

Kavli Institute for Theoretical Sciences (KITS)

University of Chinese Acadamy of Sciences (UCAS)

第五届全国场论与弦论学术研讨会

彭桓武高能基础理论研究中心(合肥),6/27/2024

with Jia-yin Shen and Li-xin Li, arXiv:2402.00694

BACKGROUND

BH EVAPORATION AND ENSEMBLE AVERAGE

Penginton; Almheiri, Engelhardt, Marolf, Maxfield; Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini;

A "solvable" incarnation of the information paradox

> The information paradox:

Are Hawking radiations from Blackholes thermal or informative?

- Recent breakthroughs in this puzzle in low-dimensional solvable toy models
 - New quantum extremal surface
 in an evaporating black hole
 - Alternatively, the necessity of including the spacetime wormholes in the gravitational path integral

BH EVAPORATION AND ENSEMBLE AVERAGE

Spacetime wormholes are tied with ensemble averages of theories

(Coleman; Giddings Strominger; Maldacena Maoz)

• Evidence including e.g.

Disordered models are special cases of the "ensemble average theories"

NICE STORIES, AND PAGE CURVES CAN BE REPRODUCED.

NICE STORIES, AND PAGE CURVES CAN BE REPRODUCED.

BUT THIS IS NOT THE END OF THE STORY, IT IS RATHER THE TIP OF AN ICEBURG...

Ensemble average theories: physics described by not a single Hamiltonian, but an ensemble of them

Multi-boundary geometries with Lorentzian signature

Ensemble average theories: physics described by not a single Hamiltonian, but an ensemble of them

Multi-boundary geometries with Lorentzian signature

- If there exist high dimensional covariant disordered models ?
 2D and 3D models with different numbers of SUSY and tunable parameters
- Do they share similar nice features as their low dimensional counterparts ?
 Solvable in the large-N limit, analytically in the IR and numerically in general
- Do they fulfill the usual requirements obeyed by conventional QFTs ?
 Consistent with various bootstrap bounds, hence compatible with many requirements
- If there are clear connections with other well-known conventional QFTs ?
 Observe higher-spin limits in different models, which sets up clear connections with higher-spin theories and probably string theory

- If there exist high dimensional covariant disordered models ? UV "free" fixed point
 2D and 3D models with different numbers of SUSY and tunable parameters
- Do they share similar nice features as their low dimensional counterparts ?
 Solvable in the large-N limit, analytically in the IR and numerically in general
- Do they fulfill the usual requirements obeyed by conventional QFTs ?
 Consistent with various bootstrap bounds, hence compatible with many requirements
- If there are clear connections with other well-known conventional QFTs ?
 Observe higher-spin limits in different models, which sets up clear connections with higher-spin theories and probably string theory

- If there exist high dimensional covariant disorders' fixed point + disorder 2D and 3D models with different numbers of SU $+ O_{32}$ + O_{32}
- Do they share similar nice features as their low dimensional counterparts ?
 Solvable in the large-N limit, analytically in the IR and numerically in general
- Do they fulfill the usual requirements obeyed by conventional QFTs ?
 Consistent with various bootstrap bounds, hence compatible with many requirem
- If there are clear connections with other well-known conventional QFTs ?
 Observe higher-spin limits in different models, which sets up clear connections with higher-spin theories and probably string theory

- If there exist high dimensional covariant diarders' fixed point + disorder 2D and 3D models with different numbers of SU $+ O_{ii}$ + O_{ii} + O_{ii}
- 2. Do they share similar nice features as their low dimensional counterparts ? Solvable in the large-N limit, analytically in the IR and numerically in general δRG
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ? Consistent with various **bootstrap** bounds, hence compatible with many requirements
- If there are clear connection with the set of the set

CP, 2018, Chang, Colin-Ellerin, CP, Rangamani, 2021, 2022, and W.I.P.

