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Motivations

The eigenvalue problem of quantum integrable systems

with U(1) symmetry: coordinate Bethe Ansatz [1], T − Q relation [2] and algebraic Bethe
Ansatz [3, 4]...(homogeneous T − Q relations)

without U(1) symmetry: fusion-based T − Q relation [5], separation of variables [6, 7],
modified algebraic Bethe ansatz [8] and off-diagonal Bethe ansatz[9, 10]...(inhomogeneous
T − Q relations)

t −W scheme [11, 12, 13]: BAEs are homogeneous; thermodynamic limit...

In the t −W scheme, the W operator can be neglected in the thermodynamic limit,
resulting in the t −W relation becoming equivalent to the inversion relation [14, 15], but the
exact proof is absent.
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Models
Outline

The Heisenberg spin chains with U(1)-symmetry: With periodic
boundary condition (PBC).

The Heisenberg spin chains without U(1)-symmetry: With nondiagonal
boundary terms (nonparallel-OBC).

Yi Qiao (NWU) Northwest University, Xian, China June 24, 2024 4 / 48



university-logo-filename

Integrability
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

The Heisenberg spin chain is a protype quantum integrable model, whose Hamiltonian is

Hp =
N∑

n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1), (1)

with the periodic boundary condition

σαN+1 = σα1 , α = x , y , z. (2)

The system is integrable, i.e., there exist enough conserved charges

i~
∂

∂t
hi = [H, hi ] = 0, i = 1, . . . .

and
[hi , hj ] = 0,

which may include Sz = 1
2

∑N
i=1 σ

z
i .
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Integrability
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

It is convenient to introduce a generation function of these charges, the so-called transfer matrix

t(u) =
N∑

i=0

hi u
i , [t(u), t(v)] = [H, t(u)] = 0.

The eigenstates and the corresponding eigenvalues can be obtained by Quantum Inverse
Scattering Method (QISM). In the framework of QISM, the monodromy matrix T (u) has played
a central role. It is built from the six-vertex R-matrix of

T0(u) = R0N (u − θN ) . . .R01(u − θ1) =

(
A(u) B(u)
C(u) D(u)

)
, (3)

where the well-known six-vertex R-matrix is given by

R(u) =


u + η

u η
η u

u + η

 . (4)

The transfer matrix is

t(u) = tr{T (u)} = A(u) + D(u). (5)
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Integrability
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

The R-matrix has the following properties

Initial condition : R0,j (0) = ηP0,j ,

Unitary relation : R0,j (u)Rj,0(−u) = φ(u)× id,

Crossing relation : R0,j (u) = −σy
0 Rt0

0,j (−u − η)σy
0 ,

PT-symmetry : R0,j (u) = Rj,0(u) = R
t0 tj

0,j (u),

Z2-symmetry : σα0 σ
α
j R0,j (u) = R0,j (u)σα0 σ

α
j , for α = x , y , z,

Fusion condition : R0,j (±η) = η(±1 + P0,j ) = ±2ηP
(±)
0,j , (6)

where φ(u) = η2 − u2, t0 (or tj ) denotes the transposition in the space V0 (or Vj ), P0,j is the

permutation operator. P
(−)
0,j is the one-dimensional antisymmetric project operator defined in the

one-dimensional subspace spanned by 1√
2

(|12〉0,j − |21〉0,j ), P
(+)
0,j is the three-dimensional

symmetric projector defined in the three-dimensional subspace spanned by the orthogonal bases

{|11〉0,j , 1√
2

(|12〉0,j + |21〉0,j ), |22〉0,j}, P
(−)
0,j + P

(+)
0,j = id.
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Integrability
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

The R-matrix (4) satisfies the Yang-Baxter equation (YBE)

R12(u − v) R13(u) R23(v) = R23(v) R13(u) R12(u − v). (7)

The above fundamental relation leads to the following so-called RTT relation between the
monodromy matrix

R0 0′ (u − v) T0(u) T0′ (v) = T0′ (v) T0(u) R0 0′ (u − v). (8)

This leads to

[t(u), t(v)] = 0, (9)

which ensures the integrability of the Heisenberg chain with periodic boundary condition (1)-(2)
due to the fact that the Hamiltonian can be given in terms of the transfer matrix t(u) as

H = 2η
∂

∂u
ln t(u)

∣∣∣u=0,{θj}=0 − N, [H, t(u)] = 0. (10)

Yi Qiao (NWU) Northwest University, Xian, China June 24, 2024 8 / 48



university-logo-filename

t −W scheme
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

By using the fusion technique, we consider the product of transfer matrices t(u) and t(u − η)

t(u)t(u − η) = tr1,2 {T2(u) T1(u − η)} [embedded into 2 auxiliary space]

= tr1,2

{
T2(u) T1(u − η)(P

(−)
1,2 + P

(+)
1,2 )

}
= tr1,2

{
P

(−)
1,2 T2(u) T1(u − η)P

(−)
1,2

}
+ tr1,2

{
P

(+)
1,2 T2(u) T1(u − η)P

(+)
1,2

}
= a(u) d(u − η)× id + d(u)W(u), [extract constant d(u) factor] (11)

where the functions a(u) and d(u) are given by

a(u) =
N∏

j=1

(u − θj + η), d(u) = a(u − η), (12)

a(u)d(u − η) is the quantum determinant and W(u) is a new operator.
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t −W scheme
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

The detailed proof is as follows.

