Understanding Higher-Group Symmetries 2406.03974 Ruizhi Liu, Ran Luo, YNW

Yi-Nan Wang

Peking University

USTC 第五届全国场论与弦论学术研讨会 June 28, 2024

- Overview of generalized symmetries
- Strict and weak 2-group symmetries
- 2-group gauge theory
- Landau-Ginzburg model for strict 2-group symmetries and SSB
- 3-group symmetries

(E)

Motivations

• Symmetry is a central concept in physics

(1) Global symmetry: $\phi \rightarrow g \cdot \phi$, g is constant in spacetime.

(2) Local (gauge) symmetry: $\phi \rightarrow g(x) \cdot \phi$, g(x) is spacetime dependent.

Examples of "ordinary symmetry"

- 0-form: acting on local operators
- invertible: the symmetry transformations are invertible

	Global symmetry	Local (gauge) symmetry
Spacetime	Lorentz symmetry, C, P, T	Diffeomorphism
Internal	Flavor symmetry, $U(1)_B$, $U(1)_L$	Gauge symmetry of SM

• By default we are talking about global internal symmetries.

- Generalize the ordinary (invertible 0-form) global symmetry
- (1) 0-form \rightarrow Higher-form symmetry acting on extended operators
- (2) Group $G \rightarrow$ Higher-group, non-invertible categorical symmetries ...

	Local operator	Higher-dim. operators
Invertible	ordinary sym.	higher-form, higher-group sym.
Non-invertible	non-invertible sym.	higher-categorical sym.

• = • • = •

Higher-form symmetry

• p-form symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14')

• A *p*-form symmetry is generated by a (d - p - 1)-dimensional topological operator $U(g, M^{(d-p-1)})$:

and acts on *p*-dimensional object(operator) $V^i(\mathcal{C}^{(p)})$.

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ● ● ● ● ● ● ● ●

Higher-form symmetry

• *p*-form symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14')

• A *p*-form symmetry is generated by a (d - p - 1)-dimensional topological operator $U(g, M^{(d-p-1)})$:

and acts on *p*-dimensional object(operator) $V^i(\mathcal{C}^{(p)})$.

• $U(g, M^{(d-p-1)})$ has non-trivial action on $V^i(\mathcal{C}^{(p)})$ when $M^{(d-p-1)}$ and $\mathcal{C}^{(p)}$ are non-trivially linked.

$$U(g, M^{(d-p-1)})V^{i}(\mathcal{C}^{(p)}) = R^{i}_{\ j}(g)V^{j}(\mathcal{C}^{(p)}).$$
(1)

- Examples:
- (1) Pure 4D U(1) Maxwell theory has $U(1)_e \times U(1)_m$ 1-form symmetry
- (2) Pure 4D SU(N) Yang-Mills theory has \mathbb{Z}_N 1-form symmetry
- (3) 3D $U(1)_k$ Chern-Simons theory has \mathbb{Z}_k 1-form symmetry
- (4) 6D (2,0) theory has 2-form symmetries

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Higher-group symmetry

- What is a higher-group symmetry?
- Step One: how to think a group as a 1-category (object+morphisms):

$$g \circ h = gh \tag{2}$$

- A group is a 1-category with only one object and invertible morphisms
- Generalizations

2-category: object, morphisms, 2-morphisms (between morphisms) *n*-category: object, morphisms, 2-morphisms, ..., *n*-morphisms

4 3 5 4 3 5 5

• An *n*-group is an *n*-category with only one object where all *k*-morphisms $(1 \le k \le n)$ are invertible.

• The consistency relations are complicated, and there are different versions of *n*-groups with different associativity

• We first talk about 2-groups, which are invertible 2-categories with only one object.

