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OUTLINE

- Matrix Quantum Mechanics. (In progress, with Henry Lin)
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SMALL PIECES OF OPTIMIZATION THEORY

Basically bootstrap method is solving problems in theoretical
physics by optimization theory.

- Quadratic programming:

min vy ()
sty = X4+3x+1

- Linear programming:

max  300x + 100y
st 6x+3y < 40
x—-3y < 0
X+1y < 4



SEMI-DEFINITE PROGRAMMING

- Semi-definite Programming:

min  2x+ 3y

st <X1> =0 ®)
1Ty

- Linear programming and Quadratic programming are special
situations of Semi-definite Programming(SDP).

- They all fall into the class of Convex Optimization.

- Generally we cannot solve large-scale non-convex optimization
problem (NP hard).



BFSS MODEL

The Hamiltonian is chosen to be [Banks, Fischler, Shenker, Susskind
971

1 1
H= 5 Tr (92P12 gbT X1, X)) — YaTus [XM/)B]) (4)
Here:
[Xijs Pril = 10i0je, {¥a,ij> ¥3,01} = 0ap0itOki (5)
Dual to the dynamics of the DO-brane.

The matrices are in multiples of the SO(9) symmetry, with the
supercharge:

i
Qo = gtrPryosp — 5ot Xl ss (6)



WHY BOOTSTRAP

MC:

- physics simplifies at large N but the computation gets harder

- sign problem, finite volume truncation, finite N truncation
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TOYy MODEL

The Hamiltonian is chosen to be(g = 1):
_1 2 2 1 2,2 7)
H_z(px+py)+zgxy 7
This model is not trivially solved by numerical method/analytical

method[Hoppe, 1980] [Simon, 1983][Komatsu et al., 2024]. It keeps
certain key feature of the BFSS Hamiltonian:

1 1
H= 5 Tr (QZP/2 - ng [X/7X/]2 - ¢a’Yr’x6 [X/ﬂpﬁ]) (8)



LOOP EQUATIONS

Our goal is to solve all the eigenvalues and all the expectations of
the operators under different eigenstates.

For an eigenstate with eigenvalue E, the corresponding loop
equations are:
([H,0]) =0, YO (9)

(HO) = E(O), YO (10)
together with the Ward identities:

(Og) = (0), YO (1)

These are all linear equations, we can expand any operators as:

0= Z Oémmsp;np;xtys (12)



POSITIVITY BY INNER PRODUCT

Generalization: Any inner products defined on the vector space of
operators or its subspace could leads to positivity condition:

(0]0) = (0TO) = a*"Ma > 0, Va < M = 0. (13)
Here we do the expansion O =}~ o0, Mj; = ((’)f@,-).

X2 p? Xp

oAy (P (xp)

o) N ph) (°p) ...

p* (P* (P> (p*) (Pxp) ... | =o.
px| (px) (p)  (pxp?) (px°p)
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Toy MODEL(A = 12)
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GROUND STATE POSITIVITY

For the ground state, or more generally, any stationary state, the
corresponding positivities are:

(OTO) >0, YO (14)

(O'[H,0]) > 0, VO (15)

The later positivity is specialized for the ground state. For more
general thermal state with inverse temperature 8 [Fawzi, Fawzi and
Scalet 23],

(010
(0O0T)
Mathematically, these positivities together with the loop equations is
necessary and sufficient.

(O10) log < B(OT[H, O)), YO (16)

1



GROUND STATE(A = 4,6, 8)
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ONE-MATRIX QUANTUM MECHANICS

The Hamiltonian is chosen to be:
H = tr(P* + X* + gX*) (17)
Here X is a large N Hermitian matrix:
[Xijs Pri] = 1010 (18)

The ground state is known to be solvable.

[Han et al., 2020] [WIP w/ Henry Lin]



LOOP EQUATIONS

The corresponding loop equations are:
(H,0]) =0,vO (19)

(tr(GO)) = 0, YO (20)

together with the cyclicity of tr@. G = i[X, P] + [ is the generator of
the SU(N) gauge symmetry.

Result: general words in P and X can be reduced to polynomials of
trX™.

12 2 1 4
trP2X2P2X* = — g?trX™ — ZgtrXPtrX® — —gtrX® + —Ogtrx”

77 3 5 231 (21)
trX? 1 trx® X0

T toteXt -
T o T3t 0 T

14



POSITIVITY

For the ground state, or more generally, any stationary state, the
corresponding loop equations are:

(0t0) > 0, YO (22)

(OT[H,0]) > 0, YO (23)

The later positivity is specialized for the ground state. For more
general thermal state with inverse temperature 8 [Fawzi, Fawzi and
Scalet 23],

(010
(0O0T)
Mathematically, these positivities together with the loop equations is
necessary and sufficient.

