Symmetry TFT and 4D supersymmetric field theory

Qiang Jia 5th National workshop on Fields and Strings

Korea Institute for Advanced Study with Zhihao Duan and Sungjay Lee To appear

4D supersymmetric gauge theory

- In the past decades, a lot of progress has been made in the study of supersymmetric theories.
- People have invented a plethora of protected quantities that capture the dynamics of the system
- Supersymmetric indices
 - Witten index
 - Superconformal index
 - ► ...
- Topological invariants
 - Donaldson-Witten invariants
 - Vafa-Witten invariants
- Those quantities depend on the global structure of the gauge group.
- ► SU(2) vs SO(3), SU(4) vs SO(6) for example.

Witten index on T^4 [Witten,2002] [Tachikawa,2014]

• Consider 4D N = 1 pure SU(2) theory, there are two supersymmetric vacua [Seiberg,Witten, 1994]

• The Witten index on T^4 (large radius) is

$$\mathcal{I}_{SU(2)} = \text{Tr}(-1)^F e^{-\beta H} = 1 + 1 = 2$$

Witten index on T^4

- Consider the gauge group to be $SO(3) = SU(2)/\mathbb{Z}_2$ instead.
- ▶ On *R*⁴, the local dynamics are the same, we still have two vacua.
- This is not true for T^4 , one actually gets

$$\mathcal{I}_{SO(3)} = 2 + 7 = 9 = 8 + 1$$

From Hamiltonian point of view, the extra seven states are contributed by the non-trivial flat SO(3) bundle characterized by the discrete 't Hooft flux.

Consider a T² parametrized by x_i, x_j(i, j = 1, 2, 3) and denote the holonomy along x_i, x_j as U, V ∈ SU(2) and consider $V^{-1}U^{-1}VU = (-1)^{\omega_{ij}}$

- If the gauge group is SU(2), for a flat configuration one must have $\omega_{ii} = 0$.
- ► However, if the gauge group is SO(3), $\omega_{ij} = 1$ is also acceptable, since $-1 \in SU(2)$ projects to $1 \in SO(3)$.

- $\omega_{ij} \in \mathbb{Z}_2$ is the obstruction of lifting SO(3)-bundle to SU(2)bundle.
- ▶ On spatial T^3 , there are totally $2^3 1 = 7$ non-trivial flat SO(3) configuration characterized by $\omega_{12}, \omega_{23}, \omega_{13}$. Each contributes one vacuum.
- ω_{ij} are also known as discrete 't Hooft flux. Originally, it is realized by imposing a twist boundary condition for SU(2) gauge field ['t Hooft, 1980]

$$A_{
u}(x_{\mu}=a_{\mu})=\Omega_{\mu}\left(A_{
u}(x_{\mu}=0)-irac{\partial}{\partial x_{
u}}
ight)\Omega_{\mu}^{-1}$$

where $A_{\nu}(x_{\mu} = a_{\mu})$ and $A_{\nu}(x_{\mu} = 0)$ are glued via a gauge transformation $\Omega_{\mu}(x \neq x_{\mu})$

 $\triangleright \omega_{ij}$ are encoded as

$$(-1)^{\omega_{ij}} = \Omega_i^{-1}(x_j = 0)\Omega_j^{-1}(x_i = a_i)\Omega_i(x_j = a_j)\Omega_j(x_i = 0)$$

which are gauge invariant quantities.

Discrete 't Hooft flux as 2-form background

Recall that, if we have a complex scalar φ(θ) living along a circle with a twist boundary condition

$$\phi(\theta + 2\pi) = e^{i\omega}\phi(\theta)$$

If we consider a singular gauge transformation

$$\phi(\theta) \to e^{-\frac{\omega\theta}{2\pi}}\phi, \quad A_{\theta} \to A_{\theta} + \frac{\omega}{2\pi}$$

then the scalar is periodic at the expense of introducing a U(1) holonomies.