(1) Strict 2-group (strict 2-category): morphisms are associative

(2) Weak 2-group (bicategory): morphisms are not associative

* = * * = *

Strict 2-group

- \bullet One object $\bullet,$ morphisms $\rightarrow,$ 2-morphisms \Rightarrow
- All invertible, identity exists for morphisms and 2-morphisms
- Horizontal composition is associative:

• Vertical composition is associative:

• Compatibility:

- Equivalent algebraic formulation: crossed module $(G, H, \partial, \triangleright)$
- (1) G and H are groups
- (2) $\partial: H \to G$ is a homomorphism
- $(3) \rhd : G \rightarrow Aut(H) \text{ is a group action of } G \text{ on } H$
- Additional constraints for all $g \in G$, $h, h' \in H$:

$$\partial(g \triangleright h) = g(\partial h)g^{-1} \tag{3}$$

$$(\partial h) \triangleright h' = hh' h^{-1}.$$
(4)

• Remark: the original notion of 2-group in the construction of 2-gauge theory by (Baez, Schreiber 04')...

化压力 化压力

- However, strict 2-group is not often used in the generalized symmetry literature of 2-group symmetries. *G* and *H* are NOT actual symmetries!
- Physicists instead use weak 2-groups (Cordova, Dumitrescu, Intriligator 18')(Benini, Cordova, Hsin 18')...
- A weak 2-group is defined by the data (Π₁, Π₂, ρ, β)
 (1) Π₁, Π₂ are groups
 (2) ρ : Π₁ →Aut(Π₂) is a group action
 (3) β ∈ H³_ρ(BΠ₁, Π₂) ≡ H³_{ρ,grp}(Π₁, Π₂) is called the Postnikov class (element of twisted group cohomology)

4 E 6 4 E 6

Physical Meanings

(1) Π_1 : 0-form symmetry generated by cod-1 top. operator (2) Π_2 : 1-form symmetry generated by cod-2 top. operator (3) $\rho : \Pi_1 \rightarrow \text{Aut}(\Pi_2)$:

(4) $\beta \in H^{3}_{\rho}(B\Pi_{1},\Pi_{2}), g, h, k \in \Pi_{1}, \beta(g, h, k) \in \Pi_{2}$:

• A weak 2-group $(\Pi_1, \Pi_2, \rho, \beta)$ is called split (non-split) if $\beta = 0 \ (\neq 0)$.

Physical Examples

(1) 5d $SU(2)_0$ SCFT with $\Pi_1 = SO(3)$, $\Pi_2 = \mathbb{Z}_2$, and a non-split 2-group symmetry $(SO(3), \mathbb{Z}_2, \text{id.}, \beta)$. $\beta \neq 0 \in H^3(BSO(3), \mathbb{Z}_2) = \mathbb{Z}_2$. (Apruzzi, Bhardwaj, Oh, Schafer-Nameki 21')(del Zotto, García-Extebarria, Schafer-Nameki 22')...

(2) 4d QED type examples: starting from 4d $U(1)_A^{(0)} \times U(1)_C^{(0)}$ global symmetry with mixed 't Hooft anomaly. Gauge $U(1)_C^{(0)} \rightarrow \text{New } U(1)_B^{(1)}$ magnetic 1-form symmetry, and a non-split 2-group symmetry $(U(1)_A, U(1)_B, \text{id.}, \kappa), \kappa \in H^3(BU(1), U(1)) = \mathbb{Z}$. (Cordova, Dumitrescu, Intriligator 18')...

(3) In condensed matter physics, non-split 2-group (non-zero β) \rightarrow obstruction to symmetry fractionalization (Chen, Burnell, Vishwanath, Fidkowski 14')...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Strict and Weak 2-groups

- Recap: we have two versions of 2-groups
 (1) Strict 2-group: (G, H, ∂, ▷)
 (2) Weak 2-group: (Π₁, Π₂, ρ, β)
- Questions:

(1) How to relate them?

- $(G, H, \partial, \rhd) \rightarrow (\Pi_1, \Pi_2, \rho, \beta)$: unique
- $(\Pi_1, \Pi_2, \rho, \beta) \xrightarrow{\text{strictification}} (G, H, \partial, \triangleright)$: non-unique

(2) Why use the strict 2-group?

