Understanding Higher-Group Symmetries 2406.03974 Ruizhi Liu, Ran Luo, YNW

Yi-Nan Wang

Peking University

USTC 第五届全国场论与弦论学术研讨会 June 28, 2024

 QQ

- Overview of generalized symmetries
- Strict and weak 2-group symmetries
- 2-group gauge theory
- Landau-Ginzburg model for strict 2-group symmetries and SSB
- 3-group symmetries

 QQ

后

ミドマミド

• Symmetry is a central concept in physics

(1) Global symmetry: $\phi \rightarrow g \cdot \phi$, g is constant in spacetime.

(2) Local (gauge) symmetry: $\phi \rightarrow g(x) \cdot \phi$, $g(x)$ is spacetime dependent.

Examples of "ordinary symmetry"

- 0-form: acting on local operators
- invertible: the symmetry transformations are invertible

• By default we are talking about global internal symmetries.

 $\exists x \in \mathbb{R}$

 Ω

• Generalize the ordinary (invertible 0-form) global symmetry (1) 0-form \rightarrow Higher-form symmetry acting on extended operators (2) Group $G \rightarrow$ Higher-group, non-invertible categorical symmetries ...

 η are

重

k Erkik Erki

Higher-form symmetry

 \bullet p-form symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14')

• A p-form symmetry is generated by a $(d - p - 1)$ -dimensional topological operator $U(g, M^{(d-p-1)})$:

and acts on p -dimensional object(operator) $V^i(\mathcal{C}^{(p)}).$

KERKER E KAQO

Higher-form symmetry

 \bullet p-form symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14')

• A p-form symmetry is generated by a $(d - p - 1)$ -dimensional topological operator $U(g, M^{(d-p-1)})$:

and acts on p -dimensional object(operator) $V^i(\mathcal{C}^{(p)}).$

 \bullet $\mathsf{U}(g, \mathsf{M}^{(d-p-1)})$ has non-trivial action on $\mathsf{V}^i(\mathcal{C}^{(p)})$ when $\mathsf{M}^{(d-p-1)}$ and $\mathcal{C}^{(\rho)}$ are non-trivially linked.

$$
U(g, M^{(d-p-1)})V^{i}(\mathcal{C}^{(p)}) = R^{i}_{j}(g)V^{j}(\mathcal{C}^{(p)}).
$$
 (1)

- Examples:
- (1) Pure 4D $U(1)$ Maxwell theory has $U(1)_e \times U(1)_m$ 1-form symmetry
- (2) Pure 4D $SU(N)$ Yang-Mills theory has \mathbb{Z}_N 1-form symmetry
- (3) 3D $U(1)_k$ Chern-Simons theory has \mathbb{Z}_k 1-form symmetry
- (4) 6D (2,0) theory has 2-form symmetries

4 重 ド 4 重 ドー

 QQ

B

- What is a higher-group symmetry?
- Step One: how to think a group as a 1-category (object+morphisms):

$$
g \circ h = gh \tag{2}
$$

- A group is a 1-category with only one object and invertible morphisms
- Generalizations

2-category: object, morphisms, 2-morphisms (between morphisms) n -category: object, morphisms, 2-morphisms, ..., n -morphisms

Barbara

 Ω

• An n -group is an n -category with only one object where all k-morphisms $(1 \leq k \leq n)$ are invertible.

• The consistency relations are complicated, and there are different versions of n-groups with different associativity

• We first talk about 2-groups, which are invertible 2-categories with only one object.

(1) Strict 2-group (strict 2-category): morphisms are associative

(2) Weak 2-group (bicategory): morphisms are not associative

Strict 2-group

- One object •, morphisms \rightarrow , 2-morphisms \Rightarrow
- All invertible, identity exists for morphisms and 2-morphisms
- Horizontal composition is associative:

• Vertical composition is associative:

• Compatibility:

 QQ

- Equivalent algebraic formulation: crossed module (G, H, ∂, \rhd)
- (1) G and H are groups
- (2) $\partial : H \to G$ is a homomorphism
- $(3) \triangleright : G \rightarrow$ Aut (H) is a group action of G on H
- Additional constraints for all $g \in G$, $h, h' \in H$:

$$
\partial(g \rhd h) = g(\partial h)g^{-1} \tag{3}
$$

$$
(\partial h) \rhd h' = hh'h^{-1}.
$$
 (4)

• Remark: the original notion of 2-group in the construction of 2-gauge theory by (Baez, Schreiber 04')...

