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Gauge and gravity theories

What is “quantum gravity”?



Feynman and quantum gravity

“There’s a certain irrationality 
to any work in gravitation.”

“This irrationality is shown in the 
strange gadgets of Prof. Weber, 
in the absurd creation of Prof. 
Wheeler … ”

“I am investigating this subject 
despite the real difficulty that 
there are no experiments.”



• Feynman’s tree theorem

• The idea of Faddeev-Popov 
quantization and ghost

By studying loop diagrams, 
Feynman made discoveries 
that are important for gauge 
theory:

Feynman and quantum gravity



Higher loop gravity

High-loop gravity can be very difficult using Feynman diagram:

May 28, 2015 9:58 World Scientific Review Volume - 9in x 6in feynRuleSlides page 2

2 J. J. M. Carrasco

�S3

�Aa
µ�A

b
��A

c
⇢

! ifabc ((k1
⇢ � k2

⇢) ⌘µ� + (k2
µ � k3

µ) ⌘�⇢ + (k3
� � k1

�) ⌘⇢µ)

�S3

�'µ⌫�'�⌧ �'⇢�

! 2⌘µ⌧ ⌘⌫�k1
�k1

⇢ + 2⌘µ�⌘⌫⌧k1
�k1

⇢ � 2⌘µ⌫⌘�⌧k1
�k1

⇢ +

2⌘�⌧⌘µ⌫k1
�k1

⇢ + 2⌘��⌘µ⌫k1
⌧k1

⇢ + ⌘µ⌧ ⌘⌫�k2
�k1

⇢ + ⌘µ�⌘⌫⌧k2
�k1

⇢ + ⌘�⌧⌘⌫�k2
µk1

⇢ +

⌘��⌘⌫⌧k2
µk1

⇢ + ⌘�⌧⌘µ�k2
⌫k1

⇢ + ⌘��⌘µ⌧k2
⌫k1

⇢ + ⌘�⌧⌘⌫�k3
µk1

⇢ + ⌘��⌘⌫⌧k3
µk1

⇢ �
⌘�⌫⌘�⌧k3

µk1
⇢ + ⌘�⌧⌘µ�k3

⌫k1
⇢ + ⌘��⌘µ⌧k3

⌫k1
⇢ � ⌘�µ⌘�⌧k3

⌫k1
⇢ + ⌘�⌫⌘µ⌧k3

�k1
⇢ +

⌘�µ⌘⌫⌧k3
�k1

⇢ + ⌘�⌫⌘µ�k3
⌧k1

⇢ + ⌘�µ⌘⌫�k3
⌧k1

⇢ + 2⌘µ⌫⌘⇢⌧k1
�k1

� + 2⌘µ⌫⌘⇢�k1
�k1

⌧ �
2⌘�⇢⌘µ⌫k1

�k1
⌧ + 2⌘�⌫⌘µ⇢k1

�k1
⌧ + 2⌘�µ⌘⌫⇢k1

�k1
⌧ + ⌘µ⌧ ⌘⌫⇢k1

�k2
� + ⌘µ⇢⌘⌫⌧k1

�k2
� +

⌘µ�⌘⌫⇢k1
⌧k2

� + ⌘µ⇢⌘⌫�k1
⌧k2

� + ⌘⌫⌧⌘⇢�k1
�k2

µ + ⌘⌫�⌘⇢⌧k1
�k2

µ + ⌘�⌧⌘⌫⇢k1
�k2

µ �
⌘�⇢⌘⌫⌧k1

�k2
µ + ⌘�⌫⌘⇢⌧k1

�k2
µ + ⌘��⌘⌫⇢k1

⌧k2
µ � ⌘�⇢⌘⌫�k1

⌧k2
µ + ⌘�⌫⌘⇢�k1

⌧k2
µ +

2⌘⌫⇢⌘�⌧k2
�k2

µ + ⌘µ⌧ ⌘⇢�k1
�k2

⌫ + ⌘µ�⌘⇢⌧k1
�k2

⌫ + ⌘�⌧⌘µ⇢k1
�k2

⌫ � ⌘�⇢⌘µ⌧k1
�k2

⌫ +

⌘�µ⌘⇢⌧k1
�k2

⌫ + ⌘��⌘µ⇢k1
⌧k2

⌫ � ⌘�⇢⌘µ�k1
⌧k2

⌫ + ⌘�µ⌘⇢�k1
⌧k2

⌫ + 2⌘µ⇢⌘�⌧k2
�k2

⌫ +

2⌘�⌧⌘⇢�k2
µk2

⌫ + 2⌘��⌘⇢⌧k2
µk2

⌫ � 2⌘�⇢⌘�⌧k2
µk2

⌫ + ⌘µ⌧ ⌘⌫�k1
�k2

⇢ + ⌘µ�⌘⌫⌧k1
�k2

⇢ +

⌘�⌫⌘µ⌧k1
�k2

⇢ + ⌘�µ⌘⌫⌧k1
�k2

⇢ + ⌘�⌫⌘µ�k1
⌧k2

⇢ + ⌘�µ⌘⌫�k1
⌧k2

⇢ + 2⌘µ⌧ ⌘⌫�k2
�k2

⇢ +

2⌘µ�⌘⌫⌧k2
�k2

⇢ �2⌘µ⌫⌘�⌧k2
�k2

⇢ +2⌘�⌫⌘�⌧k2
µk2

⇢ +2⌘�µ⌘�⌧k2
⌫k2

⇢ +⌘⌫⌧⌘⇢�k1
�k3

µ +

⌘⌫�⌘⇢⌧k1
�k3

µ � ⌘⌫⇢⌘�⌧k1
�k3

µ + ⌘�⌧⌘⌫⇢k1
�k3

µ + ⌘�⌫⌘⇢⌧k1
�k3

µ + ⌘��⌘⌫⇢k1
⌧k3

µ +

⌘�⌫⌘⇢�k1
⌧k3

µ + ⌘⌫⌧⌘⇢�k2
�k3

µ + ⌘⌫�⌘⇢⌧k2
�k3

µ + ⌘�⌧⌘⇢�k2
⌫k3

µ + ⌘��⌘⇢⌧k2
⌫k3

µ +

⌘�⌧⌘⌫�k2
⇢k3

µ + ⌘��⌘⌫⌧k2
⇢k3

µ + ⌘µ⌧ ⌘⇢�k1
�k3

⌫ + ⌘µ�⌘⇢⌧k1
�k3

⌫ � ⌘µ⇢⌘�⌧k1
�k3

⌫ +

⌘�⌧⌘µ⇢k1
�k3

⌫ + ⌘�µ⌘⇢⌧k1
�k3

⌫ + ⌘��⌘µ⇢k1
⌧k3

⌫ + ⌘�µ⌘⇢�k1
⌧k3

⌫ + ⌘µ⌧ ⌘⇢�k2
�k3

⌫ +

⌘µ�⌘⇢⌧k2
�k3

⌫ + ⌘�⌧⌘⇢�k2
µk3

⌫ + ⌘��⌘⇢⌧k2
µk3

⌫ + ⌘�⌧⌘µ�k2
⇢k3

⌫ + ⌘��⌘µ⌧k2
⇢k3

⌫ +

2⌘�⌧⌘⇢�k3
µk3

⌫ + 2⌘��⌘⇢⌧k3
µk3

⌫ � 2⌘�⇢⌘�⌧k3
µk3

⌫ + ⌘µ⌧ ⌘⌫⇢k1
�k3

� + ⌘µ⇢⌘⌫⌧k1
�k3

� +

⌘�⌫⌘µ⇢k1
⌧k3

� + ⌘�µ⌘⌫⇢k1
⌧k3

� + ⌘µ⌧ ⌘⌫⇢k2
�k3

� + ⌘µ⇢⌘⌫⌧k2
�k3

� � ⌘µ⌫⌘⇢⌧k2
�k3

� +

⌘�⌧⌘⌫⇢k2
µk3

� + ⌘�⌫⌘⇢⌧k2
µk3

� + ⌘�⌧⌘µ⇢k2
⌫k3

� + ⌘�µ⌘⇢⌧k2
⌫k3

� � ⌘�⌧⌘µ⌫k2
⇢k3

� +

⌘�⌫⌘µ⌧k2
⇢k3

� + ⌘�µ⌘⌫⌧k2
⇢k3

� + 2⌘�⇢⌘⌫⌧k3
µk3

� + 2⌘�⇢⌘µ⌧k3
⌫k3

� + ⌘µ�⌘⌫⇢k1
�k3

⌧ +

⌘µ⇢⌘⌫�k1
�k3

⌧ + ⌘�⌫⌘µ⇢k1
�k3

⌧ + ⌘�µ⌘⌫⇢k1
�k3