• The formulation of strict 2-group gauge theory in real space & path space is well established (Baez, Schreiber 04')...

• Easier to describe matter fields (2-matter) and SSB. (Liu, Luo, YNW 24')...

4 E K 4 E K

- \bullet Now we discuss the algebraic relations between strict and weak
- 2-groups
- Exact sequence:

$$1 \to \Pi_2 \xrightarrow{i} H \xrightarrow{\partial} G \xrightarrow{p} \Pi_1 \to 1.$$
 (5)

- (1) The "actual" 0-form symmetry: $\Pi_1 = G/im(\partial)$
- (2) The "actual" 1-form symmetry: $\Pi_2 = \ker(\partial)$
- (3) Group action $\triangleright : G \rightarrow Aut(H)$ naturally induces $\rho : \Pi_1 \rightarrow Aut(\Pi_2)$
- (4) Postnikov class β ? (Brown 82')...

- Example: $G = H = \mathbb{Z}_4 = \{0, 1, 2, 3\}, \ \partial : a \to 2a, \ i : a \to 2a, \ p : \pmod{2}$
- $\Pi_1 = \mathbb{Z}_4/\operatorname{im}(\partial) = \mathbb{Z}_2, \ \Pi_2 = \operatorname{ker}(\partial) = \mathbb{Z}_2$:

$$1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(mod2)} \mathbb{Z}_2 \to 1.$$
(6)

- Aut(\mathbb{Z}_2) = 1, hence ρ is trivial
- $H^3(B\mathbb{Z}_2,\mathbb{Z}_2) = \mathbb{Z}_2$, two possibilities:
- (1) Split 2-group, $\beta = 0 \in H^3(B\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2$
- (2) Non-split 2-group, $\beta \neq 0 \in H^3(B\mathbb{Z}_2,\mathbb{Z}_2) = \mathbb{Z}_2$
- Question: what determines β in the strict language?

医下颌 医下颌

Computation of β

$$1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(mod2)} \mathbb{Z}_2 \to 1.$$
(7)

• Pick a cross-section function $s: \Pi_1 \to G$ s.t. $p \circ s = id$.

$$s(0) = 0$$
, $s(1) = 1$ (8)

• Define $f: \Pi_1 \times \Pi_1 \to G$ with

$$s(g)s(h) = s(gh)f(g,h)$$
(9)

$$f(g,h) = \begin{cases} 2 & g = h = 1 \\ 0 & \text{other cases} \end{cases}$$
(10)

• Uplift f to $F : \Pi_1 \times \Pi_1 \to H$: $\partial F = f$

$$F(g,h) = \begin{cases} 1 & g = h = 1 \\ 0 & \text{other cases} \end{cases}$$
(11)

17/33

э.

Computation of β

$$1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(mod2)} \mathbb{Z}_2 \to 1.$$
 (12)

• Failure of cocycle condition for F:

$$(s(g) \triangleright F(h,k))F(g,hk) = i(\beta(g,h,k))F(g,h)F(gh,k), \quad (13)$$

• $\beta : \Pi_1 \times \Pi_1 \times \Pi_1 \to \Pi_2$: Postnikov class

글 🖌 🔺 글 🕨

Computation of β

$$1 \to \mathbb{Z}_2 \xrightarrow{i:\times 2} \mathbb{Z}_4 \xrightarrow{\partial:\times 2} \mathbb{Z}_4 \xrightarrow{p:(mod2)} \mathbb{Z}_2 \to 1.$$
 (12)

• Failure of cocycle condition for F:

$$(s(g) \triangleright F(h,k))F(g,hk) = i(\beta(g,h,k))F(g,h)F(gh,k), \qquad (13)$$

• $\beta : \Pi_1 \times \Pi_1 \times \Pi_1 \to \Pi_2$: Postnikov class

The choice of β is encoded in the group action ▷ : G →Aut(H)!
(1) If the group action ▷ is trivial: a ▷ b = b (a, b ∈ Z₄), then
β(g, h, k) ≡ 0 → split 2-group
(2) If the group action ▷ is non-trivial: a ▷ b = (2a + 1)b (a, b ∈ Z₄), then

$$\beta(g,h,k) = ghk \quad (g,h,k=0,1) \tag{14}$$

Non-split 2-group with non-trivial β !