 $E + 4E + E = 0.99$

- • However, strict 2-group is not often used in the generalized symmetry literature of 2-group symmetries. G and H are NOT actual symmetries!
- Physicists instead use weak 2-groups (Cordova, Dumitrescu, Intriligator 18')(Benini, Cordova, Hsin 18'). . .
- A weak 2-group is defined by the data $(\Pi_1, \Pi_2, \rho, \beta)$ (1) Π₁, Π₂ are groups (2) $ρ: \Pi_1 \rightarrow Aut(\Pi_2)$ is a group action (3) $\beta \in H_{\rho}^{3}(B\Pi_1,\Pi_2) \equiv H_{\rho,{}_{S}\!P}^{3}(\Pi_1,\Pi_2)$ is called the Postnikov class (element of twisted group cohomology)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A}$

 Ω

Physical Meanings

(1) Π_1 : 0-form symmetry generated by cod-1 top. operator (2) Π_2 : 1-form symmetry generated by cod-2 top. operator (3) $ρ: \Pi_1 \rightarrow Aut(\Pi_2)$:

(4) β ∈ H_p^3 (B Π_1 , Π_2), g, h, k ∈ Π_1 , β(g, h, k) ∈ Π_2 :

• A weak 2-group $(\Pi_1, \Pi_2, \rho, \beta)$ is called split (n[on](#page-11-0)-[spl](#page-13-0)[it](#page-11-0)[\) i](#page-12-0)[f](#page-13-0) $\beta = 0 \neq 0$ $\beta = 0 \neq 0$ $\beta = 0 \neq 0$ [.](#page-37-0) -990

Physical Examples

(1) 5d $SU(2)_0$ SCFT with $\Pi_1 = SO(3)$, $\Pi_2 = \mathbb{Z}_2$, and a non-split 2-group symmetry $(SO(3),\mathbb{Z}_2,\mathrm{id.},\beta)$. $\beta\neq 0\in H^3(BSO(3),\mathbb{Z}_2)=\mathbb{Z}_2$. (Apruzzi, Bhardwaj, Oh, Schafer-Nameki 21')(del Zotto, García-Extebarria, Schafer-Nameki 22'). . .

(2) 4d QED type examples: starting from 4d $\mathit{U}(1)_A^{(0)}\times \mathit{U}(1)_C^{(0)}$ global symmetry with mixed 't Hooft anomaly. Gauge $\mathit{U(1)}_{C}^{(0)} \rightarrow$ New $\mathit{U(1)}_{B}^{(1)}$ magnetic 1-form symmetry, and a non-split 2-group symmetry $(U(1)_A, U(1)_B, \mathrm{id.}, \kappa), \ \kappa \in H^3(BU(1), U(1)) = \mathbb{Z}$. (Cordova, Dumitrescu, Intriligator 18'). . .

(3) In condensed matter physics, non-split 2-group (non-zero β) \rightarrow obstruction to symmetry fractionalization (Chen, Burnell, Vishwanath, Fidkowski 14'). . .

KORK ERREPADA ADA KOR

Strict and Weak 2-groups

- Recap: we have two versions of 2-groups (1) Strict 2-group: (G, H, ∂, \rhd) (2) Weak 2-group: $(\Pi_1, \Pi_2, \rho, \beta)$
- Questions:

(1) How to relate them?

- $(G, H, \partial, \rhd) \rightarrow (\Pi_1, \Pi_2, \rho, \beta)$: unique
- \bullet $(\Pi_1,\Pi_2,\rho,\beta) \stackrel{strictification}{\longrightarrow} (G,H,\partial,\rhd)$: non-unique

(2) Why use the strict 2-group?

• The formulation of strict 2-group gauge theory in real space & path space is well established (Baez, Schreiber 04')...

• Easier to describe matter fields (2-matter) and SSB. (Liu, Luo, YNW $24'$)...