Similarly, one can perform a singular gauge transformation to eliminate the twist boundary condition at the expense of introducing a 2-form background

$$b=rac{1}{2}\sum_{i,j}\omega_{ij}dx_i\wedge dx_j$$

• Discrete 't Hooft flux \leftrightarrow 2-form background

- ► Given a theory with gauge group G, we may consider its maximally covering group Ĝ with 2-form background b ∈ H²(M₄, Z(Ĝ)) and denote the corresponding supersymmetric quantity as I_{SUSY}[b]
- $\mathcal{I}_{SUSY}[b]$ carries all information such that, for any *G* sharing the same Lie algebra, one has

$$\mathcal{I}_{G, arphi} = rac{1}{\mathcal{N}} \sum_{b \in H^2(M_4, Z(\hat{G}/G))} e^{i arphi(b)} \mathcal{I}_{\mathrm{SUSY}}[b]$$

with $\mathcal N$ certain normalization factor, $\varphi(b)$ discrete torsion.

- In other words, gauging the 1-form symmetry changes the global structure of the gauge group[Gaiotto,Kapustin,Seiberg,Willett,2015]
- From this point of view, the problem is best formulated in terms of Symmetry Topological Field Theory (TFT).

Symmetry TFT [Lakshya,Sakura,2023 (A review)] [Witten,1998]

▶ In the present case, the SymTFT is 5D BF theory

$$S_{BF} = rac{N}{2\pi}\int \widetilde{B}\wedge dB$$

The 4D quantities can be expanded as

$$\mathcal{I}_{G, \varphi} = {}_{\mathrm{top}} \langle G, \varphi | e^{iHt} | \chi_{\mathrm{SUSY}} \rangle$$

- \triangleright $|\chi_{\text{SUSY}}\rangle$ is "dynamics boundary state".
- $|G, \varphi\rangle_{\text{top}}$ is "topological boundary state".
- Gauging 1-form symmetry is amount to changing topological boundary state

Gauging 1-form symmetry/summing over 2-form background Switching topological boundary state in SymTFT

Changing global structure of gauge group

- The motivation of this work is to study 4D supersymmetric invariants using SymTFT, focusing on the global structures of the gauge group.
- We consider three concrete examples
 - Witten index on T^4 (Spin)
 - Superconformal index on $L(r, 1) \times S^1$ (Torsion) [Razamat, Willett, 2013]
 - Vafa-Witten invariants on \mathbb{CP}_2 (Non-Spin)
- They are formulated on spin, non-spin and torsional manifold separately
- Through those examples, we will work out the details of topological/dynamical boundary state on various manifolds

5D BF theory as SymTFT

$$S_{BF} = rac{N}{2\pi} \int_{M_4 imes [0,1]} \widetilde{B} \wedge dB$$

- Here *B* and \widetilde{B} are two-form gauge fields.
- For any closed 2-cycle $\Gamma \in H_2(M_4)$, one can construct two gauge invariant surface operators

$$U[\Gamma] = \exp\left[i\oint_{\Gamma}B
ight], \quad \widetilde{U}[\Gamma] = \exp\left[i\oint_{\Gamma}\widetilde{B}
ight]$$

and they satisfy the quantum algebra

$$U[\Gamma]\widetilde{U}[\Gamma'] = \omega^{-\mathbf{K}(\Gamma,\Gamma')}\widetilde{U}[\Gamma'] \ U[\Gamma]$$

in the Hamiltonian picture. $K[\Gamma, \Gamma']$ is the intersection number and ω is *N*-root of unity.

Moreover, they satisfy

$$U^N[\Gamma] = \widetilde{U}^N[\Gamma] = \mathbf{1} ,$$

Boundary states

- Topological boundary states are 1-1 corresponds to maximally commuting set of operators
- Among them, there are two canonical boundary state
 - Dirichlet boundary state $|b\rangle$ (Diagonalizing U)

$$U[\Gamma]|b
angle = \omega^{\int \gamma \wedge b}|b
angle, \quad \widetilde{U}[\Gamma]|b
angle = |b - \gamma
angle$$

• Neumann boundary state $|\tilde{b}\rangle$ (Diagonalizing \tilde{U})

$$\widetilde{U}[\Gamma]|\widetilde{b}\rangle = \omega^{\int \gamma \wedge \widetilde{b}}|\widetilde{b}\rangle, \quad U[\Gamma]|b\rangle = |b+\gamma\rangle$$