⌧ + ⌘µ�⌘⌫⇢k2
�k3

⌧ + ⌘µ⇢⌘⌫�k2
�k3

⌧ �
⌘µ⌫⌘⇢�k2

�k3
⌧ + ⌘��⌘⌫⇢k2

µk3
⌧ + ⌘�⌫⌘⇢�k2

µk3
⌧ + ⌘��⌘µ⇢k2

⌫k3
⌧ + ⌘�µ⌘⇢�k2

⌫k3
⌧ �

⌘��⌘µ⌫k2
⇢k3

⌧ + ⌘�⌫⌘µ�k2
⇢k3

⌧ + ⌘�µ⌘⌫�k2
⇢k3

⌧ + 2⌘�⇢⌘⌫�k3
µk3

⌧ + 2⌘�⇢⌘µ�k3
⌫k3

⌧ �
2⌘�⇢⌘µ⌫k3

�k3
⌧ +2⌘�⌫⌘µ⇢k3

�k3
⌧ +2⌘�µ⌘⌫⇢k3

�k3
⌧ � ⌘�⌧⌘µ�⌘⌫⇢k1 · k2 � ⌘��⌘µ⌧ ⌘⌫⇢k1 ·

k2 � ⌘�⌧⌘µ⇢⌘⌫�k1 · k2 + ⌘�⇢⌘µ⌧ ⌘⌫�k1 · k2 � ⌘��⌘µ⇢⌘⌫⌧k1 · k2 + ⌘�⇢⌘µ�⌘⌫⌧k1 · k2 +

2⌘�⌧⌘µ⌫⌘⇢�k1 · k2 � ⌘�⌫⌘µ⌧ ⌘⇢�k1 · k2 � ⌘�µ⌘⌫⌧⌘⇢�k1 · k2 + 2⌘��⌘µ⌫⌘⇢⌧k1 · k2 �
⌘�⌫⌘µ�⌘⇢⌧k1 · k2 � ⌘�µ⌘⌫�⌘⇢⌧k1 · k2 � 2⌘�⇢⌘µ⌫⌘�⌧k1 · k2 + 2⌘�⌫⌘µ⇢⌘�⌧k1 · k2 +

2⌘�µ⌘⌫⇢⌘�⌧k1 · k2 � ⌘�⌧⌘µ�⌘⌫⇢k1 · k3 � ⌘��⌘µ⌧ ⌘⌫⇢k1 · k3 � ⌘�⌧⌘µ⇢⌘⌫�k1 · k3 +

2⌘�⇢⌘µ⌧ ⌘⌫�k1 · k3 � ⌘��⌘µ⇢⌘⌫⌧k1 · k3 + 2⌘�⇢⌘µ�⌘⌫⌧k1 · k3 + 2⌘�⌧⌘µ⌫⌘⇢�k1 · k3 �
⌘�⌫⌘µ⌧ ⌘⇢�k1 · k3 � ⌘�µ⌘⌫⌧⌘⇢�k1 · k3 + 2⌘��⌘µ⌫⌘⇢⌧k1 · k3 � ⌘�⌫⌘µ�⌘⇢⌧k1 · k3 �
⌘�µ⌘⌫�⌘⇢⌧k1 · k3 � 2⌘�⇢⌘µ⌫⌘�⌧k1 · k3 + ⌘�⌫⌘µ⇢⌘�⌧k1 · k3 + ⌘�µ⌘⌫⇢⌘�⌧k1 · k3 �
⌘�⌧⌘µ�⌘⌫⇢k2 · k3 � ⌘��⌘µ⌧ ⌘⌫⇢k2 · k3 � ⌘�⌧⌘µ⇢⌘⌫�k2 · k3 + 2⌘�⇢⌘µ⌧ ⌘⌫�k2 · k3 �
⌘��⌘µ⇢⌘⌫⌧k2 · k3 + 2⌘�⇢⌘µ�⌘⌫⌧k2 · k3 + ⌘�⌧⌘µ⌫⌘⇢�k2 · k3 � ⌘�⌫⌘µ⌧ ⌘⇢�k2 · k3 �
⌘�µ⌘⌫⌧⌘⇢�k2 · k3 + ⌘��⌘µ⌫⌘⇢⌧k2 · k3 � ⌘�⌫⌘µ�⌘⇢⌧k2 · k3 � ⌘�µ⌘⌫�⌘⇢⌧k2 · k3 �
2⌘�⇢⌘µ⌫⌘�⌧k2 · k3 + 2⌘�⌫⌘µ⇢⌘�⌧k2 · k3 + 2⌘�µ⌘⌫⇢⌘�⌧k2 · k3

Off-shell three-graviton vertex:
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�
⌧

171 terms

[DeWitt, 1967]
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Higher loop perturbation is important

ℒ = −g(R+c1R2 + c2RμνRμν + c3RμνρσRμνρσ + ⋯)
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3.2 The KLT Relations in Field Theory

The fact that the KLT relations hold for the extensive variety of compactified
string models [97, 98, 99, 100, 101, 102] implies that they should also be generally
true in field theories of gravity. For the cases of four- and five-particle scattering
amplitudes, in the field theory limit the KLT relations [7] reduce to:

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3) , (10)

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5) , (11)

where the Mn’s are tree-level amplitudes in a gravity theory, the An’s are color-
stripped tree-level amplitudes in a gauge theory and sij ≡ (ki + kj)2. In these
equations the polarization and momentum labels are suppressed, but the label
“j = 1, . . . , n” is kept to distinguish the external legs. The coupling constants
have been removed from the amplitudes, but are reinserted below in Eqs. (12)
and (13). An explicit generalization to n-point field theory gravity amplitudes
may be found in appendix A of Ref. [36]. The KLT relations before the field
theory limit is taken may, of course, be found in the original paper [7].

The KLT equations generically hold for any closed string states, using their
Fock space factorization into pairs of open string states. Although not obvious,
the gravity amplitudes (10) and (11) have all the required symmetry under
interchanges of identical particles. (This is easiest to demonstrate in string
theory by making use of an SL(2, Z) symmetry on the string world sheet.)

