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What is “guantum gravity”?
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QUANTUM THEORY OF GRAVITATION* ~ ™
“There’s a certain irrationality

(Received July 3, 1963) to any work in gravitation.”
- Y,

My subject is the quantum theory of gravitation. My interest in it is primarily in the /

relation of one part of nature to another. There’s a certain: irrationality to any work in gravi-
tation, so it’s hard to explain why you do any of it; for example, as far as quantum effects
are concerned let us consider the effect of the gravitational attraction between an eleciron
and a proton in a hydrogen atom; it changes the energy a little bit. Changing the energy

of a quantum system means that the phase of the wave function is slowly shifted relative r‘ . L. . . . .
This irrationality is shown in the

to what it would have been were no perturbation present. The effect of gravitation on the

hydrogen atom is to shift the phase by 43 seconds of phase in every hundred times the
T e | Am aton sy : v e strange gadgets of Prof. Weber,

lifetime of the universe! An atom made purely by gravitation, let us say two neutrons held

together by gravitation, has a Bohr orbit of 10° light years. The energy of this system is I :

10~ rydbergs. I wish to discuss here the possibility of calculating the Lamb correction to In the absu rd Creatlon Of PrOf
this thing, an energy, of the order 10129, This irrationality is shown also in the strange / Wheeler L. ?
gadgets of Prof. Weber, in the absurd creations of Prof. Wheeler and other such things, -
because the dimensions are so peculiar. It 15 therefore cleaxr that 1he p1oblem We are working.
on is not the correct problem; the correct problem is what determines the size of gravita-
tion? But since I am among equally irrational men I won'’t be criticized I hope for the fact
that there’is no possible, practical reason for making these calculations.

I am limiting myself to not discussing the questions of quantum geometry nor what
happens when the fields are of very short wave length. I am not trying to discuss any prob-
lems which we don’t already have in present quantum field theory of other fields, not that
I believe that gravitation is incapable of solving the problems that we have in the present
theory, but because I wish to limit my subject. I suppose that no wave lengths are shorter ( 1

than one-millionth of the Compton wave length of a proton, and therefore it is legitimate to “I am |nveSt|gat| ng th|S SuUu bJeCt
analyze everything in perturbation approximation; and I will carry out the perturbation ] =
despite the real difficulty that

approximation as far as I can in every direction, so that we can have as many terms as we
want, which means that we can go to ten to the minus two-hundred and something ryd- / th I 7
ere are no experiments.

bergs.
I am investigating this subject despite the real difficulty that there are no experiments. 7/ -

Therefore there is so real challenge to compute true, physical situations. And so I made
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QUANTUM THEORY OF GRAVITATION*

By R. P. FEYNMAN
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My subject is the quantum theory of gravitation. My interest in it is primarily in the
relation of one part of nature to another. There’s a certain: irrationality to any work in gravi-
tation, so it’s hard to explain why you do any of it; for example, as far as quantum effects
are concerned let us consider the effect of the gravitational attraction between an eleciron
and a proton in a hydrogen atom; it changes the energy a little bit. Changing the energy
of a quantum system means that the phase of the wave function is slowly shifted relative
to what it would have been were no perturbation present. The effect of gravitation on the
hydrogen atom is to shift the phase by 43 seconds of phase in every hundred times the
lifetime of the universe! An atom made purely by gravitation, let us say two neutrons held
together by gravitation, has a Bohr orbit of 10° light years. The energy of this system is
10-7 rydbergs. I wish to discuss here the possibility of calculating the Lamb correction to
this thing, an energy, of the order 1072, This irrationality is shown also in the strange
gadgets of Prof. Weber, in the absurd creations of Prof. Wheeler and other such things,
because the dimensions are so peculiar. It is therefore clear that the problem we are working
on is not the correct problem; the correct problem is what determines the size of gravita-
tion? But since I am among equally irrational men I won'’t be criticized I hope for the fact
that there’is no possible, practical reason for making these calculations.