For the first term in the very relation (11): Starting from the YBE (7) with certain shift of
spectral parameter, we obtain

R2,3(u)R1,3(u − η)P
(−)
1,2 = P

(−)
1,2 R2,3(u)R1,3(u − η)P

(−)
1,2 = (u + η)(u − η)× id. (13)

We see that the fusion result of R-matrices with one-dimensional antisymmetric projector P
(−)
1,2 is

a number. The fusion of monodromy matrices with P
(−)
1,2 gives

P
(−)
1,2 T2(u) T1(u − η)P

(−)
1,2 = a(u) d(u − η)× id. (14)
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t −W scheme
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

For the second term in the very relation (11):The fusion of R-matrices with the three-dimensional

symmetric projector P
(+)
1,2 gives

P
(+)
1,2 R2,3(u) R1,3(u − η) P

(+)
1,2 = u × R

(1, 1
2

)

{1,2},3(u), (15)

where R
(1, 1

2
)

{1,2},3(u) is the 6× 6 fused R-matrix with the form of

R
(1, 1

2
)

{1,2},3(u) =



u + η

u − η
√

2η
√

2η u

u
√

2η
√

2η u − η

u + η


. (16)
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t −W scheme
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

Then the fusion of monodromy matrices reads

P
(+)
1,2 T2(u) T1(u − η)P

(+)
1,2 = d(u)T

(1, 1
2

)

{1,2}(u), (17)

where T
(1, 1

2
)

{1,2}(u) is the fused monodromy matrix, which constructed by the fused R-matrix

R
(1, 1

2
)

{1,2},j (u) as

T
(1, 1

2
)

{1,2}(u) = R
(1, 1

2
)

{1,2},N (u − θN ) · · ·R(1, 1
2

)

{1,2},1(u − θ1). (18)

Then we arrive at that the W(u) operator in Eq.(11) is the fused transfer matrix as

W(u) = tr{1,2}T
(1, 1

2
)

{1,2}(u). (19)

From the constructions (16) and (18), we know that the W(u) operator is a operator polynomial
of u with the degrees N.
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Graph Representation
R-matrix and the YBE

The fused R-matrix R
(1, 1

2
)

{1,2},3(u) also satisfy the YBE. To better understand the fusion procedure,

we use a graph representation to illustrate it.

R12(u− v) 1

2

u

v

Y BE

2

3

u

1

v

=

3

2

1

u

v
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Graph Representation
Proof of the YBE for the fused R-matrix

Recall P
(+)
1,2 R2,3(u) R1,3(u − η) P

(+)
1,2 = u × R

(1, 1
2

)

{1,2},3(u).

(a)

=

(b)

=

(c)

=

(d)

=

(e)
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Graph Representation
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Graph Representation
Proof of the YBE for the fused R-matrix

Recall P
(+)
1,2 R2,3(u) R1,3(u − η) P

(+)
1,2 = u × R

(1, 1
2

)

{1,2},3(u).

(a)

=

(b)

=

(c)

=

(d)

=

(e)

Yi Qiao (NWU) Northwest University, Xian, China June 24, 2024 14 / 48



university-logo-filename

t −W scheme
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

At the points of {u = θj}, the operator relation (11) can be simplified as

t(θj )t(θj − η) = a(θj ) d(θj − η), j = 1, · · · ,N, (20)

due to the fact d(θj ) = 0.
From the definition, we know that both t(u) and W(u) are the operator-valued polynomial of u
with degree N. Moreover, the matrices t(u) and W(u) commutate with each other, namely,

[t(u), t(v)] = [W(u), W(v)] = [t(u), W(v)] = 0. (21)

Thus they have common eigenstates. Acting the operator identities (11) and (20) on the
common eigenstate |Ψ〉, we obtain the t −W relation

Λ(u) Λ(u − η) = a(u) d(u − η) + d(u)W (u), (22)

Λ(θj )Λ(θj − η) = a(θj ) d(θj − η), j = 1, · · · ,N, (23)

where Λ(u) and W (u) are the eigenvalues of the transfer matrix t(u) and W(u) operator,
respectively

t(u) |Ψ〉 = Λ(u) |Ψ〉, W(u) |Ψ〉 = W (u) |Ψ〉.
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t −W scheme
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

From the construction of transfer matrix (5), we conclude that

Λ(u), as a function of u, is a polynomial of degree N, (24)

W (u), as a function of u, is a polynomial of degree N. (25)

Meanwhile, Λ(u) and W (u) satisfy the asymptotic behaviors

lim
u→∞

Λ(u) = 2uN + · · · , lim
u→∞

W (u) = 3uN + · · · . (26)
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Exact solution
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

In order to obtain the exact solution of the spin- 1
2

XXX closed chain described by the
Hamiltonian (1), let us take the homogeneous limit, i.e., {θj = 0}. Usually, the eigenvalues Λ(u)
and W (u) are expressed by the T − Q relations with the help of Bethe roots. Here, we quantify
the Λ(u) and W (u) by their zero roots as

Λ(u) = 2
N∏

j=1

(u − zj +
η

2
), W (u) = 3

N∏
j=1

(u − wj ), (27)

where {zj |j = 1, · · · ,N} and {wj |j = 1, · · · ,N} are the zero roots of Λ(u) and W (u),
respectively.
Substituting Eq.(27) with {u = zj − η

2
} and {u = wj} into into the t −W relation (22) with

{θj = 0}, we obtain that the zero roots {zj} and {wj} should satisfy the BAEs

(zj +
η

2
)N (zj −

3

2
η)N = −(zj −

η

2
)N W (zj −

η

2
), j = 1, · · · ,N, (28)

Λ(wj ) Λ(wj − η) = (wj + η)N (wj − η)N , j = 1, · · · ,N. (29)
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Exact solution
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

The eigenvalues of the Hamiltonian (1) can be expressed in terms of the zero roots {zj} as

E p = −2η ×
N∑

j=1

1

zj − η
2

− N. (30)

For the finite system size N, one can solve the BAEs (28) and (29) numerically. Substituting the
values of roots into Eq.(30), one obtains the energy of the system.
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Structure of roots
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

We use the Hermitian property of the transfer matrix to analyse the structure of roots.