(O10) log < B(OT[H, O)), YO (24)



CONVERGENCE

The illustration of convergence, the left one is A = 2, whereas the
right one corresponds to A = 3. The size of the SDP matrix is 2,2,2
and 3, 3,2, 3, respectively,

0332
045

0331
0.4

Trx? 7 033
035

0329
03

115 1.25 135 1.45 0328

1301 1303 1305 1307

Ey
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CONVERGENCE

The size of the SDP matrices are 5, 4, 4, 4.

A=4
0.33143
0.33142
Trx?
0.33141
0.3314
1.3019 1.30191 1.30192

Ey



BFSS MODEL

The Hamiltonian is chosen to be [Banks, Fischler, Shenker, Susskind
971

1 1
H= 5 Tr (92P12 T g X0, X2 — Yarhs [XM/)B]) (25)
Here:
[Xijs Pril = 10i0je, {a,ij> ¥3,01} = 0ap0itOki (26)
Dual to the dynamics of the DO-brane.

The matrices are in multiples of the SO(9) symmetry, with the
supercharge:

i
Qo = gtrPryosp — 5ot Xl ss (27)



BFSS MODEL BOOTSTRAP [WIP w/ HENRY LIN]

Loop equations:

([H,0) =0 (28)
{({Qa; Oa}) =0 (29)
(O010,) = (O,01) — ([O1, Od]) (30)
(tr(C;05)) = 0, YO (31)

This is the gauge singlet condition:
Cj = =X, Ply — v — Ty (32)

Positivities:

(OT0) >0, YO (33)

(OT[H,0]) > 0, YO (34)

19



BFSS MODEL BOOTSTRAP [WIP w/ HENRY LIN]

Loop equations:

(H.0=70 (35)
{({Qa; Oa}) =0 (36)
(O010,) = (O,01) — ([O1, Od]) (37)
(tr(C;05)) = 0, YO (38)

This is the gauge singlet condition:
Cj = =X, Ply — v — Ty (39)

Positivities:

(OT0) >0, YO (40)

(OMH-OF=70, YO (41)

20



NUMERICAL RESULT

0.50f ]
. — lower bd

[Berkowitz et al.]

A2 (tr X2)

[Pateloudis et al.]
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NUMERICAL RESULT
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NUMERICAL RESULT

—(Tr[X, Y1*)

0.5 .
0.8 il

0.2 0.4 0.6
(TrX?)

Pink cross + is the Monte Carlo result of [Pateloudis et al, 22].
22



CONVERGENCE

Records (trX?)
MC [Pateloudis et al, 2022] ~ 0.37
Primitive bootstrap[Lin, 2023] | > 0.1875
cutoff 6 > 0.294
cutoff 7 > 0.331

Even at level 7 the SDP problem scale is extremely small (at most
10 x 10 matrix). Which solves instantly on a laptop.

23



QUESTIONS?
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ABOVE GROUND STATE

The dashed line is the thermal state with the corresponding energy
expectation. Different colors correspond to A = 8,18, 26.
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ONE-MATRIX MODEL[LIN, 2020][KAZAKOV AND ZHENG, 2022

The partition function is chosen to be:
1 1
Z= lim Zy = lim /d” e MV T y(x) = iuszngx‘*, (42)

The integration is over Hermitian matrix.

The basis of operators are:

k : dvmM —NerV(M)
Wy = (TrM*) = NIme 70 NtrM e . (43)

And the Schwinger-Dyson equations:

k—1
pWest + Weis = D> W Wi, R=1,2,3,.. ()
(=0

27



POSITIVITY BY INNER PRODUCT

Generalization: Any inner products defined on the vector space of
operators or its subspace could leads to positivity condition:

(0]0) = (0TO) = a*TMa > 0, Va & M = 0. (45)

Here we do the expansion O =}~ o;0;, Mj; = (O(T(’),).

In the above case of Hermitian matrix integration, we were taking
adjoint to be Hermitian conjugation:

ot=0T=0 (46)

28



POSITIVITY

Considering the expectations of square of polynomials are always
positive semi-definite:

;/Z dMTr(Z a,-/\/[i)Z exp(—NtI‘V(M)) >0, Vo (47)

This is a quadratic form in q, its positivity is equivalent to:

We Wi W,
Wi W Wi
W=1lw, w, w, ... | =0 (48)

29



BOOTSTRAPPING LARGE N ONE-MATRIX MODEL

This is the result of bootstrapping u = 1 and Z, symmetry preserving
solutionW,; = 0. From the loop equation and symmetry assumption,
all moments are polynomial functions of W.

