

Cheng Peng (彭程)

Kavli Institute for Theoretical Sciences (KITS)

University of Chinese Acadamy of Sciences (UCAS)

第五届全国场论与弦论学术研讨会

彭桓武高能基础理论研究中心(合肥), 6/27/2024

with Jia-yin Shen and Li-xin Li, arXiv:2402.00694

KITS

BACKGROUND

BH EVAPORATION AND ENSEMBLE AVERACE

Penginton; Almheiri, Engelhardt, Marolf, Maxfield;Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini;

A "solvable" incarnation of the information paradox

 \triangleright The information paradox:

Are Hawking radiations from Blackholes thermal or informative?

- \triangleright Recent breakthroughs in this puzzle in low-dimensional solvable toy models
	- New quantum extremal surface in an evaporating black hole
	- \div Alternatively, the necessity of including the spacetime wormholes in the gravitational path integral \leftarrow

BH EVAPORATION AND ENSEMBLE AVERAGE

§ Spacetime wormholes are tied with ensemble averages of theories

(Coleman; Giddings Strominger; Maldacena Maoz)

§ Evidence including e.g.

$$
\langle Z[J_1] \cdots Z[J_n] \rangle := \int_{\Phi \sim J} \mathcal{D}\Phi \, e^{-S[\Phi]}
$$

$$
\langle Z[J_1]Z[J_2] \rangle = \bigodot_{p \perp \{1,2,...n\}} \lambda^{p} = B_n(\lambda) = \sum_{d=0}^{\infty} d^n p_d(\lambda) = \langle x^n \rangle_{\text{Pois}}, \qquad p_d(\lambda) = e^{-\lambda} \frac{\lambda^d}{d!}
$$

(Marolf, Maxfield, 2020
CP, Tian, Yu 2021, **CP**, Tian, Yang 2022)

§ Disordered models are special cases of the "ensemble average theories" **⁴**

NICE STORIES, AND PAGE CURVES CAN BE REPRODUCED.

NICE STORIES, AND PAGE CURVES CAN BE REPRODUCED.

BUT THIS IS NOT THE END OF THE STORY, IT IS RATHER THE TIP OF AN ICEBURG...

Ensemble average theories: physics described by not a single Hamiltonian, but an ensemble of them

Multi-boundary geometries with Lorentzian signature

Ensemble average theories: physics described by not a single Hamiltonian, but an ensemble of them

Multi-boundary geometries with Lorentzian signature

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

If there exist high dimensional covariant disordered models?

2D and 3D models with different numbers of SUSY and tunable parameters

- 2. Do they share similar nice features as their low dimensional counterparts ? **Solvable** in the large-N limit, analytically in the IR and numerically in general
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ? Consistent with various **bootstrap** bounds, hence compatible with many requirements
- 4. If there are clear connections with other well-known conventional QFTs ? Observe **higher-spin limits** in different models, which sets up clear connections with higher-spin theories and probably string theory **⁹**

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

- 1. If there exist high dimensional covariant disorders d models ? **2D and 3D models** with different numbers of SUSY and tunable parameters UV "free" fixed point
- 2. Do they share similar nice features as their low dimensional counterparts ?
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ?
- 4. If there are clear connections with other well-known conventional QFTs ?

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

- 1. If there exist high dimensional covariant disorders d models ? 2D and 3D models with different numbers of SUSY **40**海淀家长 UV "free" fixed point + disorder
- 2. Do they share similar nice features as their low dimensional counterparts ?
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs ?
- 4. If there are clear connections with other well-known conventional QFTs ?

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

- 1. If there exist high dimensional covariant disorders d models ? **2D and 3D models** with different numbers of SUSY $+O$ 海淀家长 UV "free" fixed point + disorder
- 2. Do they share similar nice features as their low dimensional counterparts ? **Solvable** in the large-N limit, analytically in the IR and numerically in general
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs? Consistent with various **bootstrap** bounds, hence compatible with many requirements 卷 RG
- 4. If there are clear connections with other well-known conventional QFTs ?