The R-matrix (4) has the hermitian relation

R†0,j (u) = −R0,j (−u∗). (31)

Hermitian relation for the transfer matrix in the homogeneous limit:

t†(u) = tr0

{[
R0,N (u) · · ·R0,1(u)

]†}
= tr0

{
R†0,1(u) · · ·R†0,N (u)

}
(31)
= (−1)N tr0

{
R0,1(−u∗) · · ·R0,N (−u∗)

}
= (−1)N tr0

{
Rt0

0,N (−u∗) · · ·Rt0
0,1(−u∗)

}
(6)
= tr0

{
σy

0 R0,N (u∗ − η) · · ·R0,1(u∗ − η)σy
0

}
= tr0

{
R0,N (u∗ − η) · · ·R0,1(u∗ − η)

}
= t(u∗ − η). (32)
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Structure of roots
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

With the help of the t −W relation (11), we find that the W(u) operator satisfies

W†(u) = W(u∗). (33)

The relations (32) and (33) imply that the corresponding eigenvalues have the properties

Λ∗(u) = Λ(u∗ − η), W ∗(u) = W (u∗). (34)

Combining the relations (34) and (22)-(27), we conclude that if zj is the solution of Λ(u), its
complex conjugation z∗j must be the solution, and if wj is a solution of W (u), the w∗j must be
the solution, which can be denoted as

{z∗j } = {zj}, {w∗j } = {wj}. (35)
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Structure of roots
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-1.5

-1

-0.5

0

0.5

1

1.5

Patterns of zero roots at the ground state with N = 6, 8, 10, 12. The data are obtained by using
the exact numerical diagonalization with the inhomogeneous parameters {θj = 0}.

The zero roots form the conjugate pairs around the line ± lη
2

with a positive integer l ≥ 2.

At the ground state, z-roots and w -roots form the 2-strings with l = 2, 3 respectively.
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Ground state eigenfunctions in the thermodynamic limit
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

Parameterization for the ground state:

Denote the z-roots as {u(2)
j ± η|j = 1, · · · ,N/2}, with u

(2)
j ∈ R.

Denote the w -roots as {ū(2)
j ±

3η
2
|j = 1, · · · ,N/2}, with ū

(2)
j ∈ R.

Substituting the parameterization into the expression of Λg (u) and Wg (u), we obtain

Λg (u) = 2

N/2∏
j=1

(u − u
(2)
j −

η

2
)(u − u

(2)
j +

3η

2
), (36)

Wg (u) = 3

N/2∏
j=1

(u − ū
(2)
j −

3

2
η)(u − ū

(2)
j +

3

2
η). (37)

To analyze the leading terms of the eigenvalues, we define

Λg (u) = e
N[λ

(0)
g (u)+ 1

N
λ

(1)
g (u)+O( 1

N2 )]
, (38)

Wg (u) = e
N[ω

(0)
g (u)+ 1

N
ω

(1)
g (u)+O( 1

N2 )]
, (39)

where λ
(0)
g (u) and ω

(0)
g (u) are the highest order terms of u, and λ

(1)
g (u) and ω

(1)
g (u) are the

second higher order terms.
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Ground state eigenfunctions in the thermodynamic limit
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

In the thermodynamic limit N →∞, the leading terms of Λg (u) can be obtained by taking the
derivatives of logarithm of Eqs.(36) and (38)

∂

∂u
λ

(β)
g (u) =

∫ ∞
−∞

(
1

u − λ− η
2

+
1

u − λ+ 3η
2

)ρ
(β)
g (λ)dλ, β = 0, 1, (40)

where ρ
(β)
g (λ) is the density of z-roots at the ground state. The leading terms of Wg (u) are

determined by taking the derivatives of logarithm of Eqs.(37) and (39) as

∂

∂u
w

(β)
g (u) =

∫ ∞
−∞

(
1

u − λ− 3η
2

+
1

u − λ+ 3η
2

)ρ
(β)
w (λ)dλ β = 0, 1, (41)

where ρ
(β)
w (λ) is the density of w -roots.