I am limiting myself to not discussing the questions of quantum geometry nor what
happens when the fields are of very short wave length. I am not trying to discuss any prob-
lems which we don’t already have in present quantum field theory of other fields, not that
I believe that gravitation is incapable of solving the problems that we have in the present
theory, but because I wish to limit my subject. I suppose that no wave lengths are shorter
than one-millionth of the Compton wave length of a proton, and therefore it is legitimate to
analyze everything in perturbation approximation; and I will carry out the perturbation
approximation as far as I can in every direction, so that we can have as many terms as we
want, which means that we can go to ten to the minus two-hundred and something ryd-
bergs.
I am investigating this subject despite the real difficulty that there are no experiments.
Therefore there is so real challenge to compute true, physical situations. And so I made

By studying loop diagrams,
Feynman made discoveries
that are important for gauge
theory:

Feynman’s tree theorem

The idea of Faddeev-Popov
guantization and ghost



Higher loop gravity

High-loop gravity can be very difficult using Feynman diagram:
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Higher loop perturbation is important

L/ \ E QCD
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Understanding the structure of ultraviolet divergences in gravity:
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Double copy

KLT relation:

~ CLNS - 85/667
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A Relation Between Tree Amplitudes of Closed and Open

Strings - -
Ac gs)cd =-7I'IC28111( Trnl’x2)Aog)ﬂ (8 rt ) Ao}fc)n (8 y U )

H. Kawss, D.C. Lewellen, and S.-H.H. Tye
Newman Laboratory of Nuclear Studies - 6)

- an34 (5 . e Yet .
i acc:n;ng;mmgs 53 ALy ==x34,0), (12345)4, 1), (21435)sin(mx, k,)sin(xxy k)
+mc® A%, (13245)A,0), (31425)sin(rk -k g)sin(xk, k).

ABSTRACT

We derive a formula which expresses any closed string tree Field theory limit

amplitude in terms of a sum of the products of appropriate open
string tree amplitudes. This formula is applicable to the heterotic
string as well as to the closed bosonic string and type II super-
strings. In particular, we demonstrate its use by showing how to
write down, without any direct calculation, all four-point heterotic MEe(1,2, 3,4 5) = is1a550 AT (1,2,3, 4, 5) AT(2. 1,4, 3, 5)

string tree amplitudes with massless external particles. ©is13824ATC(1,3,2,4,5) AU¢(3,1,4,2,5)

Miree(la 2,3,4) = _i812AELree(1’ 2,3,4) A‘Zree(l, 2,4,3),

New ideas are needed for loop level.



Color-kinematics duality

Color-kinematics duality was discovered by Bern-Carrasco-
Johansson in 2008.

[Bern, Carrasco, Johansson 2008]

Gauge Theory SN p—
:

Color-Kinematics
duality

Generalizing double-copy to quantum (loop) level.



Color-kinematics duality
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Color-kinematics duality
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Duality

Color factor Kinematic factor
(conjecture)

foe = Te([T*, T°)T°) sij = (pi + ;)7

Gauge symmetry Spacetime symmetry



CK-duality v.s. Double-copy

Within gauge theory
s CK-duality A >
Color factor 4 b Kinematic factor
_J

(conjecture)

: Double-copy A
< > (Gauge theory)/2
Y,

By studying the simpler gauge theory, one may understand
the far more complicated gravity theory.
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> Constructing CK-dual numerators



A problem of linear algebra

CK-duality [KERTE
Conjecture Y

Compact ansatz of

the loop integrand _@' @%/
-, oo

i Unitarity cuts

Loop-ansatz| = Htree—blooks

Solving linear equations




A problem of linear algebra

CK-duality [KERTE
Conjecture Y

Compact ansatz of

the loop integrand _@' @%/
-, oo

i Unitarity cuts

Loop-ansatz| = Htree—blooks

Solving linear equations

Main challenge: it is a priori not known whether the solution exists



Loop-level CK duality

For N=4 SYM, there are high loop examples that manifest
global CK-dual Jacobi relations:

* 4-loop 4-point amplitude in N=4

Bern, Carrasco, Dixon, Johansson, Roiban, 2012

* 5-loop Sudakov form factor in N=4 == 00000

GY, 2016

* 4-loop three-point form factor in N=4 0000

Lin, GY, Zhang, 2021



4-loop 3-point form factor

229 trivalent graphs




4-loop 3-point form factor
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4-loop 3-point form factor

Master graphs
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Three-point form factor up to four loops

7, = Jd‘*x ey, P pa | H(F2)() | 0)