They are related by

$$| ilde{b}
angle = rac{1}{\sqrt{N^{h_2}}}\sum_b \omega^{\int ilde{b} \wedge b} |b
angle$$

Identify b as the 2-form background of the 4D theory, the dynamical boundary state is constructed as

$$|\chi_{
m SUSY}
angle = \sum_b \mathcal{I}_{
m SUSY}[b]|b
angle$$

 $SL(2,\mathbb{Z}_N)$ and Pontryagin square

► The 5D BF theory is invariant under an SL(2, Z_N) transformation generated by S and T

$$S: \quad B \to \widetilde{B}, \quad \widetilde{B} \to -B,$$
$$T: \quad B \to B, \quad \widetilde{B} \to \widetilde{B} + B$$

S-transformation switch U/\widetilde{U}

$$V_S U[\Gamma] V_S^{\dagger} = \widetilde{U}[\Gamma], \quad V_S \widetilde{U}[\Gamma] V_S^{\dagger} = U[-\Gamma]$$

and T-transformation generates

$$V_T U[\Gamma] V_T^{\dagger} = U[\Gamma], \quad V_T \widetilde{U}[\Gamma] V_T^{\dagger} = S_{(1,1)}[\Gamma]$$

► Here the generic surface operator is

$$S_{(e,m)}[\Gamma] = \exp\left[i\oint_{\Gamma}eB + m\widetilde{B}
ight]$$

In particular, one has

$$S_{(1,1)}[\Gamma] = \exp\left[i\oint_{\Gamma}B + \widetilde{B}
ight] = \omega^{rac{1}{2}\int\mathfrak{P}(\gamma)}U[\Gamma]\widetilde{U}[\Gamma]$$

where $\mathfrak{P}(\gamma)$ is the Pontryagin square maps $H^2(M_4, \mathbb{Z}_N)$ to $H^4(M_4, \mathbb{Z}_{2N})$

$$\mathfrak{P}(\gamma) = \left\{ \begin{array}{l} \gamma \cup \gamma \quad (N \text{ is odd}) \\ \gamma \cup \gamma + \gamma \cup_1 \delta \gamma \quad (N \text{ is even}) \end{array} \right.$$

One can work out

$$\left\{ egin{array}{l} V_S |b
angle = rac{1}{\sqrt{N^{h_2}}} \sum_{b'} \omega^{K(b,b')} |b'
angle = | ilde{b} = b
angle \ V_T |b
angle = \omega^{-rac{1}{2}} \int \mathfrak{P}^{(b)} |b
angle \end{array}$$

 V_S switch D/N boundary state, V_T stack an SPT phase.

Figure: Topological boundary states for N = 2

Figure: Topological boundary states for N = 4

Figure: Topological boundary states for N = 8

Witten index on T^4

• On T^4 , the 2-form *b*-field can be decomposed as

$$b = \sum_i t_i dx^0 \wedge dx^i + rac{1}{2} \sum_{i,j,k} s_i \epsilon_{ijk} dx^j \wedge dx^k$$

and we can denote $|b\rangle = |(t_1, t_2, t_3), (s_1, s_2, s_3)\rangle \equiv |(t, s)\rangle$ S-transformation switch $|(t, s)\rangle$ and $|(\tilde{t}, \tilde{s})\rangle$

$$|(\tilde{t},\tilde{s})\rangle = \frac{1}{N^3} \sum_{t,s} \omega^{\tilde{t}\cdot s + \tilde{s}\cdot t} |(t,s)\rangle$$

► *T*-transformation stack a phase

$$V_T|(t,s)\rangle = \omega^{-t\cdot s}|(t,s)\rangle$$

► The dynamics boundary states are constructed as following [Witten,2002]