The role of inset inhomogeneous parameters is to help us to determine the density of z-roots.
Take the difference of Eq.(23) at two nearest inhomogeneous points. In the thermodynamic limit,
we set that the density of inhomogeneous parameters as the δ-function. Then we have

∂

∂u
ln[Λg (u)Λg (u − η)] =

∂

∂u
ln[(u + η)N (u − η)N ] + O(

1

N
), (42)

where O( 1
N

) is the order-dependent correction.
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Ground state eigenfunctions in the thermodynamic limit
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

Substituting (38) into (42), we have

∂

∂u

[
λ

(0)
g (u) + λ

(0)
g (u − η)

]
=

1

u + η
+

1

u − η
, λ

(0)
g (0) = 0,

∂

∂u

[
λ

(1)
g (u) + λ

(1)
g (u − η)

]
= 0, λ

(1)
g (0) = 0. (43)

Substituting Eq.(40) with β = 0 into (43), we have∫ ∞
−∞

( 1

u − λ− η
2

+
1

u − λ+ η
2

+
1

u − λ− 3η
2

+
1

u − λ+ 3η
2

)
ρ

(0)
g (λ)dλ =

1

u + η
+

1

u − η
. (44)

Solving Eq.(44) by the Fourier transformation, we obtain the solution of densities of z-roots as

ρ
(0)
g (λ) =

1

2 cosh(πλ)
, ρ

(1)
g (λ) = 0. (45)

Using the energy expression (30) and the densities (45), we can directly determine the ground
state energy in the thermodynamic limit

Eg = −2Ni

∫ ∞
−∞

(
1

λ+ i
2

+
1

λ− 3i
2

)(
ρ

(0)
w (λ) + ρ

(1)
w (λ)

)
dλ− N

= (1− 4 ln 2)N, (46)

which is consistent with the result obtained through algebraic Bethe ansatz [10].
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Ground state eigenfunctions in the thermodynamic limit
I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

Substituting Eq.(45) into (40) and taking the integral, we obtain

λ
(0)
g (u) = ln

2Γ(1 + iu
2

)Γ( 3
2
− iu

2
)

Γ( 1
2

+ iu
2

)Γ(1− iu
2

)
, λ

(1)
g (u) = 0. (47)

The λ
(0)
g (u) can be expanded with respect to u as

λ
(0)
g (u) = ln u + ln

cosh πu
2

sinh πu
2

+
η

2u
+

1

2u2
+ O(

1

u2
), Im(u) < 1. (48)

From Eqs.(38), (47) and (48), we obtain that the eigenvalue of transfer matrix at the ground
state with the thermodynamic limit is

Λg (u) =

(
2Γ(1 + iu

2
)Γ( 3

2
− iu

2
)

Γ( 1
2

+ iu
2

)Γ(1− iu
2

)

)N

eO( 1
N

). (49)
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Now, we calculate the leading terms of W (u). Substituting zj = u
(2)
j + η

2
into the BAEs (28), we

obtain

(u
(2)
j +

3η

2
)N (u

(2)
j −

η

2
)N = −(u

(2)
j +

η

2
)N Wg (u

(2)
j +

η

2
), j = 1, · · · ,

N

2
, (50)

where {u(2)
j } are real. Taking the complex conjugation of above relation, we have

(u
(2)
j +

η

2
)N (u

(2)
j −

3η

2
)N = −(u

(2)
j −

η

2
)N Wg (u

(2)
j −

η

2
), j = 1, · · · ,

N

2
. (51)

Multiplying Eq.(50) with (51), we obtain

(u
(2)
j +

3η

2
)N (u

(2)
j −

3η

2
)N = Wg (u

(2)
j +

η

2
)Wg (u

(2)
j −

η

2
), j = 1, · · · ,

N

2
. (52)

Taking the derivative of logarithm of above equation, we arrive at

1

N

∂

∂u
ln[Wg (u +

η

2
)Wg (u −

η

2
)] =

1

u + 3η
2

+
1

u − 3η
2

+ O(
1

N2
). (53)
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I. Heisenberg spin chains with U(1)-symmetry: Periodic boundary condition

Substituting Eq.(39) into (53), we have

∂

∂u
[w

(0)
g (u +

η

2
) + w

(0)
g (u −

η

2
)] =

1

u + 3η
2

+
1

u − 3η
2

,

∂

∂u
[w

(1)
g (u +

η

2
) + w

(1)
g (u −

η

2
)] = 0. (54)

Substituting Eq.(41) into above equations and solving it by the Fourier transformation, we obtain
the density of w -roots as

ρ
(0)
w (λ) =

1

2 cosh(πλ)
, ρ

(1)
w (λ) = 0. (55)

Substituting Eq.(55) into (41), we have

∂

∂u
w

(0)
g (u) =

∂

∂u
ln

Γ( 3
2

+ iu
2

)Γ( 3
2
− iu

2
)

Γ(1 + iu
2

)Γ(1− iu
2

)
=

∂

∂u
ln

(
(u + η)(u − η)

2u
tanh

πu

2

)
. (56)

Taking the integration, we obtain

w
(0)
g (u) = ln

(
C

(0)
w

2

(u + η)(u − η)

u
tanh

πu

2

)
, (57)

where C
(0)
w is the integration constant.
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Thus the ground state eigenvalue Wg (u) can be expressed as

Wg (u) =

(
(u + η)(u − η)

u

)N(C
(0)
w

2
tanh

πu

2

)N

eω
(1)
g (0)eO( 1

N
). (58)

Substituting Eq.(58) into the t −W relation (22) with {θj = 0}, we obtain

Λg (u)Λg (u − η) = (u + η)N (u − η)N eO( 1
N

)

= (u + η)N (u − η)N

[
1 +

(
C

(0)
w

2
tanh

πu

2

)N

C
(1)
w eO( 1

N
)

]
. (59)

When u →∞, from the asymptotic behavior of Λg (u) or Eq.(49), we know that the coefficient of
highest order term of left hand side of Eq.(59) is 4. In order to meets this constraint, the left

hand side of Eq.(59) should also be 4, which gives that C
(0)
w = 2 and C

(1)
w = 3. Due to the fact

that tanh πu
2
< 1, the second term of the right hand side of (59) turns to zero when N →∞,

which gives that the W function can be neglected in the thermodynamic limit. Then we conclude
that the t −W relation (22) can be used to study the ground state physical properties.
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