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

- 1. If there exist high dimensional covariant disorders d models ? **2D and 3D models** with different numbers of SUSY 海淀家长 UV "free" fixed point + disorder
- 2. Do they share similar nice features as their low dimensional counterparts ? **Solvable** in the large-N limit, analytically in the IR and numerically in general 卷 RG
- 3. Do they fulfill the usual requirements obeyed by conventional QFTs?

bounds, hence compatible with many requirements IR new fixed point

If there are clear connections with other well-known conventional QFTs ?

CP, *2018,* Chang, Colin-Ellerin, **CP**, Rangamani, 2021, 2022, and W.I.P.

- 1. If there exist high dimensional covariant disorders d models ? $+O$ 海淀家长 UV "free" fixed point + disorder
- 2. Do they share similar nice features as their low dimensional counterparts ? **Solvable** in the large-N limit, analytically in the IR and numerically in general
- Do they fulfill the usual requirements obeyed by conventional QFTs ? 卷 RG

ConsisteIR^{("}四有" new fixed point:¹s, hence compatible with many requirements

ell-known conventional QFTs ? Observe **Locality, pin limits** in different models, which sets up clear connections with higher-spin theory bably string theory **14** If there Unitarity, Causality,

Ensemble average theories: physics described by not a single Hamiltonian, but an ensemble of them

Multi-boundary geometries with Lorentzian signature

MOTIVATION

- § We live in spacetime with Lorentzian signature.
- § It is therefore interesting to construct counterparts of the multi-boundary connected Euclidean wormhole configurations in Lorentzian signature.
- § However, a direct solution/continuation is not simple.
- § Instead, we try to construct geometries with multiple boundaries by gluing.

CEOMETRY FROM CLUING

- One way of constructing new geometries is by gluing pieces together with suitable junction conditions
- A familiar example is the Israel junction condition in GR

$$
\left.g^{[0]}\right|_\Sigma=g^{[1]}\big|_\Sigma
$$

$$
\big({\mathcal K}^{[0]}+{\mathcal K}^{[1]}\big)-\big({\rm tr}_h{\mathcal K}^{[0]}+{\rm tr}_h{\mathcal K}^{[1]}\big)h=-8\pi G\,\bar{\mathcal S}\\[3mm] h\coloneqq g^{[i]}|_{{\mathscr{T}}(\Sigma)},\quad i=0,1
$$

Israel, Il Nuovo Cimento B, 1966

CEOMETRY FROM CLUING

• One way of constructing new geometries is by gluing pieces together with suitable junction conditions

CAN WE CLUE MORE BULKS TOCETHER TO CEI MULT-BOUNDARY CEOMETRIES?

MULTI-WAY JUNCTION CONDITIONS

Shen, **CP**, Li, 2024

§ We derive conditions for gluing multiple bulk geometries

Ø Pure gravity proved by embedding into a higher dimensional spacetime

$$
\sum_{i=0} {\cal K}^{[i]} - {\rm tr}_h {\cal K}^{[i]} \, h = -8\pi G\, \bar{\cal S}
$$

 \triangleright Dilaton gravity

$$
\sum_{i=1}^{m} 2\bar{\Phi} \, {\rm tr}_h {\cal K}^{[i]} + \lambda {\cal L}_{n^{[i]}} \Phi^{[i]} = - 4\pi G_{\rm N}\, \bar{\varrho} \nonumber \\ \sum_{i=1}^{m} \bar{\Phi}^2 \left({\cal K}^{[i]} - {\rm tr}_h {\cal K}^{[i]} \, h \right) - 2 \bar{\Phi} {\cal L}_{n^{[i]}} \Phi^{[i]} \, h = - 8\pi G_{\rm N} \bar{\cal S}
$$

where
$$
h := g^{[i]}|_{\mathscr{T}(\Sigma)}
$$
 (21)

MULTI-WAY JUNCTION CONDITIONS

Shen, **CP**, Li, 2024

§ We derive conditions for gluing multiple bulk geometries

▶ Pure gravity
\n
$$
\sum_{i=0}^{m} \mathcal{K}^{[i]} - \text{tr}_h \mathcal{K}^{[i]} h = -8\pi G \bar{S}
$$