- If there exist high dimensional covariant diarders' fixed point + disorder 2D and 3D models with different numbers of SU $+ O_{32}$ + O_{32} + O_{32} + O_{32}
- 2. Do they share similar nice features as their low dimensional counterparts ? Solvable in the large-N limit, analytically in the IR and numerically in general & RG
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ?

Consiste IR new fixed point ap bounds, here compatible with many requirements

If there are clear connections where well-known conventional QFTs ?
 Observe higher-spin limits in different models, which sets up clear connections higher-spin theories and probably string theory

CP, 2018, Chang, Colin-Ellerin, CP, Rangamani, 2021, 2022, and W.I.P.

- 1. If there exist high dimensional covariant diarders' fixed point + disorder 2D and 3D models with different numbers of SU $+ O_{32}$ + O_{32} + O_{32}
- 2. Do they share similar nice features as their low dimensional counterparts ? Solvable in the large-N limit, analytically in the IR and numerically in general δRG
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ?

Consiste IR "四有" new fixed point: her compatible with many requirements

If there Unitarity, onnection
 Observe Locality, pin limits in different models, which sets up clear connections with Causality, higher-s Crossing symmetry bably string theory

Ensemble average theories: physics described by not a single Hamiltonian, but an ensemble of them

Multi-boundary geometries with Lorentzian signature

MOTIVATION

- We live in spacetime with Lorentzian signature.
- It is therefore interesting to construct counterparts of the multi-boundary connected Euclidean wormhole configurations in Lorentzian signature.
- However, a direct solution/continuation is not simple.
- Instead, we try to construct geometries with multiple boundaries by gluing.

GEOMETRY FROM GLUING

- One way of constructing new geometries is by gluing pieces together with suitable junction conditions
- A familiar example is the Israel junction condition in GR

$$\left. g^{[0]} \right|_{\Sigma} = g^{[1]} \right|_{\Sigma}$$

$$(\mathcal{K}^{[0]} + \mathcal{K}^{[1]}) - (\operatorname{tr}_h \mathcal{K}^{[0]} + \operatorname{tr}_h \mathcal{K}^{[1]})h = -8\pi G \bar{S}$$

 $h \coloneqq g^{[i]}|_{\mathscr{T}(\Sigma)}, \quad i = 0, 1$

Israel, Il Nuovo Cimento B, 1966

GEOMETRY FROM GLUING

 One way of constructing new geometries is by gluing pieces together with suitable junction conditions

CAN WE GLUE MORE BULKS TOGETHER TO GET MULTI-BOUNDARY GEOMETRIES?

MULTI-WAY JUNCTION CONDITIONS

Shen, CP, Li, 2024

• We derive conditions for gluing multiple bulk geometries

> Pure gravity
$$\sum_{i=0}^{m} \mathcal{K}^{[i]} - \mathrm{tr}_{h} \mathcal{K}^{[i]} h = -8\pi G \bar{S}$$

Dilaton gravity

$$\sum_{i=1}^{m} 2\bar{\Phi} \operatorname{tr}_{h} \mathcal{K}^{[i]} + \lambda \mathfrak{L}_{n^{[i]}} \Phi^{[i]} = -4\pi G_{\mathrm{N}} \, ar{arrho}$$

 $\sum_{i=1}^{m} ar{\Phi}^{2} \left(\mathcal{K}^{[i]} - \operatorname{tr}_{h} \mathcal{K}^{[i]} \, h
ight) - 2ar{\Phi} \mathfrak{L}_{n^{[i]}} \Phi^{[i]} \, h = -8\pi G_{\mathrm{N}} ar{\mathcal{S}}$

where $h\coloneqq g^{[i]}\big|_{\mathscr{T}(\Sigma)}$

MULTI-WAY JUNCTION CONDITIONS

Shen, CP, Li, 2024

• We derive conditions for gluing multiple bulk geometries

> Pure gravity

$$\sum_{i=0}^{m} \mathcal{K}^{[i]} - \operatorname{tr}_{h} \mathcal{K}^{[i]} h = -8\pi G \bar{S}$$