Next, we consider the open boundary condition. The boundary reflections are characterized by
the reflection matrices

K−(u) =

(
p + u 0
0 p − u

)
, K +(u) =

(
q + u + η ξ(u + η)
ξ(u + η) q − u − η

)
, (60)

which satisfy the reflection equation (RE)

R1,2(λ− u)K−1 (λ)R2,1(λ+ u)K−2 (u) = K−2 (u)R1,2(λ+ u)K−1 (λ)R2,1(λ− u), (61)

and the dual reflection equation

R1,2(−λ+ u)K +
1 (λ)R2,1(−λ− u − 2η)K +

2 (u)

= K +
2 (u)R1,2(−λ− u − 2η)K +

1 (λ)R2,1(−λ+ u). (62)

Due to the boundary reflection, we should introduce the reflecting monodromy matrix

T̂0(u) = R0,1(u + θ1)R0,2(u + θ2) · · ·R0,N (u + θN ). (63)
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

The double-row monodromy matrix U0(u) is

U0(u) = T0(u)K−0 (u)T̂0(u), (64)

which satisfies the RE

R1,2(λ− u)U1(λ)R2,1(λ+ u)U2(u) = U2(u)R1,2(λ+ u)U1(λ)R2,1(λ− u). (65)

The transfer matrix for the open boundary case is constructed as

to (u) = tr0{K +
0 (u)U0(u)}. (66)

The YBE and RE lead to that the transfer matrices with different spectral parameters commutate
mutually, i.e., [to (u), to (v)] = 0. Thus to (u) is the generating function of conserved quantities
and the system is integrable. The Hamiltonian (67) is generated by the transfer matrix t(u) as

Ho = η
∂ ln to (u)

∂u

∣∣∣∣
u=0,{θj =0}

− N

=

N−1∑
n=1

(σx
nσ

x
n+1 + σy

nσ
y
n+1 + σz

nσ
z
n+1) +

η

p
σz

1 +
η

q
(σz

N + ξσx
N ). (67)
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

Following the idea of fusion, we still consider the product of two transfer matrices with certain
shift of the spectral parameter

to (u)to (u − η) = tr1,2

{
K +

2 (u)U2(u) K +
1 (u − η)U1(u − η)

}
[embedded into 2 auxiliary space]

= tr1,2

{
K +t2

2 (u)K +
1 (u − η) U t2

2 (u)U1(u − η)
}

(6)
=

1

ρ2(2u − η)
tr1,2

{
K +t2

2 (u)K +
1 (u − η)Rt2

2,1(−2u − η) Rt2
1,2(2u − η)U t2

2 (u)U1(u − η)
}

=
1

ρ2(2u − η)
tr1,2

{(
K +

1 (u − η)R2,1(−2u − η)K +
2 (u)

)
(U2(u)R1,2(2u − η)U1(u − η)) P

(−)
2,1

+
(
K +

1 (u − η)R2,1(−2u − η)K +
2 (u)

)
(U2(u)R1,2(2u − η)U1(u − η)) P

(+)
2,1

}
= ∆o (u)/

(
(u +

η

2
)(u −

η

2
)
)

+ to
2 (u), [extract constant factor] (68)

where ρ2(u) = −u(u + 2η).
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

The first term of Eq.(68) give a number which is the quantum determinant

∆o (u) = ao (u)do (u − η)(u +
η

2
)(u −

η

2
), (69)

where the functions ao (u) and do (u) are

ao (u) =
u + η

u + η
2

(u + p)(
√

1 + ξ2 u + q)
N∏

j=1

(u − θj + η)(u + θj + η), (70)

do (u) = ao (−u − η) =
u

u + η
2

(u − p + η)(
√

1 + ξ2(u + η)− q)
N∏

j=1

(u − θj )(u + θj ).(71)

The second term of Eq.(68) is a new operator which is the fused transfer matrix up to a constant

to
2 (u) =

1

ρ2(2u − η)
tr1,2

{
K +
{1,2}(u)T{1,2}(u)K−{1,2}(u)T̂{1,2}(u)

}
. (72)
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

From the fusion of the reflection matrices and mondromy matrices

K +
{1,2}(u) = P

(+)
2,1 K +

1 (u − η)R2,1(−2u − η)K +
2 (u)P

(+)
1,2 = 2u K

(1)+
{1,2}(u),

K−{1,2}(u) = P
(+)
1,2 K−2 (u)R1,2(2u − η)K−1 (u − η)P

(+)
2,1 = 2u K

(1)−
{1,2}(u),

T{1,2}(u) = P
(+)
1,2 T2(u) T1(u − η) P

(+)
1,2 =

N∏
l=1

(u − θl )T
(1, 1

2
)

{1,2}(u),

T̂{1,2}(u) = P
(+)
2,1 T̂2(u) T̂1(u − η) P

(+)
2,1 =

N∏
l=1

(u + θl )T̂
(1, 1

2
)

{1,2}(u), (73)

we obtain

to
2 (u) =

4u2

ρ2(2u − η)
do (u)Wo (u), [the constant factor] (74)

where

Wo (u) = tr{1,2}

{
K

(1)+
{1,2}(u)T

(1, 1
2

)

{1,2}(u)K
(1)−
{1,2}(u)T̂

(1, 1
2

)

{1,2}(u)