 \triangleright Dilaton gravity

$$
\sum_{i=1}^{m} 2 \bar{\Phi} \, \text{tr}_h \mathcal{K}^{[i]} + \lambda \mathcal{L}_{n^{[i]}} \Phi^{[i]} = -4 \pi G_N \, \bar{\varrho}
$$
\n
$$
\sum_{i=1}^{m} \bar{\Phi}^2 \left(\mathcal{K}^{[i]} - \text{tr}_h \mathcal{K}^{[i]} h \right) - 2 \bar{\Phi} \mathcal{L}_{n^{[i]}} \Phi^{[i]} h = -8 \pi G_N \bar{\mathcal{S}}
$$

§ The conditions apply to both timelike and spacelike interfaces **²²**

DERIVATION

• The first is geometrical in pure gravity

Embedding in a larger spacetime Define various curvatures therein, e.g. $\nabla^{[i]}_{\overline{X}} \overline{U} = \overline{\nabla}_{\overline{X}} \overline{U} - K^{[i]}(\overline{X}, \overline{U}) n^{[i]}$ Find the conditions among them

$$
\frac{\partial^{[0]}}{\partial t^{[0]}} = \frac{\partial
$$

DERIVATION

• The first is geometrical in pure gravity

Embedding in a larger spacetime Define various curvatures therein, e.g. Find the conditions among them

$$
\nabla^{[i]}{}_{\bar{X}}\bar{U}=\bar{\nabla}_{\bar{X}}\bar{U}-K^{[i]}(\bar{X},\bar{U})n^{[i]}
$$

• The second is by varying the action with appropriate boundary terms, which applies to both pure gravity and dilaton gravity

$$
I_{\mathcal{V}} = \frac{1}{16\pi G_N} \sum_{i=0}^{m} \int_{V^{[i]}} \left\{ (\Phi^{[i]})^2 R^{[i]} + \lambda (\partial \Phi^{[i]})^2 - \mathcal{U}^{[i]} \left((\Phi^{[i]})^2 \right) \right\} \varepsilon^{[i]} - 2 \oint_{\Sigma} \overline{\Phi}^2 K^{[i]} \overline{\varepsilon}_h
$$

DERIVATION

• The first is geometrical in pure gravity

Embedding in a larger spacetime Define various curvatures therein, e.g. Find the conditions among them

$$
\nabla^{[i]}{}_{\bar{X}}\bar{U}=\bar{\nabla}_{\bar{X}}\bar{U}-K^{[i]}(\bar{X},\bar{U})n^{[i]}
$$

• The second is by varying the action with appropriate boundary terms, which applies to both pure gravity and dilaton gravity

$$
I_{\mathcal{V}} = \frac{1}{16\pi G_N} \sum_{i=0}^{m} \int_{V^{[i]}} \left\{ (\Phi^{[i]})^2 R^{[i]} + \lambda (\partial \Phi^{[i]})^2 - \mathcal{U}^{[i]} \left((\Phi^{[i]})^2 \right) \right\} \varepsilon^{[i]} - 2 \oint_{\Sigma} \overline{\Phi}^2 K^{[i]} \overline{\varepsilon}_h
$$

• The conditions apply to both timelike and spacelike interfaces

§ Jackiw-Tetelboim gravity

$$
I_{\mathscr{V}}=\frac{1}{16\pi G_{\mathrm{N}}}\sum_{i=0}^{m}\bigg\{\int_{\mathscr{V}^{[i]}}\phi^{[i]}\bigg(R^{[i]}+\frac{2}{(L^{[i]})^2}\bigg)\varepsilon^{[i]}-2\oint_{\Sigma}\bar{\phi}\bigg(K^{[i]}+\frac{\chi}{m+1}\bigg)\bar{\varepsilon}_h\bigg\}
$$

§ General solution of the dilaton profile

$$
\phi^{[i]}(t,z) = A^{[i]} \cdot \frac{t}{z} + B^{[i]} \cdot \frac{t^2 - z^2}{z} + C^{[i]} \cdot \frac{1}{z}
$$