In the field theory limit the KLT equations must hold in any dimension,
because the gauge theory amplitudes appearing on the right-hand-side have
no explicit dependence on the space-time dimension; the only dependence is
implicit in the number of components of momenta or polarizations. Moreover,
if the equations hold in, say, ten dimensions, they must also hold in all lower
dimensions since one can truncate the theory to a lower dimensional subspace.

The amplitudes on the left-hand side of Eqs. (10) and (11) are exactly the
scattering amplitudes that one obtains via standard gravity Feynman rules [64,
65, 54]. The gauge theory amplitudes on the right-hand-side may be computed
via standard Feynman rules available in any modern textbook on quantum field
theory [57, 58]. After computing the full gauge theory amplitude, the color-
stripped partial amplitudes An appearing in the KLT relations (10) and (11),
may then be obtained by expressing the full amplitudes in a color trace ba-
sis [103, 104, 105, 55, 56]:

Atree
n (1, 2, . . . n) = g(n−2)

∑

σ

Tr (T aσ(1) · · ·T aσ(n))Atree
n (σ(1), . . . , σ(n)) ,

(12)
where the sum runs over the set of all permutations, but with cyclic rotations
removed and g as the gauge theory coupling constant. The An partial ampli-
tudes that appear in the KLT relations are defined as the coefficients of each of

13

Field theory limit

x

New ideas are needed for loop level.

Double copy

KLT relation:



Color-kinematics duality was discovered by Bern-Carrasco-
Johansson in 2008.

[Bern, Carrasco, Johansson 2008]

Gravity
Gauge Theory

Generalizing double-copy to quantum (loop) level.

Color-Kinematics 
duality

Double-copy

Color-kinematics duality
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Gauge symmetry Spacetime symmetry

(conjecture)

Color-kinematics duality



By studying the simpler gauge theory, one may understand 
the far more complicated gravity theory.

CK-duality v.s. Double-copy

CK-duality
Color factor Kinematic factor

Gravity (Gauge theory)^2

(conjecture)
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CK-duality

Unitarity cuts

A problem of linear algebra

Compact ansatz of 
the loop integrand

Loop-ansatz |cut = ∏ tree-blocks

Solving linear equations

Conjecture

The simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)

3
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For N=4 SYM, there are high loop examples that manifest 
global CK-dual Jacobi relations:

• 4-loop 4-point amplitude in N=4

GY, 2016

Bern, Carrasco, Dixon, Johansson, Roiban, 2012

Loop-level CK duality

• 5-loop Sudakov form factor in N=4

• 4-loop three-point form factor in N=4
Lin, GY, Zhang, 2021



4-loop 3-point form factor

229 trivalent graphs
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FIG. 2. Selected four-loop diagrams from the 229 topologies.

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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FIG. 3. Master topologies.

consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according

Master graphs

257 562 479 135Ansatz parameters:

4-loop 3-point form factor
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permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according
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FIG. 4. Examples of unitarity cuts.

nation of such a power-counting constraint can be found
in [42, 43], and here we just examplify it by the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be involved in the ansatz, while xb and xd are not
allowed to appear.

In practice, we can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs, which can be achieved
by starting from the rung-rule numerators [44, 45] and
then adding terms proportional to propagators according
to the graph symmetries. For instance, the rung-rule
numerator for the first master Nm

1 is

Nm
1 |rr =x2

13x
2
24x

2
a2x

2
a3(x

2
c1 � x2

14/2)� (x2
13)

2x2
24x

2
a2x

2
c4

� x2
13(x

2
14 � x2

13)(x
2
a2)

2x2
c4 + (1 $ 4)&(2 $ 3),

(4)
which captures the maximal cut of the diagram, and to
further complement the ansatz, contributions involving
propagators like x2

c2 and x2
c3 have to be considered in a

symmetry-preserving way, such as

Nm
1 = Nm

1 |rr+↵1x
2
13x

2
24((x

2
a2)

2x2
c3+(x2

a3)
2x2

c2)+... . (5)

In the end, a CK-dual integrand ansatz with 1433 pa-

rameters for F (4)
3 is reached, of which the four master

numerators contain 257, 562, 479 and 135 parameters
respectively.

PHYSICAL CONSTRAINTS AND SOLUTION

Given the ansatz, we apply various constraints to solve
for the parameters and also ensure the solution to satisfy
physical requirements.

First, we impose the condition that every numerator
Ni (besides the masters) shares the symmetry of the cor-
responding diagram �i and also generates the correct
maximal cut. These conditions involve only one numera-
tor at a time and are practically very convenient to solve.
Nicely, they provide significant restrictions on the ansatz,
reducing the number of parameters to 246.

Next, we require the CK-dual integrand ansatz as (3)
to match all generalized unitarity cuts [7–9]. Some typi-
cal cuts are illustrated in Figure 4. Cuts (a) and (b) are

relatively simple octuple cuts, cutting the four-loop form
factor into five tree blocks [46]. Such octuple cuts can
be first conducted, eliminating 94 parameters. Then the
septuple cuts, such as cut (c), and the sextuple cuts, such
as (d), are considered, further fixing 19 parameters. The
most complicated cuts are quintuple cuts like (e) and (f).
For instance, the cut (e) involves over a thousand cut dia-
grams, of which the sum should reproduce the non-trivial

tree product
R
d⌘F (0)

5 A
(0)
8 . We find that quintuple cuts

provide no further constraints on parameters indeed. Af-
ter all these cuts, we end up with a solution with 133
parameters. We stress that we have checked both planar
and non-planar cuts, and details for performing cuts can
be found in [43].

We also check that all dual Jacobi relations are satis-
fied. Thus we get the CK-dual four-loop physical inte-
grand in the form of (3) with 133 free parameters.

The final form factor result must be independent of
the 133 free parameters. As a further important check,
we find that the free parameters indeed all cancel after
performing the simplification of the integrand, which we
briefly explain as follows. Firstly, we express the triva-
lent color factors Ci in trace basis of group generators in
SU(Nc) gauge group, resulting in both Nc-leading and
Nc-subleading contributions as

F (4)
3 = F

(0)
3 f̃a1a2a3

�
N4

c

Z
I
(4)
pl +N2

c

Z
I
(4)
np

�
, (6)

where f̃a1a2a3 = tr(T a1T a2T a3) � tr(T a1T a3T a2). Here

76 topologies contributes to I
(4)
pl , containing diagrams

in the first and second columns of Figure 2, while 138

topologies contribute to I
(4)
np , involving those in the third

column of Figure 2. Note that 28 topologies contribute

to both I
(4)
pl and I

(4)
np , including the four master graphs

and also (A3) and (B3) in Figure 2. Moreover, it worth
noticing that 43 topologies out of 229 have zero color fac-
tors, such as (D2) in Figure 2, which do not contribute
to the final form factor but are important in the con-
struction via the CK duality. We then perform the sim-

plification for I
(4)
pl and I

(4)
np respectively, by expanding

the integrands in a set of basis, following the procedure
described in detail in [43]. After the simplification, we
achieve a result that is independent of all free parame-
ters.

The explicit four master numerator solutions with 133
free parameters and a set of dual Jacobi relations for
generating the numerators Ni of all trivalent topologies,
together with the symmetry factors Si, the color factors
Ci, and the propagator lists P↵i in the form of (3), are
provided in the ancillary files.

Unitarity cuts

2

those of others, and thus a relatively small ansatz can be
utilized rather than making ansatz for all topologies. The
second step is to solve the ansatz via constraints, where
topology symmetries are involved and generalized unitar-
ity method [7–9] is applied. Readers are also referred to
[6, 11, 31] for more details of general constructions.