}
. (75)
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

Then the operator identity (68) can be expressed as

to (u)to (u − η) = ∆o (u)× id/((u +
η

2
)(u −

η

2
)) +

4u2

ρ2(2u − η)
do (u)Wo (u). (76)

At the inhomogeneous points {u = θj}, Eq.(76) reduces to

(θl +
η

2
) (θl −

η

2
)to (θl )to (θl − η) = ∆o (θl ), j = 1, · · · ,N. (77)

The fusion does not break the integrability of the system, thus the transfer matrix and the fused
transfer matrix commutate with each other. Thus they have common eigenstates. Acting the
operator relation (76) on a common eigenstate, we obtain the t −W relation

∆o (u)− (u +
η

2
) (u −

η

2
)Λ̄(u)Λ̄(u − η) = u2

N∏
j=1

(u − θj )(u + θj ) W̄ (u), (78)

where Λ̄(u) and W̄ (u) are the eigenvalues of the transfer matrix to (u) and the fused one Wo (u),
respectively. At the points of inhomogeneous point, the eigenvalue Λ̄(u) satisfies

(θl +
η

2
) (θl −

η

2
)Λ̄(θl )Λ̄(θl − η) = ∆o (θl ), j = 1, · · · ,N. (79)
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

The exact solution of the system does not depend on the inhomogeneous parameters. Thus we
set them as zero. From the definitions, we know that the eigenvalue function Λ̄(u) is a polynomial
of u with degree 2N + 2 and also satisfies the crossing symmetry and asymptotic behavior

Λ̄(−u − η) = Λ̄(u), lim
u→∞

Λ̄(u) = 2u2N+2 + · · · . (80)

The eigenvalue function W̄ (u) is an polynomial of u with degree of 2N + 4 and has asymptotic
behavior

W̄ (−u) = W̄ (u), lim
u→∞

W̄ (u) = (ξ2 − 3)u2N+4 + · · · . (81)

Based on above analysis, we parameterized Λ̄(u) and W̄ (u) as

Λ̄(u) = 2
N+1∏
j=1

(u − zj +
η

2
)(u + zj +

η

2
), (82)

W̄ (u) = (ξ2 − 3)
N+2∏
k=1

(u − wk )(u + wk ), (83)

where {zj |j = 1, · · · ,N + 1} and {wk |k = 1, · · · ,N + 2} are the roots of corresponding
polynomials,
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

which are completely determined by the BAEs

∆(zj −
η

2
) = (zj −

η

2
)2N+2 W̄ (zj −

η

2
), j = 1, · · · ,N + 1, (84)

∆(wk ) = (wk +
η

2
)(wk −

η

2
)Λ̄(wk )Λ̄(wk − η), k = 1, · · · ,N + 2, (85)

where ∆(u) is the quantum determinant with homogeneous limit {θj = 0}

∆(u) = (u − η)(u + η)(u − p)(u + p)(
√

1 + ξ2 u + q)(
√

1 + ξ2 u − q)(u + η)2N (u − η)2N . (86)

The eigenvalue of the Hamiltonian (67) ai determined by the solutions of above BAEs

E o =
N+1∑
j=1

η2

η2

4
− z2

j

− N. (87)
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II. Heisenberg spin chains without U(1)-symmetry: nondiagonal boundary condition

The hermitian of Hamiltonian (67) requires that the boundary parameters satisfy

p∗ = −p, q∗ = −q, ξ∗ = ξ. (88)

The above constrains implies

R†(u) = −R(−u∗),
(

K (±)(u)
)†

= −K (±)(−u∗), (89)

which gives rise to the hermitian properties of the transfer matrix and its eigenvalue

(to (u))† = to (−u∗), Λ̄∗(u) = Λ̄(−u∗). (90)

Combining the expansions (82) and (83), t −W relation (78) and the hermitian relation (90), we
conclude that if zj is a root of Λ̄(u), then z∗j must be the root and that if wj is a root of W̄ (u),

then w∗j must be the root, which can be denoted as

{z∗j } = {zj}, {w∗j } = {wj}. (91)
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-1 -0.5 0 0.5 1

Re

-3

-2

-1

0

1

2

3

Im

z-roots
w-roots

The patterns of z-roots (blue asterisks) and w -roots (red circles) in complex plane at the ground
state with N = 6, η = i , p = −1.2i , q̄ = 0.8i , ξ = 1, {θj = 0}.

The zero roots form the conjugate pairs around the line ± lη
2

with a positive integer l ≥ 2,
which is called as the l-strings.

At the ground state, both z-roots and w -roots form the 2-strings with l = 2, 3 respectively.

Boundary strings: Boundary conjugate pairs at the imaginary axis.
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Parameterization for the ground state:

Denote the z-roots as {±z1η, u
(2)
j ± η|j = 1, · · · ,N}, with z1, u

(2)
j ∈ R.

Denote the w -roots as {±χ1η,±χ2η,w
(2)
j ± 3η

2
|j = 1, · · · ,N}, with χ1, χ2,w

(2)
j ∈ R.