L loops L=1 L=2 L=3 L=4
# of cubic graphs 2 6 29 229
# of planar masters 1 2 2 4

# of free parameters Cl 4 24 133 )

G. Lin, GY, S. Zhang, 2021



Non-supersymmetric Yang-Mills

For non-supersymmetric YM, even two-loop is challenging:
e 2-loop 4-gluon all-plus-helicity amplitude in pure YM
Aiz)(1+,2+,3+,4+) Bern, Davies, Dennen, Huang, Nohle 2013

e 2-loop 5-gluon all-plus-helicity amplitude in pure YM

AS(Z)(1+,2+,3+,4+,5+) O’'Connell and Mogull 2015

No global CK-dual solution is known for generic helicity
configurations at two loops.




When difficult to find CK-dual solution

* Enlarge ansatz (e.g. increasing power of loop momenta)

AS(Z)(1+,2+,3+,4+,5+) [nCK ~ le] O’Connell and Mogull 2015

* Give up global CK relations?

Ansatz is made to all topologies and Bern, Davies and Nohle 2015
only imposing CK-duality on cuts.

~

(na = b = 1) gy = 0

Hard to generalize to higher-loop/point cases.



Outline

> New strategy of deformation



Two-loop 4-gluon amplitude

We introduce a strategy by allowing “deformation”.

Nl — nl‘l‘Al

Let us first review the standard construction.




Two-loop trivalent diagrams
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Two-loop trivalent diagrams

Master topologies
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n3 = n1(p1,p2,p3, P4, —l2 — p2, 11 —1172] + na[p4, p3, P2, p1, —l1 — l2 — p3, —l2 + p1]

ng = n1 — ni[p3, pa, P2, p1, 1 — la + p1 + p2, —12]

ns = —ni[p1, P2, p3, P4, 11,11 — loa + p1 + p2] +n1[p1, P2, Pas p3, 11, 11 + 1]

ne = n2(p1, P2, P3, Pa, 1 + p1, 2] — nalps, p1, p2, pa, —li — p1 — p2, —l2 — p1 — p2 — p3]
n7 = —na[p1, P2, P3, Pa, b1, l2] — n2[p1,p2, p3, pa, b, 11 — 2 — pi]

ng = n3 — n3[p1, p2, p4, p3, I, l2]

ng = —n4[p1, P2, P3, P4, 11, 11 — lo] + nalp1,p2, pas 3, 1, 1 — o]

ni1o = —n4lp1,p2,P3, P4, 11, 10 + 12 + p1 + p2| — nalp1, p2, p3, pa, =l — p1 — p2, —l1 + 12
ni11 = —n4[p1,p2,P3, P4, —lo — p1 — P2, 11 — l2] — n4lp1, p2, p3, pa, —l1 + la — p1 — p2, 2]
ni2 = —ng[p1,p2,P3, P4, 1,11 — l2] — ne[p1,p2,p3, P4, 11,12 — p1 — p2 — p3]

n13 = ng + ng[p1, P2, P3, P4, —l1 — p1 — p2, 2]

nig = Nng[p1, P2, P3, P, 11 — lo, 1] + ng[p1, p2, p3, P4, —lo — p1 — P2, —li — p1 — D2,




Ansatz for the master numerators

Polynomials in D-dim kinematics:

nmzzamkMka m:1727
k

{ei €5, € Dj, € o, Di*la, lo 13,01 D2 ,p2 D3}

e.g.. (e1-¢e2)(es-€a)(p1-p2)(p1-11)(p1-12)

Parameters: ~ 20,000 ~1400
Symmetry



Unitarity cuts
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Unitarity cuts

erere( el et

(b) ="~ (c)

v @

* Require the CK-duality at cut-level  Bern, Davies and Nohle 2015

~

(na — Ny — nC)‘cut =0

CK-duality only on cuts

initial parameters: ~120,000
after symmetry constraints: ~28,000
after cut and CK constraints: ~6,300




Unitarity cuts

erece( el e
> © ©

We would like to take advantage of the global CK-dual relations

N; = n, + Deformation — QQQ



Deformed trivalent diagrams

Topologies that affect the ladder-double-cut:

4 l 2 3
S~ S O< >0O0L
4
]1 ]2 2 ! ll 12
1 4 3
(9) (10) 13)

(13

Deformation
(0 HA, ' —1.4,5.9,10,13
N’L:< n’t _I_ ? ) Ly Yy Yy ) )
Mg, others.