Before entering the specific construction, we summa-
rize the final CK-dual integrand of the considered four-
loop three-point form factor as follows:

F (4)
3 =

X

�3

229X

i=1

Z 4Y

j=1

dD`j
1

Si
�3 ·

F
(0)
3 Ci NiQ
↵i

P 2
↵i

, (3)

where the sum is over 229 non-isomorphic cubic graphs;
Si are symmetry factors which remove the overcounting
from the automorphism symmetries of the graphs and the

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [32] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[33, 34]. This symmetry is generalized to the Yangian
symmetry [35–37] and is closely related to the integra-
bility [38]. In contrast, the generalization to form factor
cases is much less discussed so far [39]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [40]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [41]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

ANSATZ OF CK-DUAL INTEGRAND

To start the construction, we first need to get all trivalent
diagrams, each of which contains one operator q-leg and
three external on-shell legs. As observed in [11, 20, 21,
42], for N = 4 SYM, it is reasonable to exclude diagrams
with tadpole, bubble and triangle sub-graphs, unless the
triangle is connected with the q-leg. Under this criteria,
there are 229 trivalent topologies to consider. Selected
examples are shown in Figure 2: the first column contains
planar diagrams which can be drawn on a plane with the
ends of the q-leg and three on-shell legs aligned at infinity;
the second column includes diagrams defined as q-interior
planar in the sense that after removing the color-singlet
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FIG. 2. Selected four-loop diagrams from the 229 topologies.
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q-leg, the graphs are planar (they survive in the large-Nc

planar limit); the third column involves some intrinsic
non-planar diagrams; some special one-particle-reducible
graphs are shown in the last column.
The color factors Ci and propagators P 2

↵i
in (3) can be

directly read from these trivalent diagrams �i, whereas
the truly non-trivial physical information is contained in
the kinematic numerators Ni which are the focus of our
construction. Here the CK duality plays a central role.
The induced dual Jacobi relations referring to (2) pro-
vide linear relations among the numerators of di↵erent
topologies. As a result, we can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. Practi-
cally, it is convenient to select planar diagrams as master
graphs, and a minimal set requires only four planar mas-
ters shown in Figure 3.
With the planar master graphs at hand, we further

need to construct numerator ansatz for them. Firstly,
we expect the numerators are in fully local form, which
means the ansatz are polynomials of Lorentz products of
momenta. Moreover, for planar master graphs, we find
it convenient to parametrize the momenta by the dual
coordinates corresponding to zones [32] as, for example,
`a = x1 � xa ⌘ x1a in the first diagram of Figure 3,
and hence the ansatz are polynomials of proper distance
variables x2

ij . Secondly, since form factors of a protected
operator tr(�2) in N = 4 SYM are considered, we can
impose the power-counting constraint on the ansatz: a
one-loop n-point sub-graph carries no more than n � 4
powers of the corresponding loop momentum [11], with
an exception that if the sub-graph is a one-loop form fac-
tor, the maximal power is n� 3 [20]. The detailed expla-

Final solution with 133 free parameters!

Master graphs

4-loop 3-point form factor



Three-point form factor up to four loops
5

TABLE I. Number of cubic graphs, planar masters and free
parameters in CK-solution of three-point form factors up to
four loops. Note that the number of parameters are counted
based on the solutions obtained from minimal ansatzes.

L loops L=1 L=2 L=3 L=4

# of cubic graphs 2 6 29 229

# of planar masters 1 2 2 4

# of free parameters 1 4 24 133

contributions and include all—usually one has to find all
possible ways of planar projections and distribute the in-
tegrand equally among them.

We have performed explicitly checks for three-point
form factors up to four loops. The checks also use CK-
dual integrands with free parameters as input. to modify

DISCUSSION

In this paper we obtain for the first time the full-color
four-loop integrand of the three-point form factor in
N = 4 SYM. The color-kinematics duality has played
a crucial role in this construction by providing a very
compact integrand ansatz. The main challenge of the
computation is actually if a solution consistent with all
unitarity cut constraints exists. Remarkably, there is a
large solution space for the final four-loop CK-dual inte-
grand. In Table I, we summarize the some descriptions
of the CK-dual constructions up to four loops, including
also previous lower loop results in [38, 40]. One can see
that as the number of loops increase, the number of mas-
ters and the size of their ansatzes increase mildly. Impor-
tantly, the dimension of the CK-dual solution space also
grows when going to higher loop orders, which strongly
suggests that the construction can be applied to form
factors at five and even higher loops.

As another interesting aspect of this work, we show
that for the three-point form factor up to four loops, the
leading-Nc integrands in the limit of q2 ! 0 all satisfy
the directional dual conformal symmetry with a boost
vector bµ / qµ. This property should hold for more
general higher-point and higher-loop form factors, which
are supported by a unitarity based argument. It is thus
reasonable to closely inspect the directional dual con-
formal symmetry for the dual periodic Wilson lines at
both weak- and strong-coupling. On the other hand, for
the integrated planar form factors, the DDCI symmetry
should be broken and the cusp anomalies appear due to
IR divergences [30]. We expect that the cusp anoma-
lies can also be subtracted by the BDS ansatz, similar to
the amplitudes case, and can be well interpreted by the
anomalous conformal Ward identities [51] for the dual
Wilson lines. Furthermore, it is natural to ask whether
the directional dual conformal symmetry can be extended

to general conformal symmetry beyond the directional
bµ / qµ as well as the lightlike limit of q. Some dis-
cussions about the (general) dual conformal symmetry
for form factors as well as its Wilson line dual at one-
loop level are already given in [10, 36] but higher-loop
generalizations are still not completely clear. We also
mention that recently a non-perturbative result has been
obtained in [52, 53] (see also the related study for am-
plitudes [54]) originating from the integrability of N = 4
SYM [55] in the operator product expansion (OPE) limit
of the Wilson line and it would be interesting to have
a deeper comprehension about the form factor/periodic
Wilson line duality. We will give more details about the
above DDCI, as well as the cut-based proof, and further
generalizations elsewhere [? ].

Finally, to implement the four-loop integrals defi-
nitely deserves considerations. As discussed in the pre-
vious three-loop discussions [40], our form factors re-
sults should encode full-color IR divergences and splitting
functions. This is, however, not a trivial task even in the
large Nc limit, since the color-singlet q-leg results in in-
evitable contributions from non-planar topologies (the q-
interior topologies). Besides these di�culties, we are still
optimistic about solving the problem of loop integrations
in the future.
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For non-supersymmetric YM, even two-loop is challenging:

• 2-loop 4-gluon all-plus-helicity amplitude in pure YM
Bern, Davies, Dennen, Huang, Nohle 2013

Non-supersymmetric Yang-Mills

• 2-loop 5-gluon all-plus-helicity amplitude in pure YM

O’Connell and Mogull 2015

A(2)
4 (1+,2+,3+,4+)

A(2)
5 (1+,2+,3+,4+,5+)

No global CK-dual solution is known for generic helicity 
configurations at two loops.



When difficult to find CK-dual solution

• Enlarge ansatz (e.g. increasing power of loop momenta)
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Figure 6: A spanning set of cuts for two-loop four-point amplitude.
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Figure 7: An example for CK relation in unitarity cut.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for
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1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:
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However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for
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Bern, Davies and Nohle  2015 

O’Connell and Mogull 2015A(2)
5 (1+,2+,3+,4+,5+) nCK ∼ ℓ12

• Give up global CK relations?