- Now we discuss the algebraic relations between strict and weak
- 2-groups
- Exact sequence:

$$
1 \to \Pi_2 \xrightarrow{i} H \xrightarrow{\partial} G \xrightarrow{p} \Pi_1 \to 1.
$$
 (5)

- (1) The "actual" 0-form symmetry: $\Pi_1 = G/\text{im}(\partial)$
- (2) The "actual" 1-form symmetry: $\Pi_2 = \text{ker}(\partial)$
- (3) Group action $\triangleright : G \rightarrow$ Aut (H) naturally induces $\rho : \Pi_1 \rightarrow$ Aut (Π_2)
- (4) Postnikov class β ? (Brown 82')...

化重新润滑脂

 \equiv Ω

- Example: $G = H = \mathbb{Z}_4 = \{0, 1, 2, 3\}, \ \partial : a \rightarrow 2a, \ i : a \rightarrow 2a, \ p : (mod$ 2)
- $\Pi_1 = \mathbb{Z}_4 / \text{im}(\partial) = \mathbb{Z}_2$, $\Pi_2 = \text{ker}(\partial) = \mathbb{Z}_2$:

$$
1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{\rho:(mod2)} \mathbb{Z}_2 \to 1.
$$
 (6)

- Aut $(\mathbb{Z}_2) = 1$, hence ρ is trivial
- $H^3(B\mathbb{Z}_2,\mathbb{Z}_2)=\mathbb{Z}_2$, two possibilities:
- (1) Split 2-group, $\beta = 0 \in H^3(B\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2$
- (2) Non-split 2-group, $\beta \neq 0 \in H^3(B\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2$
- Question: what determines β in the strict language?

 $E \rightarrow 4E + E \rightarrow 400$

Computation of β

$$
1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(mod 2)} \mathbb{Z}_2 \to 1.
$$
 (7)

• Pick a cross-section function $s: \Pi_1 \to G$ s.t. $p \circ s = id$.

$$
s(0) = 0 , s(1) = 1
$$
 (8)

• Define $f : \Pi_1 \times \Pi_1 \rightarrow G$ with

$$
s(g)s(h) = s(gh)f(g,h)
$$
 (9)

$$
f(g, h) = \begin{cases} 2 & g = h = 1 \\ 0 & \text{other cases} \end{cases}
$$
 (10)

• Uplift f to $F: \Pi_1 \times \Pi_1 \rightarrow H: \partial F = f$

$$
F(g, h) = \begin{cases} 1 & g = h = 1 \\ 0 & \text{other cases} \end{cases}
$$
 (11)

4 0 8

 \equiv Ω

ヨメ メヨメー

Computation of β

$$
1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(\text{mod}2)} \mathbb{Z}_2 \to 1. \tag{12}
$$

• Failure of cocycle condition for F :

$$
(s(g) \triangleright F(h,k))F(g,hk) = i(\beta(g,h,k))F(g,h)F(gh,k), \qquad (13)
$$

• $\beta: \Pi_1 \times \Pi_1 \times \Pi_1 \rightarrow \Pi_2$: Postnikov class

ミドマミド

 \equiv Ω

Computation of β

$$
1 \to \mathbb{Z}_2 \xrightarrow{i \times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(\text{mod}2)} \mathbb{Z}_2 \to 1.
$$
 (12)

• Failure of cocycle condition for F :

$$
(s(g) \triangleright F(h,k))F(g,hk) = i(\beta(g,h,k))F(g,h)F(gh,k), \qquad (13)
$$

• $\beta: \Pi_1 \times \Pi_1 \times \Pi_1 \rightarrow \Pi_2$: Postnikov class

• The choice of β is encoded in the group action \triangleright : $G \rightarrow$ Aut (H) ! (1) If the group action \triangleright is trivial: $a \triangleright b = b$ (a, $b \in \mathbb{Z}_4$), then $\beta(g, h, k) \equiv 0 \rightarrow$ split 2-group (2) If the group action \triangleright is non-trivial: $a \triangleright b = (2a+1)b$ $(a, b \in \mathbb{Z}_4)$, then

$$
\beta(g, h, k) = ghk \quad (g, h, k = 0, 1) \tag{14}
$$

Non-split 2-group with non-trivial β !

