Q -cohomology, the SES induces a long exact sequence (LES): $\cdots \rightarrow H_Q^n(I_N) \xrightarrow{\iota} H_Q^n(I_N)$ $\widetilde{\mathscr{H}}$ $\lim(i) = \ker(\pi)$
	- n : a cohomological grading (the number of the superfield Ψ)
- A classification of cohomologies *[\[CC-Lin '24](https://arxiv.org/abs/2402.10129)]*:
	- Monotone (graviton) cohomology = $\operatorname{im} \pi \simeq H_{\mathcal{Q}}^n$ *Q*($\widetilde{\mathscr{H}}$ ℋ)/im *i*
	- Fortuitous (black hole) cohomology = $\operatorname{im} \delta \simeq H_{\mathcal{Q}}^n$ $\frac{m}{Q}(\mathscr{H}_{N})/ \mathrm{im}~ \pi$

$$
), \quad \text{im}\left(\pi\right) = \ker\left(\delta\right)
$$

$$
\xrightarrow{i} H_Q^n(\overline{\mathcal{H}}) \xrightarrow{\pi} H_Q^n(\mathcal{H}_N) \xrightarrow{\delta} H_Q^{n+1}(I_N) \to \cdots
$$

Large *N* sequences of operators

- Let O represent a Q -cohomology class, and write O non-uniquely as a multitrace $\tilde{O}.$
- Monotone (graviton) cohomology:
	- $QO = 0$ w/o using trace relations ˜ $= 0$
	- Admit infinite N limits with fixed \ddot{O} ˜
- Fortuitous (black hole) cohomology:
- *QO* ˜ = (a nontrivial trace relation)
	- No infinite N limit (with fixed \ddot{O}) ˜

Monotones in $N=4$ SYM

• Consider one-forms on the superspace $\mathbb{C}^{2|3}$: basis dz^{α} , $d\theta_{i}$

 $d\Psi \equiv dz$.
ີ່

Supercharge action: *Qd*Ψ = [Ψ, *d*Ψ]

- The multitrace $\text{Tr} [(d\Psi)^{n_1}] \cdots \text{Tr} [(d\Psi)^{n_L}]$ is Q -closed and not Q -exact without using trace relations.
- All monotone Q -cohomologies could be obtained by imposing trace relations at $\textsf{finite}\ N$ on $\text{Tr}\, [(d\Psi)^{n_1}] \cdots \text{Tr}\, [(d\Psi)^{n_L}]$. <u>[[CC-Yin '13](https://arxiv.org/abs/1305.6314)] [[BGKWWY '23](https://arxiv.org/abs/2306.01039)]</u>
- All BPS op's (1/16 BPS) ⊃ monotone op's ⊃ 1/8 BPS op's [\[CC-Lin-Wu '23](https://arxiv.org/pdf/2310.20086)]
- $\dot{a} \partial_{z} \dot{a} \Psi + d\theta_{i} \partial_{\theta_{i}} \Psi$
	-

Fortuitous in $N = 4$ SYM

- By a brute force comprehensive search in the SU(2) theory up to high spin and R-charges, we found the first fortuitous Q-cohomology. [[CC-Lin '22](https://arxiv.org/abs/2209.06728)]
	- Very hard to find (1 in 10^5 cohomology classes) (Doesn't mean fortuitous are few!) - Explicit representative [\[Choi-Kim-Lee-Park '22](https://arxiv.org/abs/2209.12696)] : $\partial^{i_1\cdots i_j}$ $p_n \equiv \partial_{\theta_i}$ $\cdots \partial_{\theta_{i_n}}$
	-

 $O = \epsilon_{i_1 i_2 i_3} \epsilon_{j_1 j_2 j_3} \epsilon_{l_1 l_2 l_3} \epsilon_{m_1 m_2 m_3}$

- Working in the BMN sector (only ∂_{θ_i} and no $\partial_{z^{\dot\alpha}}$), [CCKLLLP '<u>22</u>, '<u>23</u>] performed a more efficient search and achieved the following results: *α*
	- SU(2) and SU(3): multiple infinite towers of fortuitous cohomologies
	- SU(4): leading fortuitous cohomology

*ϵk*1*^l* ¹*m*1Tr(∂*ⁱ* ¹Ψ∂*k*2*k*3Ψ)Tr(∂*^j* ¹Ψ∂*^l* 2*l* ³Ψ)Tr(∂*ⁱ* 2*i* ³Ψ∂*^j* 2 *j* ³Ψ∂*m*2*m*3Ψ)

Bulk Duals of *Q*-cohomologies

Bulk Duals of Monotones

- While supercharge cohomology is independent of the 't Hooft coupling , we will focus on large λ and look for bulk duals in supergravity. $\lambda = g_{\rm Y}^2$ $\frac{2}{YM}N$, we will focus on large λ
- Conjecture: Monotone Q -cohomologies at infinite N are dual to BPS multi-particles in $AdS_5 \times S^5$. $AdS_5 \times S^5$
	- Evidence: The counting of the multitraces $\text{Tr} \left[(d\Psi)^{n_1} \right] \cdots \text{Tr} \left[(d\Psi)^{n_L} \right]$ matches with the BPS multi-graviton partition function. **[\[CC-Yin '13](https://arxiv.org/abs/1305.6314)]**