Ansatz is made to all topologies and 
only imposing CK-duality on cuts.

Hard to generalize to higher-loop/point cases.
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Two-loop 4-gluon amplitude

We introduce a strategy by allowing “deformation”.

N1 = n1 + Δ1

Let us first review the standard construction.

N1 = n1+Δ1



Two-loop trivalent diagrams
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Figure 5: All trivalent diagrams for the two-loop four-point amplitude.

so we choose them to be “master topologies”. Their numerators are denoted as n1 and n2.
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throughout all the topologies in Figure 5, and we will refer to them as “global CK-dual

relations”.
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3) Constructing numerator ansatz. Now we construct an ansatz for the two master

numerators. The ansatz is linear combination of monomials Mk:

nm =
X

k

amkMk , m = 1, 2 , (3.2)

where the monomials Mk are built by product of following basis:

{"i · "j , "i · pj , "i · l↵, pi · l↵, l↵ · l� , p1 · p2 , p2 · p3} (3.3)

with i, j = 1, 2, 3, 4 and ↵,� = 1, 2. We choose a set of bases for Mk by eliminating non-

independent ones under momentum-conservation, on-shell, and transversality conditions:

p4 = �p1 � p2 � p3, p2i = 0, "i · pi = 0. (3.4)

Besides, monomial Mk should obey the following features: (1) Each Mk have mass dimension

six. (2) Mk should depend on each polarization vector "i linearly. Since they are polynomials

of Lorentz products, they are also free with poles. One such example is ("1 · "2)("3 · "4)(p1 ·
p2)(p1 · l1)(p1 · l2). With these features satisfied, the two master numerators introduce 20020

terms in total. Here we also mention that the coe�cients amk will depend on the dimension

parameter d. All other numerators are obtained using the set of dual Jacobi relations (3.1).

4) Applying symmetry constraints. We demand each numerator reflects the symmetries

of its topology:

Ŝ[Cini] = Cini, (3.5)

where Ŝ denotes symmetry operator, which will act on both Ci and ni. For instance, the

double box diagram possesses two symmetries: vertical flip and horizontal flip. It is easy to

see that the color factor remains unchanged and the numerator is required to satisfy

n1 = n1[p2, p1, p4, p3,�p1 � p2 � l1,�l2] = n1[p4, p3, p2, p1, l2 � l1, l2] , (3.6)

and similar for other topologies. After applying the constraints of symmetry and global

CK-dual relations, we find that the number of parameters reduce to 1382.

Up to now, we have constructed the global CK relations satisfied integrand for two-loop

four-point amplitude and we will apply the unitarity constraints in the next subsection.

3.2 Problem with unitarity constraints

Given the ansatz, we now apply unitarity cuts.

For the two-loop four-point amplitude, a spanning set of unitarity cuts is displayed in

Figure 6.2 We find that cut-(b) and cut-(c) in Figure 6 are compatible with CK-dual relations,

while cut-(a) is not. The same observation was pointed out in [38]. This shows that the CK-

dual integrand with minimal ansatz (numerators are all local functions of external and loop

momenta and satisfy all symmetry constraints) can not deduce physical result.

2The spanning set of cuts contain both planar and non-planar cuts. In the following discussion, the check

of the cuts can be first taken as for the planar cuts. Due to the CK-duality relations, the solutions will

automatically satisfy non-planar cuts in the end, see e.g. [1, 43]. We will mention this check at the end of

Section 4.2.
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Ŝ[Cini] = Cini, (3.5)

where Ŝ denotes symmetry operator, which will act on both Ci and ni. For instance, the

double box diagram possesses two symmetries: vertical flip and horizontal flip. It is easy to

see that the color factor remains unchanged and the numerator is required to satisfy

n1 = n1[p2, p1, p4, p3,�p1 � p2 � l1,�l2] = n1[p4, p3, p2, p1, l2 � l1, l2] , (3.6)

and similar for other topologies. After applying the constraints of symmetry and global

CK-dual relations, we find that the number of parameters reduce to 1382.

Up to now, we have constructed the global CK relations satisfied integrand for two-loop

four-point amplitude and we will apply the unitarity constraints in the next subsection.

3.2 Problem with unitarity constraints

Given the ansatz, we now apply unitarity cuts.

For the two-loop four-point amplitude, a spanning set of unitarity cuts is displayed in

Figure 6.2 We find that cut-(b) and cut-(c) in Figure 6 are compatible with CK-dual relations,

while cut-(a) is not. The same observation was pointed out in [38]. This shows that the CK-

dual integrand with minimal ansatz (numerators are all local functions of external and loop

momenta and satisfy all symmetry constraints) can not deduce physical result.

2The spanning set of cuts contain both planar and non-planar cuts. In the following discussion, the check

of the cuts can be first taken as for the planar cuts. Due to the CK-duality relations, the solutions will

automatically satisfy non-planar cuts in the end, see e.g. [1, 43]. We will mention this check at the end of

Section 4.2.

– 9 –

Parameters:    ~ 20,000
Symmetry

~1400

practice, one can achieve this by avoiding applying CK operation to the propagators that are

severed by cut-(a), as this would lead to topologies outside the set requiring deformation.4

On the other hand, we require that the numerator Ni upholds the global CK duality

across a spanning set of cuts, ensuring the applicability of the double copy. Our construction

for �i is designed to maintain global CK duality specifically under cut-(a). Consequently,

the relations we have excluded (such as Figure 9) imply that each �i must vanish separately

when subjected to cut-(b) and cut-(c). These additional constraints will be duly considered

in our construction, as we demonstrate in the following sections.

4.2 Explicit solution of deformation

We now discuss the construction of the deformation �i.

To simplify the construction, it is convenient to divide the numerators into three parts

according to the structure of polarization vectors. For example, the numerators ni can be

written as

ni = n[1]
i + n[2]

i + n[3]
i . (4.3)

In n[1]
i , each polarization vector is contracted with another polarization vector, for instance,

("1 · "2)("3 · "4)(p1 · p2)(p1 · l1)(p1 · l2). (4.4)

Terms in n[2]
i have two polarization vectors contracted with each other and the other two

polarization vectors are contracted with momenta, such as

("1 · "2)("3 · p4)("4 · p3)(p1 · l1)(p1 · l2). (4.5)

Finally, polarization vectors in n[3]
i are all contracted with momentas, and an example is

("1 · p2)("2 · p3)("3 · p4)("4 · p3)(p1 · l2). (4.6)

These three parts are independent with each other: they will not change the type during

CK operations and they also satisfy unitarity cuts separately. Thus we can treat them inde-

pendently. Following the same standard, the deformation �i can also be divided into three

parts:

�i = �[1]
i +�[2]

i +�[3]
i . (4.7)

Below discuss these three parts one by one. Since the double-box topology, shown in Figure 10,

is the master topology for the deformation, we only need to make an ansatz for �1.

4Naturally, if �i were allowed to propagate through all the topologies via dual Jacobi relations, we would

revert to an integrand with global CK relations which makes no di↵erence from the ni numerators.
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Figure 6: A spanning set of cuts for two-loop four-point amplitude.
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Figure 7: An example for CK relation in unitarity cut.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for

– 10 –



(a) (b) (c)

Figure 6: A spanning set of cuts for two-loop four-point amplitude.