Substituting these 2-strings into Eqs.(82) and (83), we obtain

Λ̄g (u) = 2
(
u − (z1 −

1

2
)η
)(

u + (z1 +
1

2
)η
) N/2∏

j=1

(u − u
(2)
j −

η

2
)(u + u

(2)
j −

η

2
)

×(u − u
(2)
j +

3η

2
)(u + u

(2)
j +

3η

2
)

= 2
(
u − (z1 −

1

2
)η
)(

u + (z1 +
1

2
)η
)
e

2N(λ̄
(0)
g (u)+ 1

2N
λ̄

(1)
g (u)+O( 1

N2 ))
, (92)

Λ̄g (0) = 2(z1 −
1

2
)(z1 +

1

2
)e

2N(λ̄
(0)
g (u)+ 1

2N
λ̄

(1)
g (u)+O( 1

N2 ))
= 2 p q ≡ 2 p q̄

√
1 + ξ2. (93)
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W̄g (u) = (ξ2 − 3)(u − χ1η)(u + χ1η)(u − χ2η)(u + χ2η)

×
N/2∏
j=1

(u − w
(2)
j −

3

2
η)(u + w

(2)
j −

3

2
η)(u − w

(2)
j +

3

2
η)(u + w

(2)
j +

3

2
η)

= (ξ2 − 3)(u − χ1η)(u + χ1η)(u − χ2η)(u + χ2η)e
2N(ω̄

(0)
g (u)+ 1

2N
ω̄

(1)
g (u)+O( 1

N2 ))
, (94)

where the leading terms are determined by

∂

∂u
λ̄

(β)
g (u) =

∫ ∞
−∞

(
1

u − λ− η
2

+
1

u − λ+ 3η
2

)ρ
(β)
g (λ)dλ, β = 0, 1, (95)

∂

∂u
ω̄

(β)
g (u) =

∫ ∞
−∞

(
1

u − λ− η
+

1

u − λ+ η
+

1

u − λ− 2η
+

1

u − λ+ 2η

)
ρ

(β)
w (λ)dλ. (96)
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Taking the difference of (79) at two inhomogeneous points and considering the continuum limit,
we have

∂

∂u
ln
[
(u +

η

2
)(u −

η

2
)Λ̄(u)Λ̄(u − η)

]
=

∂

∂u
ln ∆(u) + O(

1

N
). (97)

Similarly with the periodic boundary case, substituting (92) into (97), we have

∂

∂u
[λ̄

(0)
g (u) + λ̄

(0)
g (u − η)] =

1

u + η
+

1

u − η
, λ̄

(0)
g (0) = 0,

∂

∂u
[λ̄

(1)
g (u) + λ̄

(1)
g (u − η)] =

1

u + η
+

1

u − η
+

1

u + pη
+

1

u − pη
+

1

u + q̄η
+

1

u − q̄η

−
1

u + η
2

−
1

u − η
2

−
1

u + η
2

−
1

u − η
2

−
1

u + (z1 − 1
2

)η
−

1

u − (z1 − 1
2

)η

−
1

u + (z1 + 1
2

)η
−

1

u − (z1 + 1
2

)η
,

λ̄
(1)
g (0) = ln(2 p q̄

√
1 + ξ2)− ln

[
2(z1 +

1

2
)(z1 −

1

2
)
]
. (98)
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Substituting (95) into (98) and solving it by the Fourier transformation, we obtain the densities
of z-roots at the ground state as

ρ̃
(0)
g (w) =

a2(w)

2π
[
a1(w) + a3(w)

] ,
ρ̃

(1)
g (w) =

1

2π
[
a1(w)+a3(w)

] [a2(w)+a2p(w)+a2q̄(w)−a1(w)−a2z1−1(w)−a2z1+1(w)
]
, (99)

where ρ̃
(β)
g (w) is the Fourier transformation of ρ

(β)
g (λ) and an(w) = e−n|w|/2. By incorporating

the 2-string structure into the energy expression (87) and integrating it with the densities (99) as
the weighting factor, we obtain the ground state energy

E o
g = −Ni

∫ ∞
−∞

(
1

z + i
2

+
1

z − 3i
2

)∫ ∞
−∞

e iωz
(
ρ̃

(0)
g (ω) + ρ̃

(1)
g (ω)

)
dω dz +

1

z2
1 −

1
4

− N

= (1− 4 ln 2)N − 1 + π − 2 ln 2 +
1

|p|
+

√
1 + ξ2

|q|
− 2 i

∫ ∞
0

e−|p|w +e
− |q|w√

1+ξ2

1 + e−w
. (100)
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Substituting the densities (99) into (95), we arrive at

λ̄
(0)
g (u) = ln

2Γ(1 + iu
2

)Γ( 3
2
− iu

2
)

Γ( 1
2

+ iu
2

)Γ(1− iu
2

)
, (101)

λ̄
(1)
g (u) = ln

[
4
√

1 + ξ2(
u − (z1 − 1

2
)η
)(

u + (z1 + 1
2

)η
)
(u + η

2
)

cosh(πu
2
− iπ

4
)

sinh(πu
2
− iπ

4
)

Γ(1 + iu
2

)Γ( 3
2
− iu

2
)

Γ( 1
2

+ iu
2

)Γ(1− iu
2

)

×
Γ( p+1

2
+ iu

2
)Γ( p+2

2
− iu

2
)

Γ( p
2

+ iu
2

)Γ( p+1
2
− iu

2
)

Γ( q̄+1
2

+ iu
2

)Γ( q̄+2
2
− iu

2
)

Γ( q̄
2

+ iu
2

)Γ( q̄+1
2
− iu

2
)

]
, (102)

which implies

Λ̄g (u) =
8
√

1 + ξ2

u + η
2

cosh(πu
2
− iπ

4
)

sinh(πu
2
− iπ

4
)

Γ(1 + iu
2

)Γ( 3
2
− iu

2
)