§ Classification according to the sign of $[i]$ λ^2 Δ $\mathbf{D}^{[i]}$ $\mathbf{C}^{[i]}$ $[i]$ $[i]$ \setminus 2 $(A^{[i]})^2 - 4$ $(L^{[i]})$ (i) ² *A* $\mathbf{D}^{[i]}$ $\mathbf{C}^{[i]}$ *i* $D^{[i]} = \frac{(A^{[i]})^2 - 4B^{[i]}C}{(I^{[i]})^2}$ *L* $=\frac{(A^{[i]})^2-}{\sqrt{2}}$

Type +:
$$
\phi^{[i]}(t, z) = A^{[i]} \cdot \frac{t}{z}, \quad A^{[i]} > 0;
$$

\nType 0: $\phi^{[i]}(t, z) = \pm (L^{[i]})^3 \cdot \frac{1}{z};$
\nType -: $\phi^{[i]}(t, z) = \pm B^{[i]} \left(\frac{t^2 - z^2}{z} + (L^{[i]})^2 \cdot \frac{1}{z} \right), \quad B^{[i]} > 0$

• In this case the junction conditions are

where
$$
\phi^{[i]}
$$
 and $\overline{\phi} = \phi^{[i]}$ $\Big|_{\Sigma}$ are the dilaton fields on $V^{[i]}$ and Σ respectively.

• The first condition leads to

$$
\chi = \frac{1}{L^{[0]}} + \frac{1}{L^{[1]}} + \cdots + \frac{1}{L^{[m]}} \quad \text{ and } \quad \sum_{i=0}^{m} L^{[i]} \mathsf{Sch}[t^{[i]}] = 0
$$

• The second condition is more interesting.

• Consider gluing multiple $AdS₂$ geometries along an interface near the boundary of each bulk

- Choosing a parameterization such that the metric on the interface is $h = -\frac{1}{\epsilon^2} du^2$
- § We then compute

$$
\mathfrak{L}_{n^{[i]}}\phi^{[i]}(u)=\partial_{\ell}\phi^{[i]}_{(-1)}(u)\cdot\frac{1}{\epsilon}+\partial_{\ell}\phi^{[i]}_{(1)}(u)\cdot\epsilon+\mathcal{O}(\epsilon^2)
$$

• Now we can solve the second condition order by order in ϵ

$$
\overline{\phi}(u) = \overline{\phi}_{(-1)}(u) \cdot \frac{1}{\epsilon} + \overline{\phi}_{(1)}(u) \cdot \epsilon + \mathcal{O}(\epsilon^3)
$$

§ To the leading order, the condition requires

$$
\overline{\phi}_{(-1)}(u)^2 = E \implies \overline{\phi}_{(-1)}(u) = \pm \sqrt{E}u + \alpha,
$$
 where $E = \frac{\sum_{i=0}^{m} D^{[i]} L^{[i]}}{\sum_{i=0}^{m} L^{[i]}}$

m

§ Gluing consistently multiple JT pages requires positivity of *E,* or equivalently a large enough number of type + pages

 \bullet $D^{[i]}$ can be regarded as an effective potential, in fact it is easy to compute

$$
\text{Sch}[t^{[i]}] = \frac{E - D^{[i]}}{2(\sqrt{E}u + \alpha)^2}
$$

DISCUSSION

Shen, **CP**, Li, W.I.P.

- This provides tools to future study properties of connected geometries in Lorentzian signature
- In addition, we observe a resemblance with Feynman diagrams

§ It is sensible since the junction conditions are in general among the extrinsic curvatures, which are classical conjugate momenta in the Hamiltonian formalism.

$$
\pi^{[i]}_{\overline{\mu}\overline{\nu}} = \sqrt{|\det h|} \Big(K^{[i]}_{\overline{\mu}\overline{\nu}} - K^{[i]} h_{\overline{\mu}\overline{\nu}} \Big)
$$

$$
\sum_{i} \pi^{[i]}_{\overline{\mu}\overline{\nu}} = -8\pi G \sqrt{|\det h|} \overline{S}_{\overline{\mu}\overline{\nu}}
$$

THANK YOU!