1

2 3

4(a) 2

1 3

4(b)

3

1

2

4

= +

(c)

Figure 7: An example for CK relation in unitarity cut.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for

– 10 –

• Require the CK-duality at cut-level(a) (b) (c)

Figure 6: A spanning set of cuts for two-loop four-point amplitude.

1

2 3

4(a) 2

1 3

4(b)

3

1

2

4

= +

(c)

Figure 7: An example for CK relation in unitarity cut.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for

– 10 –

(a) (b) (c)

Figure 6: A spanning set of cuts for two-loop four-point amplitude.

1

2 3

4(a) 2

1 3

4(b)

3

1

2

4

= +

(c)

Figure 7: An example for CK relation in unitarity cut.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for
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One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for
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Figure 8: Topologies that will contribute to cut-(a) in Figure 6 thus need to be deformed.

In this paper we propose a new strategy: we start with a global CK-dual integrand and

then introduce simple “deformations” which can also be related by CK-dual relations. In the

next section, we will provide a detailed application of this strategy.

4 Physical solution with deformation

This section presents the major results of the paper. We first discuss the strategy of introduc-

ing deformation for the CK-dual numerators. Then we provide the explicit solution. Finally,

we discuss the solution space for the deformations.

4.1 General idea of deformation

We would like to work based on ni and construct a physical solution that passes all unitarity

cuts. Let us first recall the property of ni that we have obtained in the previous section based

on CK-dual construction.

• ni have the minimal ansatz form and satisfy the symmetry properties.

• ni satisfy the global set of CK-dual relations (3.1).

• The integrand of ni satisfies cut-(b) and cut-(c) in Figure 6.

• The solution space satisfying the above properties for ni contains 398 parameters.

Since the main problem comes from the cut-(a) in Figure 6, we will concentrate on the

topologies that can a↵ect cut-(a), which are collected in Figure 8.

The main idea is to introduce certain deformation �i to the numerators of these topolo-

gies, such that the deformation �i plus ni together will satisfy the unitarity-cut constraints.

Numerators whose topology does not appear in Figure 8 remain unchanged, or equivalently,

ansatz construction.

– 11 –

Topologies that affect the ladder-double-cut:
(a) (b) (c)

Figure 6: A spanning set of cuts for two-loop four-point amplitude.

1

2 3

4(a) 2

1 3

4(b)

3

1

2

4

= +

(c)

Figure 7: An example for CK relation in unitarity cut.
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the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3
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their deformations are set to be zero. Concretely, we define the full set of physical numerators

as

Ni =

(
ni +�i, i = 1, 4, 5, 9, 10, 13,

ni, others.
(4.1)

The deformation �i should vanish in cut-(b) and cut-(c) since the ni part already satisfies

these cuts.

Clearly, the set of numerators in (4.1) will break the global CK duality since we only

make non-zero deformations to a subset of topologies. On the other hand, we would like the

deformed numerators to have the important property that: they can be used for the double-

copy construction. To achieve this, one should at least require Ni to satisfy CK relations

under all unitarity cuts, as in [38]. Since all ni are constructed by satisfying (global) CK

relations, the deformations �i must also satisfy dual Jacobi identities under cuts.

Rather than just imposing CK relations with cuts, we propose that �i should satisfy a

sub-set of o↵-shell dual Jacobi relations. This is one key point of our proposal, and as we see

below, it will significantly simplify the calculation.

We consider dual Jacobi relations that involve only the topologies in Figure 8. It turns

out that one can choose the double box diagram as the master topology for the deformation.

Given its numerator deformation �1, the deformation for other five topologies in Figure 8

can be determined through following dual Jacobi relations:

�4 = �1 ��1[p3, p4, p2, p1, l1 � l2 + p1 + p2,�l2]

�5 = ��1[p1, p2, p3, p4, l1, l1 � l2 + p1 + p2] +�1[p1, p2, p4, p3, l1, l1 + l2] (4.2)

�9 = ��4[p1, p2, p3, p4, l1, l1 � l2] +�4[p1, p2, p4, p3, l1, l1 � l2]

�10 = ��4[p1, p2, p3, p4, l1, l1 + l2 + p1 + p2]��4[p1, p2, p3, p4,�l1 � p1 � p2,�l1 + l2]

�13 = �9 +�9[p1, p2, p3, p4,�l1 � p1 � p2, l2] .

Note that we do not impose any cut conditions for these relations.

In the o↵-shell CK relations discussed above, we have confined our focus to the topologies

in Figure 8, ensuring that these relations do not extend to topologies that do not contribute

to cut-(a). For instance, the dual Jacobi relation shown in Figure 9 should not be included

because it involves topologies (the two on the right-hand side) that are absent in Figure 8. In
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In this paper we propose a new strategy: we start with a global CK-dual integrand and

then introduce simple “deformations” which can also be related by CK-dual relations. In the

next section, we will provide a detailed application of this strategy.

4 Physical solution with deformation

This section presents the major results of the paper. We first discuss the strategy of introduc-

ing deformation for the CK-dual numerators. Then we provide the explicit solution. Finally,

we discuss the solution space for the deformations.

4.1 General idea of deformation

We would like to work based on ni and construct a physical solution that passes all unitarity

cuts. Let us first recall the property of ni that we have obtained in the previous section based

on CK-dual construction.

• ni have the minimal ansatz form and satisfy the symmetry properties.

• ni satisfy the global set of CK-dual relations (3.1).

• The integrand of ni satisfies cut-(b) and cut-(c) in Figure 6.

• The solution space satisfying the above properties for ni contains 398 parameters.

Since the main problem comes from the cut-(a) in Figure 6, we will concentrate on the

topologies that can a↵ect cut-(a), which are collected in Figure 8.

The main idea is to introduce certain deformation �i to the numerators of these topolo-

gies, such that the deformation �i plus ni together will satisfy the unitarity-cut constraints.

Numerators whose topology does not appear in Figure 8 remain unchanged, or equivalently,

ansatz construction.
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their deformations are set to be zero. Concretely, we define the full set of physical numerators

as

Ni =

(
ni +�i, i = 1, 4, 5, 9, 10, 13,

ni, others.
(4.1)

The deformation �i should vanish in cut-(b) and cut-(c) since the ni part already satisfies

these cuts.

Clearly, the set of numerators in (4.1) will break the global CK duality since we only

make non-zero deformations to a subset of topologies. On the other hand, we would like the

deformed numerators to have the important property that: they can be used for the double-

copy construction. To achieve this, one should at least require Ni to satisfy CK relations

under all unitarity cuts, as in [38]. Since all ni are constructed by satisfying (global) CK

relations, the deformations �i must also satisfy dual Jacobi identities under cuts.

Rather than just imposing CK relations with cuts, we propose that �i should satisfy a

sub-set of o↵-shell dual Jacobi relations. This is one key point of our proposal, and as we see

below, it will significantly simplify the calculation.

We consider dual Jacobi relations that involve only the topologies in Figure 8. It turns

out that one can choose the double box diagram as the master topology for the deformation.

Given its numerator deformation �1, the deformation for other five topologies in Figure 8

can be determined through following dual Jacobi relations:

�4 = �1 ��1[p3, p4, p2, p1, l1 � l2 + p1 + p2,�l2]
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�13 = �9 +�9[p1, p2, p3, p4,�l1 � p1 � p2, l2] .

Note that we do not impose any cut conditions for these relations.