Dilaton gravity

$$\sum_{i=1}^{m} 2\bar{\Phi} \operatorname{tr}_{h} \mathcal{K}^{[i]} + \lambda \mathfrak{L}_{n^{[i]}} \Phi^{[i]} = -4\pi G_{\mathrm{N}} \, ar{arrho}$$
 $\sum_{i=1}^{m} ar{\Phi}^{2} \left(\mathcal{K}^{[i]} - \operatorname{tr}_{h} \mathcal{K}^{[i]} \, h
ight) - 2ar{\Phi} \mathfrak{L}_{n^{[i]}} \Phi^{[i]} \, h = -8\pi G_{\mathrm{N}} ar{\mathcal{S}}$

• The conditions apply to both timelike and spacelike interfaces

DERIVATION

• The first is geometrical in pure gravity

Embedding in a larger spacetime Define various curvatures therein, e.g. Find the conditions among them

DERIVATION

• The first is geometrical in pure gravity

Embedding in a larger spacetime Define various curvatures therein, e.g. Find the conditions among them

$$\nabla^{[i]}_{\overline{X}}\overline{U} = \overline{\nabla}_{\overline{X}}\overline{U} - K^{[i]}(\overline{X},\overline{U})n^{[i]}$$

• The second is by varying the action with appropriate boundary terms, which applies to both pure gravity and dilaton gravity

$$I_{\mathcal{V}} = \frac{1}{16\pi G_N} \sum_{i=0}^{m} \int_{V^{[i]}} \left\{ (\Phi^{[i]})^2 R^{[i]} + \lambda \left(\partial \Phi^{[i]} \right)^2 - \mathcal{U}^{[i]} \left((\Phi^{[i]})^2 \right) \right\} \varepsilon^{[i]} - 2 \oint_{\Sigma} \bar{\Phi}^2 K^{[i]} \bar{\varepsilon}_h$$

DERIVATION

• The first is geometrical in pure gravity

Embedding in a larger spacetime Define various curvatures therein, e.g. Find the conditions among them

$$\nabla^{[i]}_{\overline{X}}\overline{U} = \overline{\nabla}_{\overline{X}}\overline{U} - K^{[i]}(\overline{X},\overline{U})n^{[i]}$$

• The second is by varying the action with appropriate boundary terms, which applies to both pure gravity and dilaton gravity

$$I_{\mathcal{V}} = \frac{1}{16\pi G_N} \sum_{i=0}^{m} \int_{V^{[i]}} \left\{ (\Phi^{[i]})^2 R^{[i]} + \lambda \left(\partial \Phi^{[i]} \right)^2 - \mathcal{U}^{[i]} \left((\Phi^{[i]})^2 \right) \right\} \varepsilon^{[i]} - 2 \oint_{\Sigma} \overline{\Phi}^2 K^{[i]} \overline{\varepsilon}_N$$

• The conditions apply to both timelike and spacelike interfaces

Jackiw-Tetelboim gravity

$$I_{\mathscr{V}} = \frac{1}{16\pi G_{\rm N}} \sum_{i=0}^{m} \left\{ \int_{\mathscr{V}^{[i]}} \phi^{[i]} \left(R^{[i]} + \frac{2}{(L^{[i]})^2} \right) \varepsilon^{[i]} - 2 \oint_{\Sigma} \bar{\phi} \left(K^{[i]} + \frac{\chi}{m+1} \right) \bar{\varepsilon}_h \right\}$$

General solution of the dilaton profile

$$\phi^{[i]}(t,z) = A^{[i]} \cdot \frac{t}{z} + B^{[i]} \cdot \frac{t^2 - z^2}{z} + C^{[i]} \cdot \frac{1}{z}$$

