Partial entanglement network and
geometry reconstruction in AdS/CFT
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Holographic entanglement entropy



Entanglement Entropy

* Reduced density matrix

« Entanglement entropy
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Holographic entanglement entropy in AdS /CFT

/ AdS space
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Ryu-Takayanagi formula 06’ 1
Area(&,) — )
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Quantum entanglement == Bulk geometry
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Consistent with the
field theory
calculation at large c
limit

Hartman 2011’

Homology surface
Entanglement wedge
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Partial entanglement entropy (PEE) and PEE threads!



Chen, Vidal, JSTAT, 2014

Partial entanglement entropy Wen. PRR. 2020

1

2.

Additivity: T(A,BUC) =Z(A,B) + Z(A, C);

Permutation symmetry: Z(A,B) = Z(B,A);

. Normalization: Z(A,A) = S,; For spherical regions
. Positivity: Z(A,B) > 0;

. Upper bounded: Z(A,B) < min{S,, Sg};

have Z(A,B) =Z(A’,B).
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Unique solution of Poincare
invariant theories.

Explicit formula for CFTs
Wen, PRD, 2018

Wen, PRR, 2020
Casini, Huerta, JHEP, 2010

. Z(A, B) should be Invariant under local unitary transformations inside A or B;

. Symmetry: For any symmetry transformation 7 under which TA=A" and 7B = B, we



Chen, Vidal, JSTAT, 2014

Partial Entanglement Entropy Wen, PRR, 2020

I(AB)= ., I(,))

i€A,jEB

I(A,B):/dd—lx/ Ay Z(x,y).
A B

Sy = / di-1x [ 4y T(x,y),
A A—e

For spherical regions

PN ;



Wen, PRD, 2018
Wen, PRR, 2020
Casini, Huerta, JHEP, 2010

 Unique solutions exist at least in:

1, Generic two-dimensional theories where all the degrees of freedom settled
with a natural order

« 2, Highly symmetric higher dimensional theories where the entanglement
structure only vary along one spatial direction configurations

« 3, Higher dimensional theories with Poincare symmetry



Two point PEE for (Vacuum) CFTs

Basu, Lin, Lu, Wen, Scipost Phys., 2023
Casini, Huerta, JHEP, 2010

Additivity and permutation
symmetry give: I(AB)= | doy | doyZ(x,y).
A B
In CFT2 T(x,y)= S
YT e (x—y )
d—179
In d-dimentional CFT, Tx,x%,) = S— 2 @=1)

6 Qd—2|X2
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Geometrizing the PEE 1.
Representing the two-point PEE via the bulk geodesics

PEE threads!
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Figure 1: PEE threads on a static time slice of global AdS;/CFT,
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PEE flow from Xx:

Ry,

SR SN
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Geometrizing the
PEE 2:

Flux description
of the PEE
structure

doy Z(x,y) = dX \/EVX“nM

Z(A,A) = S, :The flux of PEE threads from A to barA
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the PEE thread flow VC")’L at the point Q = (7, %)

R =2
Bemy — _ % 2R —= pd =D, =D
(@)= f AoV = 26 (R=FP T PR a0 BT R T+ )
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PEE threads and bit threads in AdS,

V(@) 2924 (d—1) 7 727
— Z; -
e 4Gy Q4o (F2+432)d 27
. - - Agon, De Boer,
Static spherical region Pedraza. JHEP 05. 075
A
IR 1 7% 2RZ :
Q=] Vo = ( ) |
J=_p partiaIO,.0 4GN R \/(RZ + 72 + 22)2 — 4R272
— rf‘+Rdr e 1 Rz—F2+£2( 2RZ )d
A ) - 0 partialor0 4Gy 2R \/(RZ + 12 4+ 32)2 — 4R212

Other A? No!
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vV

M

(Q)

Agon, De Boer,
Pedraza, HEP 05, 075

point Q on the RT surface & A
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Multi-intervals and Weighting the PEE threads!

Provided RT formula is right!
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PEE threads for multi-intervals

a>1/2
= Violation of the
i (A, A) normalization property!
< @* .

Sa=1(A1,B1UB;y)+Z(Ay,B1 UBy) + 2Z(By,B;) ~—~ @
:I(Al UA2 UB2,B1)+I(A1 UA2 UBl,Bz) e

:SBl + SB2 ’ //, \\\

l/ :
B, B

7(A,A) Violation of the 0<a<1/2
’ normalization property! ---- ® =2
= =5 seme gy=1 ey )
& w=0 %o
Sy =Z(A1,B) +Z(Ay, B) + 2Z(A;,A,) o

=S4, +Sa, SN [ ‘.