In the o↵-shell CK relations discussed above, we have confined our focus to the topologies

in Figure 8, ensuring that these relations do not extend to topologies that do not contribute

to cut-(a). For instance, the dual Jacobi relation shown in Figure 9 should not be included

because it involves topologies (the two on the right-hand side) that are absent in Figure 8. In
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In this paper we propose a new strategy: we start with a global CK-dual integrand and

then introduce simple “deformations” which can also be related by CK-dual relations. In the

next section, we will provide a detailed application of this strategy.

4 Physical solution with deformation

This section presents the major results of the paper. We first discuss the strategy of introduc-

ing deformation for the CK-dual numerators. Then we provide the explicit solution. Finally,

we discuss the solution space for the deformations.

4.1 General idea of deformation

We would like to work based on ni and construct a physical solution that passes all unitarity

cuts. Let us first recall the property of ni that we have obtained in the previous section based

on CK-dual construction.

• ni have the minimal ansatz form and satisfy the symmetry properties.

• ni satisfy the global set of CK-dual relations (3.1).

• The integrand of ni satisfies cut-(b) and cut-(c) in Figure 6.

• The solution space satisfying the above properties for ni contains 398 parameters.

Since the main problem comes from the cut-(a) in Figure 6, we will concentrate on the

topologies that can a↵ect cut-(a), which are collected in Figure 8.

The main idea is to introduce certain deformation �i to the numerators of these topolo-

gies, such that the deformation �i plus ni together will satisfy the unitarity-cut constraints.

Numerators whose topology does not appear in Figure 8 remain unchanged, or equivalently,

ansatz construction.
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Consider different Lorentz structure separately:

practice, one can achieve this by avoiding applying CK operation to the propagators that are

severed by cut-(a), as this would lead to topologies outside the set requiring deformation.4

On the other hand, we require that the numerator Ni upholds the global CK duality

across a spanning set of cuts, ensuring the applicability of the double copy. Our construction

for �i is designed to maintain global CK duality specifically under cut-(a). Consequently,

the relations we have excluded (such as Figure 9) imply that each �i must vanish separately

when subjected to cut-(b) and cut-(c). These additional constraints will be duly considered

in our construction, as we demonstrate in the following sections.

4.2 Explicit solution of deformation

We now discuss the construction of the deformation �i.

To simplify the construction, it is convenient to divide the numerators into three parts

according to the structure of polarization vectors. For example, the numerators ni can be

written as

ni = n[1]
i + n[2]

i + n[3]
i . (4.3)

In n[1]
i , each polarization vector is contracted with another polarization vector, for instance,

("1 · "2)("3 · "4)(p1 · p2)(p1 · l1)(p1 · l2). (4.4)

Terms in n[2]
i have two polarization vectors contracted with each other and the other two

polarization vectors are contracted with momenta, such as

("1 · "2)("3 · p4)("4 · p3)(p1 · l1)(p1 · l2). (4.5)

Finally, polarization vectors in n[3]
i are all contracted with momentas, and an example is

("1 · p2)("2 · p3)("3 · p4)("4 · p3)(p1 · l2). (4.6)

These three parts are independent with each other: they will not change the type during

CK operations and they also satisfy unitarity cuts separately. Thus we can treat them inde-

pendently. Following the same standard, the deformation �i can also be divided into three

parts:

�i = �[1]
i +�[2]

i +�[3]
i . (4.7)

Below discuss these three parts one by one. Since the double-box topology, shown in Figure 10,

is the master topology for the deformation, we only need to make an ansatz for �1.

4Naturally, if �i were allowed to propagate through all the topologies via dual Jacobi relations, we would

revert to an integrand with global CK relations which makes no di↵erence from the ni numerators.
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Some requirement: 1) do not affect other cuts,  
2) double copy still applicable. 



Solving the master numerator

1

2 3

4

l2 l5

l1 l3

l4

l6 l7

Figure 10: The double-box topology and its momentum labeling.

Deformation �[1]
1 . We consider n[1]

i and �[1]
i first. Monominals in n[1]

i can be further

devided into terms that are proportional to ("1 ·"2)("3 ·"4), ("1 ·"3)("2 ·"4) and ("1 ·"4)("2 ·"3),
which should match the corresponding terms in the tree products respectively. We have

calculated them separately, and we find that there is no di�culty for terms proportional to

("1 · "3)("2 · "4) and ("1 · "4)("2 · "3) in n[1]
i to match corresponding terms in tree products.

The only inconsistency comes from terms propotional to ("1 · "2)("3 · "4), thus we can require

all the terms in �[1]
i to be propotional to ("1 · "2)("3 · "4).

As mentioned in the end of Section 4.1, the deformation should vanish under cut-(b) and

cut-(c). A simple way to achieve this is to ask �[1]
i to be proportional to some propagators

which are cut by cut-(b) and cut-(c). For instance, we can acquire the deformation of double

box topology �[1]
1 to be proportional to (l2)2 since either cut-(b) or cut-(c) will put it on shell

and vanish.

Following the above discussion, we now can make an ansatz for �[1]
1 :

�[1]
1 = ("1 · "2)("3 · "4)(

X

k

c[1]k M [1]
k ) l22 , (4.8)

where M [1]
k are monominals formed by product of such basis:

{p1 · p2, p2 · p3, p1 · l1, p2 · l1, p3 · l1, p1 · l2, p2 · l2, p3 · l2, l1 · l2, l21, l22} (4.9)

A simple dimension analysis shows that M [1]
k has mass dimension four. In this ansatz, we

have 66 parameters in total. We can further constrain it by imposing symmetry conditions

as in (3.6), and this will reduce parameters to 29.

With the ansatz of �[1]
1 , we can obtain other �[1]

i by relations in (4.2), which satsify the

symmetry properties automatically. In addition, other �[1]
i also vanish under cut-(b) and

cut-(c) independently. Finally, we match the expression with tree products of cut-(a). Indeed

we find there are solutions, and the 29 parameters in �[1]
1 will reduce to 28.

Interestingly, in the solution space, we find a special simple solution of �[1]
1 that can be

given by a single term:

�[1]
1 = (d� 2)2("1 · "2)("3 · "4)l24 l22 l25 , (4.10)

where l2, l4 and l5 are labeled in Figure 10.
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k has mass dimension four. In this ansatz, we

have 66 parameters in total. We can further constrain it by imposing symmetry conditions

as in (3.6), and this will reduce parameters to 29.

With the ansatz of �[1]
1 , we can obtain other �[1]

i by relations in (4.2), which satsify the

symmetry properties automatically. In addition, other �[1]
i also vanish under cut-(b) and

cut-(c) independently. Finally, we match the expression with tree products of cut-(a). Indeed

we find there are solutions, and the 29 parameters in �[1]
1 will reduce to 28.

Interestingly, in the solution space, we find a special simple solution of �[1]
1 that can be

given by a single term:
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We point out that in matching the cut conditions, one uses the full numerators Ni given

by (4.1), and thus the solution space of ni also receives further constraints from cut-(a) at

the same time. Therefore, one has an updated solution of ni associated to the given solution

of �i. In addition, in the above choice of the ansatz of �i, some degrees of freedom overlap

with those in the solution space of ni. This issue can be resolved by using a refined ansatz of

�i that is ‘orthogonal’ to the solution space of ni. We will discuss this in detail in Section 4.3.