\



Deformed numerators

We ask that deformation satisfies a sub-set of dual Jacobi relations.

Master topologies
2 3 3 3
( :11 N ) | 2 . e
Y o Y
1 la
1 4
k 1 1) 1) (1) ! (5)
) ; 4 L I 1 2 3
: i :‘: la : ‘_< 2 1 0 ly 4
1 4 3
(9) (10) (13)

Ay = A1 — A1[p3,pa,p2, 01,11 — lo + p1 + p2, — 2]

As = —Ai1[p1,p2, 3,04, 11,11 — l2 + p1 + p2] + A1[p1, D2, P4, 03, 1,11 + 2]

Ag = —Aylp1,p2,p3,p4, 11,11 — 2] + Aylp1,p2, pa, p3, 11,11 — I2]

A19 = —A4p1, p2,p3, P4, 1,11 + 2 + p1 + p2] — Aylp1, 02, p3, P4, —l1 — p1 — P2, —l1 + I2]
A3 = Ag + Ag[p1, p2, 3, pa, —l1 — p1 — p2,la] -




Ansatz of the master numerator

(2 3\ 3 3
! 2 l ’ I, e
l l
1 Iy

) A 1 4

\1 (1) J (4) (5)
2 3
>—<\>—< ]>®< 00X,

(10) (13)

Consider different Lorentz structure separately:

A[] (e1-€2)(e3 - €4)( m]V[[l])lQ
Ay =AM L AR AP ea)(ese(Q o,

A[f]—[& £) Z [Q]Mla (e3 - £4 Z 2]M[2]]

A = (5™ By
k

Some requirement: 1) do not affect other cuts,
2) double copy still applicable.



Solving the master numerator

9 3

1 3
> > _y — Q@
L vyl I —
L P N=nta, m
lg l;

A[ll] = (d — 2)*(e1 - €2)(e3 - €4)l5 15 2

AP = _4(d—2)2|(e1 - e2)(e3 - 15)(ea - 15)2 + (g3 - £4) (21 - L) (g2 - 1) 12| 12



Deformation

Solution for the master numerator:

(There is a solution space with free parameters, here is a special simple choice.)

P2 ki2 k} P3
A ks A Aoy Ak /k% —
D1 k1 k4 D4

== (d — 2)2{(61 ‘ 82)(83 . 84)k‘§ k‘g -+ 16(81 . k5)(€2 * k‘5)(€3 * kﬁ)(€4 . kﬁ)
~afler e ko)ea KR+ (ea- e k) ko)KE] |

+ (d — 2)4{ — 10 [(61 - ke)(e2 - ke)(e3 - k5) (€4 - ks) + (€1 - k2)(e2 - k1)(e3 - ka) (€4 - k‘s)]

+ 20 —(51 +ke)(e2 - k1)(e3 - ks)(ea - k3) + (€1 - k2)(e2 - ko) (€3 - ka) (€4 - ks):

+32((e1 - ks)(e2 - ks)(€3 - p1) (€4 - p2) + (€1 - p3)(€2 - Pa) (€3 - k) (€4 - k6):

471 B)(ea - )ea - B0)(ea - k) + (61 - Ra)(ea k) ea - ka)en - k) |




Deformation

The simplicity of the deformation: Ny = ny + A,

Deformation Undeformed part

=
®| 1-Numerators.m

®| 2-SymmetyBasis.m (256 - 128xd)xeplpl,
i snna il L
= 111xep[p4, 1lxpp[l1, 11] +
A ks k7 kﬁ /k'? = (52) n2‘txt (—128p+p64*d)*egl:[)p1,
12]1xep[p2, 11]xepl[p3,
P ki ka P 111xepl[p4, 1lxpp[l1, 11] +
(-9049/16 + (47261xd)/
+(d— 2)2{(51 +€2)(e3 - €4)k3 kg + 16(e1 - ks)(e2 - ks) (€3 - ko) (4 - k) prfescinl el
11]xpp[11, 11] + (-3615/8 +
(18363%d) /80)xep[p1,
- 4[(51 +€2)(e3 - ke) (€4 - ke)Kk3 + (€3 - €4) (€1 - ks) (€2 - k5)k§} } p31%ep[p2, 11]:2;,?;)3,