• $(\Pi_1,\Pi_2,\rho,\beta) \xrightarrow{\text{strictification}} (G,H,\partial,\rhd)$: non-unique

(1) Strictification of $(\Pi_1, \Pi_2, \rho, \beta) = (\mathbb{Z}_2, \mathbb{Z}_2, \mathrm{id.}, \beta \neq 0)$:

$$1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{(mod2)} \mathbb{Z}_2 \to 1.$$
 (15)

with a non-trivial group action $a \triangleright b = (2a+1)b$

글 🖌 🖌 글 🛌 👘

-

• $(\Pi_1,\Pi_2,\rho,\beta) \xrightarrow{\text{strictification}} (G,H,\partial,\rhd)$: non-unique

(1) Strictification of $(\Pi_1, \Pi_2, \rho, \beta) = (\mathbb{Z}_2, \mathbb{Z}_2, \mathrm{id.}, \beta \neq 0)$:

$$1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{(mod2)} \mathbb{Z}_2 \to 1.$$
 (15)

with a non-trivial group action $a \triangleright b = (2a+1)b$

• For a split 2-group $(\Pi_1, \Pi_2, \rho, \beta) = (\mathbb{Z}_2, \mathbb{Z}_2, id., \beta = 0)$, we can just use the trivial sequence

$$1 \to \mathbb{Z}_2 \xrightarrow{id.} \mathbb{Z}_2 \xrightarrow{\to 0} \mathbb{Z}_2 \xrightarrow{id.} \mathbb{Z}_2 \to 1.$$
 (16)

Strictifications

(2) The case of 5d $SU(2)_0$ theory, $(\Pi_1, \Pi_2, \rho, \beta) = (SO(3), \mathbb{Z}_2, \mathrm{id.}, \beta \neq 0)$

$$1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{a \to e^{\pi i a} I} SU(2) \longrightarrow SO(3) \to 1.$$
 (17)

• G = SU(2), $H = \mathbb{Z}_4$, no need to use a non-trivial group action \triangleright

Strictifications

(2) The case of 5d $SU(2)_0$ theory, $(\Pi_1, \Pi_2, \rho, \beta) = (SO(3), \mathbb{Z}_2, \mathrm{id.}, \beta \neq 0)$

$$1 \to \mathbb{Z}_2 \xrightarrow{\times 2} \mathbb{Z}_4 \xrightarrow{a \to e^{\pi i a} I} SU(2) \longrightarrow SO(3) \to 1.$$
 (17)

• G = SU(2), $H = \mathbb{Z}_4$, no need to use a non-trivial group action \triangleright

• CB description: U(1) gauge theory+ matter:

	$U(1)_{gauge}$	$U(1)_{flavor}$	
$f: \mathrm{Gauge}~\mathrm{W-boson}$	-2	1	(18)
$e: {\rm Flavor}~{\rm W-boson}$	0	-2	

• Naive flavor symmetry rotating f and e + f is G = SU(2), however the center $\mathbb{Z}_2 \subset G = SU(2)$ is a part of gauge symmetry!

• The actual flavor symmetry is $\Pi_1 = G/\mathbb{Z}_2 = SO(3)$.