BZ Al Bl Az Bz
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Flux from A to A — Flux from W, to Wy

Sa =1(Aq,B1B3) + 2Z(A;,A2A3) + 3Z(A1, By) + L(A2A3, B1ByB3) + 21(B, B3, By)
=1(A1,A2A3BByB3) + 1(B;,A1A2A3B1B3) + 1(A;B,A3,AB1B3)

_SAl + SBz + SAzUBzUAS b
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* In higher dimensions the PEE
threads with larger weight
happens even for connected
regions

HERR A BRI
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A reformulation of the RT formula
and
A reconstruction for the bulk geometric quantities



Conjecture: A reformulation of RT formula based on the
configurations of the PEE threads (or network)

1
Sa = min—/ d‘“X/ Aty ws, (x,¥)Z(x,y),
4 2 Jom OM
Or

S4 = min —/ dEA\/E dd_lx‘Vx”nM.
>A oM



Proof:

o ‘ Consider an area element on the RT
- / surface for any spherical region.

Only the third class of PEE threads will
pass the area element

A

Consider a spherical region A. Its RT surface £4 is just : I
a hemisphere, and the PEE threads can be classified into The ﬂUX Strength IS 1/4G

three classes,

1

L. we, (x,y) =0 for x,y € A; f d* x| VA(Q)n,(Q)l = = f d*'x|VH(Q)n,(Q)| = 1
p 2 g 4G

2. we,(x,y) =0 for x,y € A:

3. we,(x,y)=1forxc A,yc Aorx€ A,y € A.
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Consider an arbitrary surface in the
bulk

Any element area can be embedded in
the RT surface for a spherical region!

Again the flux strength across this area element is 1/4G!

Conclusion: the strength of the PEE flux at any point, along any
direction, Is always 1/4G!

In other words, if we set 1/4G as the upper limit for the strength of the
PEE threads, then AdS space is full of PEE threads!



For an arbitrary homologous surface, the PEE flux from one side of it to
the other side Is proportional to its area.

1
S4 =—— min / dX AV h
2A

AG T4
. Area[¥,] Areal€4]
e e

This is exactly the RT formula!



Reconstruction for more generic geometric quantities

FIG. 6. The area element d> and its direction is repre-
sented by the black arrow. The gray curves represent all the
PEE threads that involve in the reconstruction of d, and
the green curve represents the PELE thread that saturates the
lower bound.
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Entropy interpretation of the Crofton formula

See also
Bartek Czech eta.al JHEP 2015, 2016

Xing Huang and Fengli Lin, JHEP 2015
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v

length(y) = f / n,(p,p) dy dp.

The differential form
do N dp

is invariant under rigid motions of R?, so it is a natural
integration measure for speaking of an "average" number of
intersections. It is usually called the kinematic measure.
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Crofton formula in more generic mainfold

- / (S AT)dT = Area(X).
2804 2 Jras4e

dl' = (dp, A dat)4!

d
= Z dp; A dzt Ao A dp;,—1 A dz'~t A dpir1 A dz'Ti A - -dpg N\ da';d,
1=1
Kinematic measure: An invariant measure of (2d — 2)-dimensional set
of geodesics



For a time slice of d+1 AdS spacetime

82€(X1 ] Xg)
8){1 8x2

dl' = det (

dx12 = dz}y Adady A Adais)

Kinematic measure:

pp|x2 = 8€($1, 332)/8335

) dx; A dxao,

|x1 —x2
€

E(le X2) = 2 log

8X1 8x2

2 —57;'(X1 — X2)2 —+
det (8 E(Xl’XQ)) = det (2 .

(x1 — x2)

4

2 (:1:"’1 — :L’%) (3331 — 33]2) ) 9d—1
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cd—1

_ — I )
6 Qaafrr — %[ 2471 # (x1,%2) 6 €22

DO |

1d—1
2 Q42

/ n(XNT)dl' = Area(X).
'NX#£o

o R R

det (

82€(X1 ; X2)

3x1 3){2

— / dd_lxl / dd—1X2 Wy (Xl, Xg)I(Xl, Xg)
oM oM
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summary

* The static AdS space is full of PEE threads with no empty space, hence we
can interpret the area of any geometric quantity in terms of the number of
PEE threads passing through it.

« Mathematically this context if a special application of the Crofton formula,
but in the context of AdS/CFT with entropy interpretation for all the bulk
geodesics.

* The contribution from “inner threads” to entanglement entropy gives us new
understanding about the contribution distribution of entanglement entropy.



Future directions

« How to go beyond Poincare AdS? Black hole? With matter fields? Non-AdS
spacetime?

» Go beyond static scenarios?

« Toy models of quantum gravity based on the tensor network of PEE threads?

Thanks!