Deformation �[2]
1 . As what we did for n[1]

i , we carefully studied the origin of inconsistency

in n[2]
i . We find that the terms which can not match the tree product are either proportional

to "1 · "2 or "3 · "4. So we make an ansatz for �[2]
1 as

�[2]
1 =

h
("1 · "2)(

X

a

c[2]a M [2]
1,a) + ("3 · "4)(

X

b

c[2]b M [2]
2,b)

i
l22 , (4.11)

where the corresponding basis for the monomials M [2]
1,a and M [2]

2,b are

{"k · pi, "k · l↵, pi · pj , pi · l↵, l↵ · l�}, (4.12)

where k = 1, 2 for M [2]
2,b and k = 3, 4 for M [2]

1,a. Note that the ansatz is proportional to (l2)2 so

that it vanishes under cut-(b) and cut-(c). In this ansatz �[2]
1 contains 352 parameters and

symmetry conditions will reduce it to 102. Other �[2]
i will be determined by the relations in

(4.2), and they also satisfy the symmetry properties and vanish under cut-(b) and cut-(c).

Finally, we impose the cut-(a) constraint for the deformed integrand based on N [2]
i and

now the solution exists. We find that the 102 parameters in �[2]
1 reduce to 100. Similar to

�[1]
1 , we find a very simple special solution for �[2]

1 within the solution space:

�[2]
1 = �4(d� 2)2

h
("1 · "2)("3 · l5)("4 · l5)l24 + ("3 · "4)("1 · l4)("2 · l4)l25

i
l22. (4.13)

Deformation �[3]
1 . Finally, we determine the �[3]

1 . Inspecting the structure of �[1]
1 and

�[2]
1 , one notes that "1 and "2 only contract with l4, while "3 and "4 only contract with l5.

And a naive guess for the minimal ansatz of �[3]
1 could be

�[3]
1 = c[3]1 ("1 · l4)("2 · l4)("3 · l5)("4 · l5)l22. (4.14)

Unfortunately, we find deformation �[3]
1 in this simple form can not pass all the unitarity

cuts, which means we need to enlarge the ansatz and provide a more general form.

We propose �[3]
1 as:

�[3]
1 = (

X

k

c[3]k M [3]
k )l22 , (4.15)

where M [3]
k is formed by the product of following basis:

{"i · pj , "i · l↵} (4.16)
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(a) (b) (c)

Figure 6: A spanning set of cuts for two-loop four-point amplitude.

1
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(c)

Figure 7: An example for CK relation in unitarity cut.

One may try to solve this problem by following ideas.

1) One can simplify the problem by considering helicity amplitudes. In a specific helicity

amplitude, the physical result may be much simpler so it will be easier to realize CK duality.

For two-loop four-point amplitude, helicity configuration can be (++++), (+++�), (++��)

and (+�+�). Case of (+ + ++) has already been constructed in [18].

2) One can try to enlarge ansatz such as introducing the non-local property to numerators

and increasing the power of loop momenta. This method has been used in [22] to realize the

CK duality for pure Yang-Mills two-loop five-point amplitude with identical helicities.

3) One can relax the constraints of CK-dual identities as in [38] by demanding that they

hold only on a spanning set of cuts without losing the double-copy property. For example,

the three numerators in Figure 7 should satisfy:

(na � nb � nc)
��
cut

= 0 . (3.7)

However, in such a strategy, one would give up using the global CK-dual identities to obtain

the whole integrand. Instead, an ansatz for each diagram in Figure 5 has to be made, and

the complete ansatz is much larger than the usual strategy utilizing master topologies. For

example, the (minimal type) ansatz in [38] contains 120904 parameters for all 14 topologies

in total. After imposing symmetry constraints, 28204 parameters remain. While taking

unitarity cuts, the cut CK-dual identities like (3.7) are imposed. It is not hard to see that

the method would be di�cult for more complicated cases. With the growth of loops and

external momentums, the scale of ansatz will increase rapidly since all the topologies need to

be treated separately.3

3For example, a similar strategy for the three-loop four-gluon amplitude would require an ansatz that

involves more than millions of parameters, and it would be important to reduce the number of topologies for
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Ni = ni + Δi



Deformation
Solution for the master numerator:
(There is a solution space with free parameters, here is a special simple choice.)



The simplicity of the deformation:

Deformation Undeformed part

N1 = n1 + Δ1

Deformation



Checks of the solution
1

2 3

4

=

1

2 3

4

3

4

2

1

+

Figure 9: CK relation that should be excluded for deformations.

their deformations are set to be zero. Concretely, we define the full set of physical numerators

as

Ni =

(
ni +�i, i = 1, 4, 5, 9, 10, 13,

ni, others.
(4.1)

The deformation �i should vanish in cut-(b) and cut-(c) since the ni part already satisfies

these cuts.

Clearly, the set of numerators in (4.1) will break the global CK duality since we only

make non-zero deformations to a subset of topologies. On the other hand, we would like the

deformed numerators to have the important property that: they can be used for the double-

copy construction. To achieve this, one should at least require Ni to satisfy CK relations

under all unitarity cuts, as in [38]. Since all ni are constructed by satisfying (global) CK

relations, the deformations �i must also satisfy dual Jacobi identities under cuts.

Rather than just imposing CK relations with cuts, we propose that �i should satisfy a

sub-set of o↵-shell dual Jacobi relations. This is one key point of our proposal, and as we see

below, it will significantly simplify the calculation.

We consider dual Jacobi relations that involve only the topologies in Figure 8. It turns

out that one can choose the double box diagram as the master topology for the deformation.

Given its numerator deformation �1, the deformation for other five topologies in Figure 8

can be determined through following dual Jacobi relations:

�4 = �1 ��1[p3, p4, p2, p1, l1 � l2 + p1 + p2,�l2]

�5 = ��1[p1, p2, p3, p4, l1, l1 � l2 + p1 + p2] +�1[p1, p2, p4, p3, l1, l1 + l2] (4.2)

�9 = ��4[p1, p2, p3, p4, l1, l1 � l2] +�4[p1, p2, p4, p3, l1, l1 � l2]

�10 = ��4[p1, p2, p3, p4, l1, l1 + l2 + p1 + p2]��4[p1, p2, p3, p4,�l1 � p1 � p2,�l1 + l2]

�13 = �9 +�9[p1, p2, p3, p4,�l1 � p1 � p2, l2] .

Note that we do not impose any cut conditions for these relations.

In the o↵-shell CK relations discussed above, we have confined our focus to the topologies

in Figure 8, ensuring that these relations do not extend to topologies that do not contribute

to cut-(a). For instance, the dual Jacobi relation shown in Figure 9 should not be included

because it involves topologies (the two on the right-hand side) that are absent in Figure 8. In

– 12 –

• Pass the full set of D-dimensional planar and non-planar cuts

• Free parameters cancel after the integral IBP reduction

• Integrated result satisfies the Catani IR formula

• Satisfy all CK-dual relations on cuts, so double-copy applies
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Summary and outlook

• Gauge and gravity theories are related by double copy.

• The key of double copy is to achieve “color-kinematics duality”.

• Finding CK-dual numerators is generally difficult, and 
introducing “a simple deformation” may solve it.

A new strategy to apply CK-duality and double-copy.

Bern, Davies and Nohle  2015 



• More examples: higher loop cases?

• Why so simple?

Zeyu Li, GY, Guorui Zhu in preparation

Summary and outlook



Zeyu Li, GY, Guorui Zhu in preparation

Summary and outlook



• Are there underlying structures for the deformation?

Summary and outlook

Towards 3-loop Einstein gravity?

• More examples: higher loop cases?

Zeyu Li, GY, Guorui Zhu in preparation

• Why so simple?



Thank you for your attention!