• What about $H = \mathbb{Z}_4$? All charged matter has integral charge under $\frac{1}{4}(U(1)_{gauge} + 2U(1)_{flavor})$. Crucial in identification of non-trivial 2-group from the exact sequence:(Apruzzi, Bhardwaj, Oh, Schafer-Nameki 21')

$$1 \to \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2 \to 1.$$
 (1)

Strictifications

(3) QED type model: $(\Pi_1, \Pi_2, \rho, \beta) = (U(1), U(1), id., \kappa \in \mathbb{Z})$

$$1 \to U(1) \stackrel{i}{\longrightarrow} U(1) \times \mathbb{Z} \stackrel{\partial}{\longrightarrow} \mathbb{Z}.U(1) \stackrel{p}{\longrightarrow} U(1) \to 1$$
(20)

$$\partial(e^{2\pi i a}, b) = (b, 0).$$
⁽²¹⁾

$$(a, e^{2\pi i b}) \triangleright (e^{2\pi i c}, d) = (e^{2\pi i (c+bd)}, d).$$
 (22)

• $\mathbb{Z}.U(1)$ is a central extension of U(1) by \mathbb{Z} , group law:

$$(a, e^{2\pi i b}) + (c, e^{2\pi i d}) = \begin{cases} (a + c, e^{2\pi i (b+d)}) & (b+d < 1) \\ (a + c + \kappa, e^{2\pi i (b+d)}) & (\text{otherwise}) \end{cases} . (23)$$

(4) For general weak Lie 2-groups, strictification not necessarily exists

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Derived the strictification of weak 2-group gauge fields $(a, b) \xrightarrow{strictification} (A, B)$ (assuming ker(∂) is abelian)

• Discrete 2-groups: putting on a triangulated space, reproduce the 0-form gauge transformation $\lambda \in G$:

$$A_{ij} \to \lambda_i A_{ij} \lambda_j^{-1} , \ B_{ijk} \to \lambda_i \triangleright B_{ijk}$$
(24)

• The 1-form gauge transformation $\Lambda \in H$:

$$A_{ij} \to A_{ij} \partial \Lambda_{ij} , \ B_{ijk} \to B_{ijk} (\delta_A \Lambda)_{ijk}$$
 (25)

4 3 5 4 3 5 5

Physical Applications

- What can we do with strict 2-group symmetries?
- Landau-Ginzburg (LG) paradigm of SSB:

(1) Regular **0-form symmetry**, e.g. G = U(1), introduce charged matter field ϕ under a representation of U(1), i.e. $R : G \rightarrow$ **Vect**

$$S = \int d^{d}x ((D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) + V(\phi)) , \ V(\phi) = \mu |\phi|^{2} + \lambda |\phi|^{4}$$
(26)

• Minimizing $V(\phi)$, breaks $G = U(1) \rightarrow 0$.

化原本 化原本

Physical Applications

- What can we do with strict 2-group symmetries?
- Landau-Ginzburg (LG) paradigm of SSB:

(1) Regular **0-form symmetry**, e.g. G = U(1), introduce charged matter field ϕ under a representation of U(1), i.e. $R : G \rightarrow$ **Vect**

$$S = \int d^{d}x ((D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) + V(\phi)) , \ V(\phi) = \mu |\phi|^{2} + \lambda |\phi|^{4}$$
(26)

• Minimizing $V(\phi)$, breaks $G = U(1) \rightarrow 0$.

(2) 1-form symmetry

- Background gauge field: $B_{\mu
 u}$
- Charged matter? Wilson loops!

$$\Phi(C) = tr_R(\mathcal{P}\exp(\oint_C A))$$
(27)

• How to write down a Lagrangian LG model for 1-form symmetry? Mean String Field Theory! (Iqbal, Mcgreevy 21')

• Consider the path-space (loop-space) $\mathcal{P}(M)$, the partition function is (lqbal, Mcgreevy 21')

$$Z = \int [\mathscr{D}B][\mathscr{D}\Phi] \exp\left(i \int_{\mathcal{P}(M)} \frac{1}{L(C)} \oint_{C} ds (\mathcal{D}\Phi)^{\dagger} (\mathcal{D}\Phi) + V(\Phi)\right) \quad (28)$$

• Covariant derivative with area derivative

$$\mathcal{D} = \frac{\delta}{\delta \sigma^{\mu\nu}} - B_{\mu\nu} \tag{29}$$

- Discussions of SSB for 1-form symmetry: similar to 0-form symmetry
- Area law: no SSB, Perimeter law: SSB
- Open question: how to derive the mean string field theory effective action for Yang-Mills theory?