KERKER E KAQO

 \bullet $(\Pi_1,\Pi_2,\rho,\beta) \stackrel{strictification}{\longrightarrow} (G,H,\partial,\rhd)$: non-unique

(1) Strictification of $(\Pi_1, \Pi_2, \rho, \beta) = (\mathbb{Z}_2, \mathbb{Z}_2, id, \beta \neq 0)$:

$$
1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{(mod2)} \mathbb{Z}_2 \to 1.
$$
 (15)

with a non-trivial group action $a \triangleright b = (2a + 1)b$

EXAEX E MAG

 \bullet $(\Pi_1,\Pi_2,\rho,\beta) \stackrel{strictification}{\longrightarrow} (G,H,\partial,\rhd)$: non-unique

(1) Strictification of $(\Pi_1, \Pi_2, \rho, \beta) = (\mathbb{Z}_2, \mathbb{Z}_2, id, \beta \neq 0)$:

$$
1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{(mod2)} \mathbb{Z}_2 \to 1.
$$
 (15)

with a non-trivial group action $a \triangleright b = (2a + 1)b$

• For a split 2-group $(\Pi_1, \Pi_2, \rho, \beta) = (\mathbb{Z}_2, \mathbb{Z}_2, \mathrm{id}, \beta = 0)$, we can just use the trivial sequence

$$
1 \to \mathbb{Z}_2 \xrightarrow{id.} \mathbb{Z}_2 \xrightarrow{\to 0} \mathbb{Z}_2 \xrightarrow{id.} \mathbb{Z}_2 \to 1. \tag{16}
$$

KERKER E MAN

Strictifications

(2) The case of 5d $SU(2)_0$ theory, $(\Pi_1, \Pi_2, \rho, \beta) = (SO(3), \mathbb{Z}_2, \mathrm{id}., \beta \neq 0)$

$$
1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{a \to e^{\pi i a} 1} SU(2) \longrightarrow SO(3) \to 1. \tag{17}
$$

• $G = SU(2)$, $H = \mathbb{Z}_4$, no need to use a non-trivial group action \triangleright

 $E + 4E + E = 990$

Strictifications

(2) The case of 5d $SU(2)_0$ theory, $(\Pi_1, \Pi_2, \rho, \beta) = (SO(3), \mathbb{Z}_2, id., \beta \neq 0)$

$$
1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{a \to e^{\pi i a} 1} SU(2) \longrightarrow SO(3) \to 1. \tag{17}
$$

• $G = SU(2)$, $H = \mathbb{Z}_4$, no need to use a non-trivial group action \triangleright

• CB description: $U(1)$ gauge theory + matter:

• Naive flavor symmetry rotating f and $e + f$ is $G = SU(2)$, however the center $\mathbb{Z}_2 \subset G = SU(2)$ is a part of gauge symmetry!

• The actual flavor symmetry is $\Pi_1 = G/\mathbb{Z}_2 = SO(3)$.

• What about $H = \mathbb{Z}_4$? All charged matter has integral charge under $\frac{1}{4}(U(1)_{gauge}+2U(1)_{\mathit{flavor}})$. Crucial in identification of non-trivial 2-group from the exact sequence:(Apruzzi, Bhardwaj, Oh, Schafer-Nameki 21')

$$
1\to{\mathbb Z}_2\longrightarrow{\mathbb Z}_4\longrightarrow{\mathbb Z}_2\to1_{\overset{\scriptscriptstyle\leftarrow}{\longleftrightarrow} \mathbb Z_2\overset{\scriptscriptstyle\leftarrow}{\longleftrightarrow} \overset{\scriptscriptstyle\leftarrow}{\longleftrightarrow} \overset{\scriptscriptstyle\leftarrow
$$

Strictifications

(3) QED type model: $(\Pi_1, \Pi_2, \rho, \beta) = (U(1), U(1), id., \kappa \in \mathbb{Z})$

$$
1 \to U(1) \stackrel{i}{\longrightarrow} U(1) \times \mathbb{Z} \stackrel{\partial}{\longrightarrow} \mathbb{Z}.U(1) \stackrel{p}{\longrightarrow} U(1) \to 1 \tag{20}
$$

$$
\partial(e^{2\pi i a},b)=(b,0). \qquad (21)
$$

$$
(a, e^{2\pi i b}) \triangleright (e^{2\pi i c}, d) = (e^{2\pi i (c + bd)}, d).
$$
 (22)