Bulk Duals of Monotones

- Conjecture $[CC-Lin '24]$: Monotone Q -cohomologies at finite N are dual to quantizations of smooth horizonless solutions in supergravity.
	- An intuitive argument: Consider $G_{N} \rightarrow 0$ ($N \rightarrow \infty$) limit with fixed spins, charges, and energy of a smooth horizonless solution. It is expected to remain smooth horizonless and become perturbative particles in AdS.
	- Evidence: BPS operators in the $SU(2|3)$ sector (1/8 BPS) are dual to (generalizations) of Lin-Lunin-Maldacena (LLM) geometries. [\[LLM '04,](https://arxiv.org/abs/hep-th/0409174) ...] Furthermore, focusing on 1/2-BPS operators, the partition function can be reproduced by quantizing the Lin-Lunin-Maldacena (LLM) geometries. [\[Grant-Maoz-Marsano-Papadodimas-Rychkov '05,](https://arxiv.org/abs/hep-th/0505079) [CC-Lin '24\]](https://arxiv.org/abs/2402.10129)

Half-BPS operators

- Half-BPS operators $\,\mathrm{Tr}\, X^{m_1} {\cdots} \mathrm{Tr}\, X^{m_L}$, complex scalar $X = \phi^1$
	- trace relations: $\mathrm{Tr}\, X^{N+m} = (\text{multitraces})$ one for each $m>0$
	- $\mathcal{Q}X=0$ \Rightarrow all half-BPS operators are monotone
	- Partition function: $Z_{\text{half-BPS}} = \bigg($

• Classically, half-BPS operators are dual to the LLM geometries, which are

smooth horizonless half-BPS geometries.

Tr X^m trace relations

LLM Geometries

• The space of LLM geometries is $\mathscr{M} = \{u(x) \in \mathbb{Z}_2 \,|\, x \in \mathbb{R}^2\}$. [[LLM '04](https://arxiv.org/abs/hep-th/0409174)] $\mathcal{M} = \{u(x) \in \mathbb{Z}_2 \mid x \in \mathbb{R}^2\}$ }

Total black are

ADM mass: $H =$

• $\mathcal M$ is equipped with a symplectic form determined by IIB supergravity.

$$
\text{a:} \quad A = 2 \int_{S^5} F_5 = 2\pi \kappa \sqrt{\hbar_{10}} N
$$

$$
V = \frac{1}{4\pi\kappa^2} \int (x_1^2 + x_2^2)u(x)dx - \frac{1}{8\pi^2\kappa^2}A^2
$$

• LLM Geometries can be quantized by "promoting the symplectic form to a

- commutator".
- *[[GMMPR '05\]](https://arxiv.org/abs/hep-th/0505079)* computed the symplectic form with the small fluctuation function in the infinite N limit.
- We are not satisfied with this.

approximation, and the quantization recovered the half-BPS partition

• The exact Poisson bracket can be obtained by a consistency condition [Bychkov '05]: The Hamiltonian dynamics on the classical moduli space must

from BPS condition $H = q_1$

• Since we know H , we could use the consistency condition to find $\{\cdot\,,\cdot\,\}.$

-
- agree with the symmetries of the system. In our case, we have

$$
\frac{du(x,t)}{dt} = \{H, u(x,t)\} \quad \Leftrightarrow \quad \frac{du(x,t)}{dt} = \frac{du(x,t)}{d\phi}
$$

• Let us quantize the LLM geometries without any approximation. *[\[CC-Lin '24](https://arxiv.org/abs/2402.10129)]*

- "promoting the symplectic form to a commutator" means finding a $h_{10} \rightarrow 0.$
- Free fermions: $\{\psi^{\dagger}(x), \psi(y)\} = \hbar^{-1}\delta(x-y),$

• Exact Poisson bracket:
$$
A[u] = \int a(x)u(x)d^2x
$$
, similar for $B[u]$

quantum system whose commutator reduces to the Poisson bracket as

$$
\{A[u], B[u]\} = 2\pi\kappa^2 \int \left(\frac{\partial a}{\partial x_1} \frac{\partial b}{\partial x_2} - \frac{\partial b}{\partial x_1} \frac{\partial a}{\partial x_2}\right) u(x) d^2x
$$

$$
\hbar^{-1}\delta(x-y), \quad u(x) = \hbar e^{\frac{i}{\hbar}xp}\psi^{\dagger}(x)\psi(p)
$$

$$
\hbar = \kappa \sqrt{\hbar_{10}}
$$

• Generalization: quantization of other BPS geometries [WIP].

$$
\psi(x) = \hbar^{-\frac{1}{2}} \sum_{n=0}^{\infty} c_n \Psi_n(x) , \quad A = 2\pi \hbar \sum_{n=0}^{\infty} c_n^{\dagger} c_n = 2\pi \hbar N, \quad H = \sum_{n=0}^{\infty} \left(n + \frac{1}{2} \right) c_n^{\dagger} c_n - \frac{N^2}{2}
$$

Partition function: $Z = \text{Tr } e^{-\beta H} =$

- Reproduce the finite N half-BPS partition function!