20
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MULTI-MATRIX BOOTSTRAP[KAZAKOV AND ZHENG, 2022]

Here we propose to study the following two-matrix model:

7= [F /szA dNZB ethr(fh[A,B]z/2+A2/2+QA“/4+82/2+QB"/4) (49)

N—oo

The integration is over Hermitian matrix. To the best of our
knowledge, this model with general g and h value, is not solvable!

TrA?, TrA*, TrA?B?, TrABAB, TrA®, TrA*B?, TrA’BAB, TrA?BA?B, TrA®,
TrA®B?, TrA°BAB, TrA*BA’B, TrA“B*, TrA’BA’B, TrA’BAB®, TrA*B?AB?,

TrA?BABAB?, TrA’BAB?AB, TrA*B?°A’B?, TrABABABAB ...
(50)

31



CUTOFF=4: LOOP EQUATIONS

B = (TrA%)%:

1= TrA? 4+ gTrA* — h(—2TrA?B? 4+ 2TrABAB)
0 = —2TrA? + TrA* — h(2TrA3BAB — 2TrA“B?) + gTrA®
0 = —TrA? + TrA?B? — h(—TrA?BA?B + 2TrA3BAB — TrA“B?) + gTrA“B?
0 = —h(2TrA?BA?B — 2TrA3BAB) + gTrA’BAB + TrABAB
B = —2TrA* 4+ TrA® — h(2TrA BAB — 2TrA®B?) + gTrA®
B = —TrA’B? + TrA*B?> — h(—TrA>B?AB? + 2TrA’BAB® — TrA*B*) + gTrA®B?
0 = —2TrA?B? — h(—TrA?B2A?B? 4 2TrA?BABAB? — TrA3B?AB?) 4 TrA*B? + gTrA®B?
0 = —TrA* + TrA*B? + gTrA*B* — h(—TrA*BA?B + 2TrA°BAB — TrA®B?)
0 = TrA3BAB — h(2TrA?BAB*AB — TrA’BABAB? — TrA>BAB®) + gTrABAB — TrABAB
0 = TrA3BAB + gTrABAB — 2TrABAB — h(—2TrA?BABAB? + 2TrABABABAB)
0 = TrA®BAB + gTrA3BAB® — h(—TrA3BA3B + 2TrABA?B — TrA°BAB)
0 = gTrABASB + TrA’BAB — h(2TrA3B?AB? — 2TrA3BAB?)
0 = —TrA%B% + TrA?BA?B — h(—TrA?BAB?AB + 2TrA’BABAB? — TrA3B2AB?) + gTrA*BA’B
B = TrA?BA?B + gTrA3B?AB? — h(2TrA3BA3B — 2TrA“BA’B).

(51)

32



CUTOFF=4: POSITIVITY

For example, the block for the even-odd words reads:

TrA? TrA* TrA?B2 TrABAB TrA2B2
TrA*B? TrASBAB  TrA“B?
TrA*B? TrA’BAB
TrABAB TrA3BAB TrA3BAB TrA?BA’B

TrA’B>  TrA*B?> TrA’BA’B  TrA’BAB

TrA* TrA®
TrA’B>  TrA“B? TrA’BA’B | =0
TrA3BAB

TrA“B?

(52)
All the constraints are convex except the quadratic loop equations!

58



RELAXATION

Our general strategy: we treat the quadratic terms in the loop
equations as independent variable, and replace the algebraic
equality by the convex inequality:

Q= xxT (53)

1 XT
R—(x Q>>o. (54)

For the previous situation, we have a simple matrix:

1 TrA?
R = (TrAZ 5 ) = 0. (55)

to:

34



RESULTS

03336
03335
A=7
5 03334f 1 A=8
A=9
+ A=10,11
03333 1
03332

0.4217 0.4218 0.4219 0.4220 0.4221

t

0.421783612 < (TrA%) < 0.421784687
A=1,g=h=1:

0.333341358 < (TrA*) < 0.333342131



COMPARE WITH MC

Compared to the MC study of the same model 2111.02410 (Jha), we are
convinced that for this model bootstrap is at least two order of
magnitude more efficient than MC.

- MC: 80-85 hours for N=800 simulation to get 4.5 digits.
- Bootstrap: less than 1 hour to get 6 digits.
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