Γ( 1
2

+ iu
2

)Γ(1− iu
2

)

Γ( p+1
2

+ iu
2

)Γ( p+2
2
− iu

2
)

Γ( p
2

+ iu
2

)Γ( p+1
2
− iu

2
)

×
Γ( q̄+1

2
+ iu

2
)Γ( q̄+2

2
− iu

2
)

Γ( q̄
2

+ iu
2

)Γ( q̄+1
2
− iu

2
)

(
2Γ(1 + iu

2
)Γ( 3

2
− iu

2
)

Γ( 1
2

+ iu
2

)Γ(1− iu
2

)

)2N

eO( 1
N

). (103)
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Now, we consider the leading terms of the W̄g (u) in the thermodynamic limit. Analogous to the

case of periodic boundary condition, we set the variable zj = u
(2)
j + η in BAEs (84) and multiply

it by its conjugate counterpart. As a result, we obtain

∆(u
(2)
j +

η

2
)∆(u

(2)
j −

η

2
) = (u

(2)
j +

η

2
)2N+2(u

(2)
j −

η

2
)2N+2 W̄ (u

(2)
j +

η

2
)W̄ (u

(2)
j −

η

2
). (104)

By taking the derivative of the logarithm of (104), we obtain

1

2N

∂

∂u
ln[W (u +

η

2
)W (u −

η

2
)] =

1

2N

∂

∂u

(
ln
[
∆(u +

η

2
)∆(u −

η

2
)
]

− ln
[
(u +

η

2
)2N+2(u −

η

2
)2N+2

])
+ O(

1

N2
). (105)

Substituting (94) and (96) into (105), and solving it by the Fourier transformation, we have the
densities

ρ̃
(0)
w (w) =

a2(w)

2π
[
a1(w) + a3(w)

] , (106)

ρ̃
(1)
w (w) =

1

2π
[
a1(w) + a3(w)

] [a3(w) + a2p+1(w) + a2p−1(w) + a2q̄+1(w) + a2q̄−1(w)

−a1(w)− a2χ1−1(w)− a2χ1+1(w)− a2χ2−1(w)− a2χ2+1(w)
]
. (107)
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Substituting the densities (106) and (107) into (96), we arrive at

∂

∂u
ω̄

(0)
g (u) =

∂

∂u
ln

Γ( 3
2

+ iu
2

)Γ( 3
2
− iu

2
)

Γ(1 + iu
2

)Γ(1− iu
2

)
=

∂

∂u
ln

[
(u + η)(u − η)

2u
tanh

πu

2

]
, (108)

∂

∂u
ω̄

(1)
g (u) =

∂

∂u
ln

(
(u − pη)(u + pη)(u − q̄η)(u + q̄η)

(u − χ1η)(u + χ1η)(u − χ2η)(u + χ2η)

Γ( 3
2

+ iu
2

)Γ( 3
2
− iu

2
)

Γ(1 + iu
2

)Γ(1− iu
2

)

×
Γ( 1

2
+ iu

2
)Γ( 1

2
− iu

2
)

Γ(1 + iu
2

)Γ(1− iu
2

)

)
. (109)

Then the leading terms can be obtained by taking the integration of above equation and the finial
results are

ω̄
(0)
g (u) = ln

(
C̄

(0)
w

2

(u + η)(u − η)

u
tanh

πu

2

)
, (110)

ω̄
(1)
g (u) = ln

(
(u−pη)(u+pη)(u−q̄η)(u+q̄η)

(u−χ1η)(u+χ1η)(u−χ2η)(u+χ2η)

Γ( 3
2

+ iu
2

)Γ( 3
2
− iu

2
)

Γ(1 + iu
2

)Γ(1− iu
2

)

Γ( 1
2

+ iu
2

)Γ( 1
2
− iu

2
)

Γ(1 + iu
2

)Γ(1− iu
2

)

)
+ ln C̄

(1)
w . (111)
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Thus the the ground state eigenfunction W̄g (u) in the thermodynamic limit can be expressed as

W̄g (u) = 4C̄
(1)
w (ξ2 − 3)(u − pη)(u + pη)(u − q̄η)(u + q̄η) tanh2 πu

2

×
(u + η)2N+1(u − η)2N+1

u2N+2

(
C̄

(0)
w

2
tanh

πu

2

)2N

. (112)

Substituting Eq.(112) into the t −W relation (78), we have

(u +
η

2
) (u −

η

2
)Λ̄g (u)Λ̄g (u − η) = (1 + ξ2)(u − pη)(u + pη)(u − q̄η)(u + q̄η)

×(u − η)2N+1(u + η)2N+1

{
1−

4(ξ2 − 3)

1 + ξ2
C̄

(1)
w tanh2 πu

2

(
C̄

(0)
w

2
tanh

πu

2

)2N

eO( 1
N

)

}
. (113)

When u tends to infinity, the coefficient of the highest order term of the left hand side of (113) is
4. Thus the corresponding coefficient of the right hand side of (113) should be also 4, which

gives C̄
(0)
w = 2 and C̄

(1)
w = 1

4
. Because tanh πu

2
< 1, the second term of the right hand side of

(113) is negligible in the thermodynamic limit.
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Summary

Summary:

The exact solutions of the model with periodic and generic open boundary conditions.

the analytical expressions of the ground state eigenfunctions of the transfer matrix and W
operator in the thermodynamic limit.

Serves as a compelling proof of the validity of the extensively applied inversion relation.
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