• $\mathbb{Z} \cdot U(1)$ is a central extension of $U(1)$ by \mathbb{Z} , group law:

$$
(a, e^{2\pi i b}) + (c, e^{2\pi i d}) = \begin{cases} (a + c, e^{2\pi i (b + d)}) & (b + d < 1) \\ (a + c + \kappa, e^{2\pi i (b + d)}) & \text{(otherwise)} \end{cases} . (23)
$$

(4) For general weak Lie 2-groups, strictification not necessarily exists

KERKER E MAG

• Derived the strictification of weak 2-group gauge fields (a, b) ^{strictification} (A, B) (assuming $\ker(\partial)$ is abelian)

• Discrete 2-groups: putting on a triangulated space, reproduce the 0-form gauge transformation $\lambda \in G$:

$$
A_{ij} \to \lambda_i A_{ij} \lambda_j^{-1} , B_{ijk} \to \lambda_i \triangleright B_{ijk} \tag{24}
$$

• The 1-form gauge transformation $\Lambda \in H$:

$$
A_{ij} \to A_{ij} \partial \Lambda_{ij} , B_{ijk} \to B_{ijk} (\delta_A \Lambda)_{ijk} \tag{25}
$$

 \equiv Ω

ヨメ スコメート

Physical Applications

- What can we do with strict 2-group symmetries?
- Landau-Ginzburg (LG) paradigm of SSB:

(1) Regular **0-form symmetry**, e.g. $G = U(1)$, introduce charged matter field ϕ under a representation of $U(1)$, i.e. $R: G \rightarrow$ Vect

$$
S = \int d^d x ((D_\mu \phi)^{\dagger} (D^\mu \phi) + V(\phi)), \ \ V(\phi) = \mu |\phi|^2 + \lambda |\phi|^4 \qquad (26)
$$

• Minimizing $V(\phi)$, breaks $G = U(1) \rightarrow 0$.

ヨメ マヨメー

 \equiv Ω

Physical Applications

- What can we do with strict 2-group symmetries?
- Landau-Ginzburg (LG) paradigm of SSB:

(1) Regular **0-form symmetry**, e.g. $G = U(1)$, introduce charged matter field ϕ under a representation of $U(1)$, i.e. $R: G \rightarrow$ Vect

$$
S = \int d^d x ((D_\mu \phi)^{\dagger} (D^\mu \phi) + V(\phi)), \ \ V(\phi) = \mu |\phi|^2 + \lambda |\phi|^4 \qquad (26)
$$

• Minimizing $V(\phi)$, breaks $G = U(1) \rightarrow 0$.

(2) 1-form symmetry

- Background gauge field: $B_{\mu\nu}$
- Charged matter? Wilson loops!

$$
\Phi(C) = tr_R(\mathcal{P} \exp(\oint_C A))
$$
\n(27)

• How to write down a Lagrangian LG model for 1-form symmetry? Mean String Field Theory! (Iqbal, Mcgreevy 21') **KERKER E MAN**

• Consider the path-space (loop-space) $P(M)$, the partition function is (Iqbal, Mcgreevy 21')

$$
Z = \int [\mathscr{D}B][\mathscr{D}\Phi] \exp\left(i \int_{\mathcal{P}(M)} \frac{1}{L(C)} \oint_C d\mathsf{s}(\mathcal{D}\Phi)^{\dagger}(\mathcal{D}\Phi) + V(\Phi)\right) (28)
$$

• Covariant derivative with area derivative

$$
\mathcal{D} = \frac{\delta}{\delta \sigma^{\mu\nu}} - B_{\mu\nu} \tag{29}
$$

- Discussions of SSB for 1-form symmetry: similar to 0-form symmetry
- Area law: no SSB, Perimeter law: SSB
- Open question: how to derive the mean string field theory effective action for Yang-Mills theory?