11]1xep[p4, 11lxpp[l1, 11] +
(-128 64xd) [p1,
+-(d-—-2)4{ —-10[(€1~ ke)(e2 - ke)(e3 - k5)(€a - ks) + (e1 - k2)(e2 - k1)(e3 - ka)(ea -k3)] 11]*ep?p2,*1ZT:2p?p3,
_ ) 11]xep[p4, 11lxpp[l1, 11] +
+20((e1 - k6) (g2 - k1)(e3 - ks5)(e4 - k3) + (e1 - ko)(e2 - k) (€3 - ka) (€4 - ks5) {;‘%ze;[ggfd{ﬁgég%&'

11]xep[p4, W1lxpp[l1, 11] +

+ 32 :(51 ~ks)(e2 - ks)(e3 - p1)(€a - p2) + (€1 - p3)(€2 - pa) (€3 - ke ) (4 - ks):

+47|(e1 - ka)(e2 - k3)(e3 - ka)(ea - k3) + (€1 - k2)(e2 - k1) (3 - ka) (€4 - K1) }, n1.txt
i i Plain Text Document - 1.4 MB




Checks of the solution

1 =1,4,5,9,10,13,
others.

e Pass the full set of D-dimensional planar and non-planar cuts
o Satisfy all CK-dual relations on cuts, so double-copy applies

* Free parameters cancel after the integral IBP reduction

* |ntegrated result satisfies the Catani IR formula



Outline

o Summary and outlook



Summary and outlook

 (Gauge and gravity theories are related by double copy.

* The key of double copy is to achieve “color-kinematics duality”.

* Finding CK-dual numerators is generally difficult, and
introducing “a simple deformation” may solve it.

Bern, Davies and Nohle 2015

Duality with deformaltion
CK-duality only on cuts initial parameters: ~20,000
initial parameters: ~120,000 — after CK and symmetry constraints: ~1400
after symmetry constraints: ~28,000 with partial cuts + deformation : ~500
after cut and CK constraints: ~6,300 with remaining cut: ~200

A new strategy to apply CK-duality and double-copy.



Summary and outlook

 Why so simple” R

P2 kg k'; D3
k{) k‘7 kG /k% =
P1 k1 ks P4

+ (d - 2)2{(61 . 62)(63 . 54)]{352) kg + 16(51 . k5)(€2 . k5)(€3 . kﬁ)(54 . kﬁ)

e )en - Ra)(er - ko)kE + (ea e0)er - kn)en - ho)RE] |

+ (d — 2)4{ — 10 [(61 . kg)(sz . kﬁ)(€3 . k5)(84 . k‘5) + (61 . k2)(82 . k1)(83 . k4)(64 . k3)]

+20

+ 32

+ 47

:(51 +ke)(e2 - k1)(e3 - ks) (4 - k3) + (e1 - ka)(e2 - ko) (€3 - ka)(€a - kS):

:(51 ~ks)(e2 - ks)(e3 - p1)(€a - p2) + (€1 - p3)(€2 - pa) (€3 - ke ) (€4 - ks)]

:(51 ~ka)(e2 - k3)(e3 - ka)(eq - k3) + (€1 - k2)(e2 - k1) (€3 - ko) (€4 - k1) y

 More examples: higher loop cases”?
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e a)en - Ra)(en - ko)KE + (ea e0)er - kn)en - ho)KE] |
+ (d — 2)4{ —10 [(61 : kﬁ)(EQ : kﬁ)(€3 . k5)(84 k‘5) (61 kg)(eg kl) €3 k4)(€4 k.j):|

+20 :(81 'kﬁ)(82 1 ( 5 (64 k3)+(€1 kz (82 kb (83 k4)(€4 k5)

(
)(es - ks) )(e2 - ko)

+32(er - Ra)ea - ks)(ea - p1) e pa) + (o1 - pa)lea - pa)(ea - Ka)en - )|
)(es - ka) )(e2- k)

+ 47 (51 k4) €9 - k3 (6; k4 (64 kd)+(€1 ko (62 kq (E; k)g) €4 * kl) },

 More examples: higher loop cases”?
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Zeyu Li, GY, Guorui Zhu in preparation Towards 3-loop Einstein gravity?

Are there underlying structures for the deformation”



Thank you for your attention!
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