• Classification according to the sign of $D^{[i]} = \frac{(A^{[i]})^2 - 4B^{[i]}C^{[i]}}{(L^{[i]})^2}$

$$\begin{split} \text{Type +:} \quad & \phi^{[i]}(t,z) = A^{[i]} \cdot \frac{t}{z}, \quad A^{[i]} > 0; \\ \text{Type 0:} \quad & \phi^{[i]}(t,z) = \pm (L^{[i]})^3 \cdot \frac{1}{z}; \\ \text{Type -:} \quad & \phi^{[i]}(t,z) = \pm B^{[i]} \bigg(\frac{t^2 - z^2}{z} + (L^{[i]})^2 \cdot \frac{1}{z} \bigg), \quad B^{[i]} > 0 \end{split}$$

• In this case the junction conditions are

$$\sum_{i=0}^{m} \operatorname{tr}_{h} K^{[i]} = -\chi, \qquad \sum_{i=0}^{m} \mathcal{L}_{n^{[i]}} \phi^{[i]} = -\overline{\phi} \chi$$

where $\phi^{[i]}$ and $\overline{\phi} = \phi^{[i]} \Big|_{\Sigma}$ are the dilaton fields on $V^{[i]}$ and Σ respectively.

• The first condition leads to

$$\chi = \frac{1}{L^{[0]}} + \frac{1}{L^{[1]}} + \dots + \frac{1}{L^{[m]}}$$
 and $\sum_{i=0}^{m} L^{[i]} \operatorname{Sch}[t^{[i]}] = 0$

• The second condition is more interesting.

• Consider gluing multiple AdS₂ geometries along an interface near the boundary of each bulk

- Choosing a parameterization such that the metric on the interface is $h = -\frac{1}{\epsilon^2} du^2$
- We then compute

$$\mathfrak{L}_{n^{[i]}}\phi^{[i]}(u) = \partial_{\ell}\phi^{[i]}_{(-1)}(u) \cdot \frac{1}{\epsilon} + \partial_{\ell}\phi^{[i]}_{(1)}(u) \cdot \epsilon + \mathcal{O}(\epsilon^2)$$

- Now we can solve the second condition order by order in ϵ

$$\overline{\phi}(u) = \overline{\phi}_{(-1)}(u) \cdot \frac{1}{\epsilon} + \overline{\phi}_{(1)}(u) \cdot \epsilon + \mathcal{O}(\epsilon^3)$$

• To the leading order, the condition requires

$$\overline{\phi}_{(-1)}(u)^2 = E \quad \Rightarrow \quad \overline{\phi}_{(-1)}(u) = \pm \sqrt{E}u + \alpha, \qquad \text{where} \qquad E = \frac{\sum_{i=0}^m D^{[i]} L^{[i]}}{\sum_{i=0}^m L^{[i]}}$$

т

 Gluing consistently multiple JT pages requires positivity of *E*, or equivalently a large enough number of type + pages

• $D^{[i]}$ can be regarded as an effective potential, in fact it is easy to compute

$$\operatorname{Sch}[t^{[i]}] = \frac{E - D^{[i]}}{2(\sqrt{E}u + \alpha)^2}$$

DISCUSSION

Shen, CP, Li, W.I.P.

- This provides tools to future study properties of connected geometries in Lorentzian signature
- In addition, we observe a resemblance with Feynman diagrams

• It is sensible since the junction conditions are in general among the extrinsic curvatures, which are classical conjugate momenta in the Hamiltonian formalism.

$$\pi^{[i]}_{\overline{\mu}\overline{\nu}} = \sqrt{|\det h|} \left(K^{[i]}_{\overline{\mu}\overline{\nu}} - K^{[i]}h_{\overline{\mu}\overline{\nu}} \right)$$

$$\sum_{i} \pi^{[i]}_{\overline{\mu}\overline{\nu}} = -8\pi G \sqrt{|\det h|} \overline{S}_{\overline{\mu}\overline{\nu}}$$

THANK YOU!