KERKER E MAG

Physical Applications

(3) 2-group symmetry

- Background gauge fields (strict): A_{μ} , $B_{\mu\nu}$
- Charged matter? 2-representations of 2-group G: a functor $\mathcal{G} \to 2\mathbf{Vect}$ ("Higher-charges"(Bhardwaj, Schafer-Nameki 23'))
- Higher-representation theory is subject to active research in mathematics!
- 2-vector space (Kapranov, Voevodsky 94' "Tetrahedron equations")
- 2-reps. for weak 2-groups (Elgueta 07')
- Physics: (Bartsch, Bhardwaj, Bottini, Bullimore, Decoppet, Delcamp, Ferrari, Grigoletto, Pearson, Schafer-Nameki, Tiwari, Yu. . .)
- What is a good notion of 2-representations to describe SSB of strict 2-group symmetry?

KORK ERREPADA ADA KOR

• Consider an algebra T, we can define the following automorphism 2 -group $Aut(\Upsilon)$ (Kristel, Ludewig, Waldorf 22', 23'):

$$
1 \to Z(\Upsilon^{\times}) \stackrel{i}{\longrightarrow} \Upsilon^{\times} \stackrel{\partial: a \to adj_a}{\longrightarrow} \text{Aut}(\Upsilon) \stackrel{p}{\longrightarrow} \text{Out}(\Upsilon) \to 1 \qquad (30)
$$

- $G = Aut(\Upsilon)$: Automorphism group of Υ
- $H = \Upsilon^{\times}$: invertible elements of Υ
- $\Pi_1 = Out(\Upsilon)$: Outer automorphism group of Υ
- $\Pi_2 = Z(\Upsilon^\times)$: Center of Υ^\times
- We use the automorphism 2-representation (as a strict intertwiner)
- $\mathcal{G} \to \mathcal{A}ut(\Upsilon)$ for some algebra Υ

 $E + 4E + E = 0.99$

Automorphism 2-representations

• 2-matter of 2-groups take value in Υ! Υ naturally has some physical meaning!

- Take the example of $(G, H, \partial, \rhd) = (\mathbb{Z}_4, \mathbb{Z}_4, \times, 2, \rhd)$, we can take $\Upsilon = \mathbb{C}[\mathbb{Z}_4]$, the group algebra of \mathbb{Z}_4 .
- An element of Υ has the form of a combination of Wilson loop operators

 $(a,b,c,d) \leftrightarrow aW_0+bW_1+cW_2+dW_3 \ , \ \ W_i\cdot W_j = W_{i+j\pmod{4}} \ \ (31)$

• Multiplication rule of $\Upsilon = \mathbb{C}[\mathbb{Z}_4]$:

$$
\begin{pmatrix} a_1 \ b_1 \ c_1 \ d_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 \ b_2 \ c_2 \ d_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1d_2 + c_1c_2 + d_1b_2 \ a_1b_2 + b_1a_2 + c_1d_2 + d_1c_2 \ a_1c_2 + b_1b_2 + c_1a_2 + d_1d_2 \ a_1d_2 + b_1c_2 + c_1b_2 + d_1a_2 \end{pmatrix} . \tag{32}
$$

KERKER E MAN

• Action of $g \in G = \mathbb{Z}_4$ on $\Phi = (a, b, c, d)$:

$$
(a, b, c, d) \rightarrow \begin{cases} (a, b, c, d) & (g = 0, 2) \\ (a, d, c, b) & (g = 1, 3) \end{cases}
$$
 (33)

• Action of
$$
h \in H = \mathbb{Z}_4
$$
 on $\Phi = (a, b, c, d)$:

$$
(a, b, c, d) \to h \circ (a, b, c, d) = (a, ihb, (-1)hc, (-i)hd).
$$
 (34)

 $\mathbb{B} \rightarrow \mathbb{R} \mathbb{B}$

 ORO

重

LG model for 2-group symmetry

- 2-group gauge fields $A_{(A,B)}$ defined in $\mathcal{P}(M)$
- Path-space effective action with 2-matter $\Phi \in \mathbb{C}[\mathbb{Z}_4]$

$$
Z = \int [\mathcal{D}A][\mathcal{D}B][\mathcal{D}\lambda][\mathcal{D}\phi]
$$

\n
$$
\exp \left\{ i \int_{\mathcal{P}(M)} \mathrm{Tr} \gamma \left[-\frac{1}{2g^2} |\mathcal{F}_A|^2 + \frac{1}{L(C)} (\mathbf{d}_A \Phi)^{\dagger} (\mathbf{d}_A \Phi) + V(\Phi) \right] + i \int_M \lambda^{(d-2)} \wedge (\partial(B) - \mathcal{F}_A) \right\}
$$
\n(35)