Bulk Duals of Fortuitous?

- There are exponentially more fortuitous Q -cohomologies than monotone ones.
	- A typical black hole microstate is fortuitous.
- A bound on the number of monotone Q -cohomologies: • The growth of the total number of all BPS states can be estimated by the trace relations Entropy of gas of free particles $\sim E^\frac{9}{10}$ BH energy $E \sim N^2$ # monotones at infinite *N* # BPS multi $\left| \frac{1}{4} \times \frac{1}{4}$ monotones $\left| \frac{1}{4} \times \frac{1}{4} \right|$ = $\left| \frac{1}{4} \times \frac{1}{4}$ all multi $\left| \frac{1}{4} \times \frac{1}{4} \right|$ $\left| \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \right|$ $\frac{10}{10}$ ∼ e^N <u>9</u> 5

superconformal index [\[CCMM,](https://arxiv.org/abs/1810.11442) [CKKN](https://arxiv.org/abs/1810.12067), [BM](https://arxiv.org/abs/1812.09613) '18].

(# monotones) + (# fortuitous) = (# all BPS)

 $∼ e^{N^2}$

What is a typical black hole microstate?

• A black hole is a mixed state. A fortuitous BPS state is dual to a single black hole microstate, which is a typical state among the pure states that

• From the property of fortuitous BPS states, we know that a typical BPS black hole microstate should become non-BPS as $G_{\!N} \rightarrow 0.$ It is hard to imagine any smooth horizonless BPS geometry that could exhibit this property. Hence, the bulk dual of fortuitous is likely to involve strings and

- constitute the mixed state.
- branes on top of supergravity backgrounds.
- describes black hole microstates as D-branes at **.** *λ* ≪ 1

• This proposal is different from the standard Strominger-Vafa paradigm that

Preliminary results on D1D5 CFT

D1D5 CFT

- D1D5 CFTs have a conformal manifold with an orbifold point as $\mathrm{Sym}^N\mathscr{M}$ with $\mathscr{M}=T^4,~K3.$ $\mathcal{M} = T^4$, K3
- Twisted sectors of $\mathrm{Sym}^\mathcal{N} \mathscr{M}$ are labeled by the S_N conjugacy classes $(1)^{N_1}(2)^{N_2}$ … $(m)^{N_m}$. Each twisted sector (n) is given by the S_N invariant Fock space generated by oscillators (magnons) of $\mathcal M$. $\text{Sym}^N \mathcal{M}$ are labeled by the S_N

 (n)

$$
\leftrightarrow \quad \text{Tr}\left(\cdots\right)
$$

 $oscillators \leftrightarrow letters$

Q-action in D1D5 CFT

- The supercharge cohomology of the D1D5 CFT is conjectured to be invariant along the conformal manifold away from the orbifold points.
- The Q-action is complicated.
	- Need to be computed at least at the leading order in the conformal perturbation theory.
	- It does not satisfy the Leibniz rule, and may mix different cycles.
	- It was computed recently in the large N in **[\[Gaberdiel-Gopakumar-Nairz '23\]](https://arxiv.org/abs/2312.13288)**.

"Trace Relations" in D1D5 CFT

- The role of the trace relations is played by the stringy exclusion principle, which simply constrains the total length of the nontrivial twisted cycles to be less than N .
- Trivial cycle: (1) without any excitations (similar to $Tr(1)$). Example: $(1)^{N_1}(2)^{N_2}$ … $(m)^{N_m}$, with $N'_1 \leq N_1$ copies of nontrivial $(1).$ The stringy exclusion principle is $N'_1 + 2N_2 + \cdots + mN_m \le N$. $N_1' \leq N_1$ copies of nontrivial (1)
- The Q -action commutes with the stringy exclusion principle. Hence, monotone and fortuitous cohomologies are well-defined.

D1D5 CFT

- Again, we expect the monotone cohomologies to be dual to smooth horizonless BPS geometries.
- The largest class of such geometries are called superstrata **[Bena-Giusto-](https://arxiv.org/abs/1503.01463)**[Russo-Shigemori-Warner '15](https://arxiv.org/abs/1503.01463), …]
- A point of similarity to N=4 SYM: [[Shigemori '19](https://arxiv.org/abs/1907.03878)] (# superstrata) $<$ (# multi-particle states) \ll (# BH microstates)

- Construct fortuitous Q -cohomology at larger N .
	- So far we only have examples of $N = 2, 3, 4$
	- It is maybe enough to go up to $N \gtrsim 6$, because S/N^2 computed from the superconformal index already shows convergence at around $N\thicksim 6.$
- Generalizations: supercharge cohomology in D1-D5 CFTs [**CC**-Lin-Zhang WIP], 4d N=2 SCFTs [**CC**-Choi-Dong-Yan WIP], BMN matrix quantum mechanics, …
- BPS states in BMN \leftrightarrow BPS black holes (strings) in M-theory pp wave bg. - Witten index exhibits black hole entropy growth

Future Direction

Thank you