-

Physical Applications

(3) **2-group symmetry**

- Background gauge fields (strict): A_{μ} , $B_{\mu\nu}$
- Charged matter? 2-representations of 2-group \mathcal{G} : a functor $\mathcal{G} \rightarrow 2$ Vect ("Higher-charges" (Bhardwaj, Schafer-Nameki 23'))
- Higher-representation theory is subject to active research in mathematics!
- 2-vector space (Kapranov, Voevodsky 94' "Tetrahedron equations")
- 2-reps. for weak 2-groups (Elgueta 07')
- Physics: (Bartsch, Bhardwaj, Bottini, Bullimore, Decoppet, Delcamp, Ferrari, Grigoletto, Pearson, Schafer-Nameki, Tiwari, Yu...)
- What is a good notion of 2-representations to describe SSB of strict 2-group symmetry?

• Consider an algebra Υ , we can define the following automorphism 2-group $Aut(\Upsilon)$ (Kristel, Ludewig, Waldorf 22', 23'):

$$1 \to Z(\Upsilon^{\times}) \stackrel{i}{\longrightarrow} \Upsilon^{\times} \stackrel{\partial: a \to adj_a}{\longrightarrow} \operatorname{Aut}(\Upsilon) \stackrel{p}{\longrightarrow} \operatorname{Out}(\Upsilon) \to 1 \qquad (30)$$

- $G = Aut(\Upsilon)$: Automorphism group of Υ
- $H = \Upsilon^{\times}$: invertible elements of Υ
- $\Pi_1 = Out(\Upsilon)$: Outer automorphism group of Υ
- $\Pi_2 = Z(\Upsilon^{\times})$: Center of Υ^{\times}
- We use the automorphism 2-representation (as a strict intertwiner)
- $\mathcal{G} \to \mathcal{A}\textit{ut}(\Upsilon)$ for some algebra Υ

Automorphism 2-representations

 \bullet 2-matter of 2-groups take value in $\Upsilon !$ Υ naturally has some physical meaning!

- Take the example of $(G, H, \partial, \rhd) = (\mathbb{Z}_4, \mathbb{Z}_4, \times 2, \rhd)$, we can take $\Upsilon = \mathbb{C}[\mathbb{Z}_4]$, the group algebra of \mathbb{Z}_4 .
- \bullet An element of Υ has the form of a combination of Wilson loop operators

 $(a, b, c, d) \leftrightarrow aW_0 + bW_1 + cW_2 + dW_3$, $W_i \cdot W_j = W_{i+j \pmod{4}}$ (31)

• Multiplication rule of $\Upsilon=\mathbb{C}[\mathbb{Z}_4]$:

$$\begin{pmatrix} a_1 \\ b_1 \\ c_1 \\ d_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 \\ b_2 \\ c_2 \\ d_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1d_2 + c_1c_2 + d_1b_2 \\ a_1b_2 + b_1a_2 + c_1d_2 + d_1c_2 \\ a_1c_2 + b_1b_2 + c_1a_2 + d_1d_2 \\ a_1d_2 + b_1c_2 + c_1b_2 + d_1a_2 \end{pmatrix} .$$
(32)

• Action of $g \in G = \mathbb{Z}_4$ on $\Phi = (a, b, c, d)$:

$$(a, b, c, d) \rightarrow \begin{cases} (a, b, c, d) & (g = 0, 2) \\ (a, d, c, b) & (g = 1, 3) \end{cases}$$
 (33)

• Action of
$$h \in H = \mathbb{Z}_4$$
 on $\Phi = (a, b, c, d)$:

$$(a, b, c, d) \to h \circ (a, b, c, d) = (a, i^h b, (-1)^h c, (-i)^h d).$$
 (34)