• e.g. for $\Upsilon = \mathbb{C}[\mathbb{Z}_4]$, we can write down some $V(\Phi)$ that's invariant under the action of G and H

• For simplicity turn off the gauge fields $\mathcal A$

Existent

 Ω

LG model for 2-group symmetry

• For example $V(\Phi) = r |\Phi|^2 + u |\Phi|^4$, SSB patterns:

(1) The entire 2-group symmetry is preserved:

$$
\Phi = \sqrt{\frac{-r}{u}} (1, 0, 0, 0) \tag{36}
$$

(2) $\Pi_1 = \Pi_2 = \mathbb{Z}_2$ is preserved, but the Postnikov class β is trivialized:

$$
\Phi = \sqrt{\frac{-r}{u}} (a, 0, b, 0) , |a|^2 + |b|^2 = 1 , a, b \neq 0.
$$
 (37)

- $H = \mathbb{Z}_4 \rightarrow \mathbb{Z}_2$
- After an SSB, non-split 2-group \rightarrow split 2-group! (3) Only preserves the 0-form symmetry $\Pi_1 = \mathbb{Z}_2$

$$
\Phi = \sqrt{\frac{-r}{u}}(a, b, c, b) , |a|^2 + 2|b|^2 + |c|^2 = 1 , a, b, c \neq 0.
$$
 (38)

KERKER E KAQO

• 3-group: invertible 3-category with only one object

\n- Weak 3-group:
$$
\mathcal{G}_3 = (\Pi_1, \Pi_2, \Pi_3, \rho, \beta, \gamma)
$$
\n- (1) Π_1 , Π_2 and Π_3 are 0-form, 1-form and 2-form symmetries
\n- (2) $\rho : \Pi_1 \to \text{Aut}(\Pi_2)$, $\Pi_1 \to \text{Aut}(\Pi_3)$.
\n- (3) $\beta \in H^3(B\Pi_1, \Pi_2)$, $\gamma \in H^4(B\mathcal{G}_2, \Pi_3)$ are Postnikov classes, $\mathcal{G}_2 = (\Pi_1, \Pi_2, \rho, \beta) \subset \mathcal{G}_3$ is the sub-2-group.
\n

• Strictification? Only to a semi-strict 3-group, i.e. a 2-crossed module!

 \equiv 990

ミドマミドー

- Semi-strict 3-group: $(G, H, L, \partial_1, \partial_2, \triangleright, \{-, -\})$.
- (1) G, H, L are groups
- (2) ∂_1 : $H \to G$ and ∂_2 : $L \to H$ are homomorphisms
- $(3) \triangleright : G \rightarrow Aut(H)$, $G \rightarrow Aut(L)$ are group actions
- (4) $\{-,-\}$: $H \times H \rightarrow L$ is called the Pieffer lifting (not necessarily bilinear)
- Subject to many consistency conditions
- In our work, studied the strictification of weak 3-groups with either $\Pi_1 = 0$ or $\Pi_2 = 0$, as well as the gauge fields (Liu, Luo, YNW 24')...
- Algebraic strictification of a general weak 3-group is still unknown

제 로 데 제 로 베 로 보니 > 이 의 0~

Summary and Outlook

- Discussed the strictification of weak 2-groups/3-groups
- Formulated the strictification of 2-group/3-group gauge theory
- Formulated 2-matter of 2-group with automorphism 2-representation
- Constructed LG model for 2-group and discussed its SSB
- Future directions:
- Further investigate the algebraic formulation of 3-representations . . .
- Strictification of general 3-groups and 4-groups . . .
- How to quantatitvely write down the LG model of higher-form/higher-group symmetry for a given QFT?
- Realization of higher-matter in lattice models
- Thank you for the attention!

④重 800 重 8000

B

 Ω