∃ ► < ∃ ►</p>

LG model for 2-group symmetry

- 2-group gauge fields $\mathcal{A}_{(A,B)}$ defined in $\mathcal{P}(M)$
- \bullet Path-space effective action with 2-matter $\Phi \in \mathbb{C}[\mathbb{Z}_4]$

$$Z = \int [\mathscr{D}A][\mathscr{D}B][\mathscr{D}\lambda][\mathscr{D}\phi]$$

$$\exp\left\{i\int_{\mathcal{P}(M)} \operatorname{Tr}_{\Upsilon}\left[-\frac{1}{2g^{2}}|\mathcal{F}_{\mathcal{A}}|^{2} + \frac{1}{L(C)}(\mathbf{d}_{\mathcal{A}}\Phi)^{\dagger}(\mathbf{d}_{\mathcal{A}}\Phi) + V(\Phi)\right] + i\int_{M}\lambda^{(d-2)}\wedge(\partial(B) - F_{\mathcal{A}})\right\}$$
(35)

• e.g. for $\Upsilon = \mathbb{C}[\mathbb{Z}_4]$, we can write down some $V(\Phi)$ that's invariant under the action of G and H

 \bullet For simplicity turn off the gauge fields ${\cal A}$

B 🖌 🖌 B 🕨

LG model for 2-group symmetry

• For example $V(\Phi) = r |\Phi|^2 + u |\Phi|^4$, SSB patterns:

(1) The entire 2-group symmetry is preserved:

$$\Phi = \sqrt{\frac{-r}{u}}(1,0,0,0)$$
(36)

(2) $\Pi_1 = \Pi_2 = \mathbb{Z}_2$ is preserved, but the Postnikov class β is trivialized:

$$\Phi = \sqrt{\frac{-r}{u}}(a,0,b,0) , \ |a|^2 + |b|^2 = 1 , \ a,b \neq 0.$$
 (37)

- $H = \mathbb{Z}_4 \rightarrow \mathbb{Z}_2$
- After an SSB, non-split 2-group \rightarrow split 2-group! (3) Only preserves the 0-form symmetry $\Pi_1 = \mathbb{Z}_2$

$$\Phi = \sqrt{\frac{-r}{u}}(a, b, c, b) , \ |a|^2 + 2|b|^2 + |c|^2 = 1 , \ a, b, c \neq 0.$$
 (38)

• 3-group: invertible 3-category with only one object

• Strictification? Only to a semi-strict 3-group, i.e. a 2-crossed module!

きょうきょう

- Semi-strict 3-group: $(G, H, L, \partial_1, \partial_2, \triangleright, \{-, -\})$.
- (1) G, H, L are groups (2) $\partial_1 : H \to G$ and $\partial_2 : L \to H$ are homomorphisms (3) $\triangleright : G \to \operatorname{Aut}(H), G \to \operatorname{Aut}(L)$ are group actions (4) $\{-,-\} : H \times H \to L$ is called the Pieffer lifting (not necessarily

bilinear)

- Subject to many consistency conditions
- In our work, studied the strictification of weak 3-groups with either $\Pi_1 = 0$ or $\Pi_2 = 0$, as well as the gauge fields (Liu, Luo, YNW 24')...
- Algebraic strictification of a general weak 3-group is still unknown

▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● � � �

Summary and Outlook

- Discussed the strictification of weak 2-groups/3-groups
- Formulated the strictification of 2-group/3-group gauge theory
- Formulated 2-matter of 2-group with automorphism 2-representation
- Constructed LG model for 2-group and discussed its SSB
- Future directions:
- Further investigate the algebraic formulation of 3-representations ...
- Strictification of general 3-groups and 4-groups ...
- How to quantatitvely write down the LG model of higher-form/higher-group symmetry for a given QFT?
- Realization of higher-matter in lattice models
- Thank you for the attention!

不是下 不是下