\hat{G}	Center	Dynamical boundary state $ \chi_{\text{SUSY}}\rangle$
SU(n)	\mathbb{Z}_n	$(-1)^{n-1}n\sum_{t,s}\delta_{t\cdot s,0} (t,s)\rangle$
Sp(n)	\mathbb{Z}_2	$(-1)^n(n+1)\sum_{t,s}\delta_{nt\cdot s,0} (t,s)\rangle$
Spin(2n+1)	\mathbb{Z}_2	$(-1)^n(2n-1)\sum_{t,s} (t,s)\rangle$
Spin(4n+2)	\mathbb{Z}_4	$-4n\sum_{t,s}\delta_{t\cdot s,0} (t,s)\rangle$
Spin(8n+4)	$\mathbb{Z}_2 imes \mathbb{Z}_2$	$(8n+2)\sum_{t,s;t',s'}\delta_{t\cdot s+t'\cdot s',0} (t,s);(t',s')\rangle$
Spin(8n)	$\mathbb{Z}_2 imes \mathbb{Z}_2$	$(8n-2)\sum_{t,s;t',s'} \delta_{t\cdot s'+t'\cdot s,0} (t,s); (t',s')\rangle$
E_6	\mathbb{Z}_3	$12\sum_{t,s}\delta_{2t\cdot s,0} (t,s)\rangle$
E_7	\mathbb{Z}_2	$-18\sum_{t,s}\delta_{t\cdot s,0} (t,s) angle$

For example, for SU(N) theory, the dynamical boundary state is

$$|\chi_{\mathrm{SUSY}}
angle = (-1)^{N-1} N \sum_{t,s} \delta_{t \cdot s,0} |(t,s)
angle$$

- The Witten index of SU(N) is $Z[t = 0, s = 0] \equiv \text{Tr}(-1)^F = \langle (0, 0) | \chi_{\text{SUSY}} \rangle = (-1)^{N-1} N$
- ► The Witten index of $SU(N)/\mathbb{Z}_N$ is

$$\langle (\tilde{0}, \tilde{0}) | \chi_{\mathrm{SUSY}} \rangle = (-1)^{N-1} \sum_{k=0}^{N-1} (\gcd(N, k))^3$$

For N = 2, one has

$$\langle (\tilde{0},\tilde{0})|\chi_{\rm SUSY}\rangle = -1-8 = -9$$

Superconformal index on $L(r, 1) \times S^1$

• Let's then consider the 4D $\mathcal{N} = 1$ superconformal index on $L(r, 1) \times S^1$

$$\mathcal{I} = \operatorname{Tr}\left[(-1)^F q^{\hat{D} - \frac{1}{2}\hat{R}} x^{2\hat{J}_R^3 + \hat{R}} y^{2\hat{J}_L^3} e^{im\beta} \right],$$

- Using localization technique, the index can be reduced to an integral along the flat configuration, characterized by the holonomies.
- The holonomy along S^1 is denoted as U
- ► $L(r, 1) = S^3/\mathbb{Z}_r$ has a torsion 1-cycle C_{τ} such that $rC_{\tau} = 0$. We denote the holonomies along C_{τ} as V

- ▶ If we turn off the 't Hooft flux, then *U* and *V* commute and both lie in the Cartan torus.
- However, since C_{τ} is torsion, one should have $V^r = 1$ and elements of V are discrete and are labelled by

$$\mathbf{m} = (m_1, m_2, \cdots, m_{\operatorname{rank}(G)})$$

Then the index in the trivial sector is

$$\mathcal{I} = \sum_{\mathbf{m}} \frac{1}{|W(\mathbf{m})|} \oint \prod_{l=1}^{\operatorname{rank}(\hat{G})} \left(\frac{dz_l}{2\pi i z_l}\right) \Delta_{\mathbf{m}}(z_i)$$
$$\prod_{\alpha \in \operatorname{roots}} I_V\left(\mathbf{m}(\alpha), e^{ia(\alpha)}\right) \prod_{l=1}^{N_{\chi}} \prod_{w \in \rho_l} I_{\chi}^{(\rho_l)}\left(\mathbf{m}(w), e^{ia(w)}\right)$$

The discrete 't Hooft fluxes are characterized by the following two quantities

$$UVU^{-1}V^{-1} = u, \quad V^r = v$$

with u, v lying in the center $Z(\hat{G})$, they project to flat configuration of $\hat{G}/Z(\hat{G})$.

► U, V are defined only up to multiplying center $\omega \in Z(\hat{G})$. Therefore

$$v \sim v\omega'$$

 \blacktriangleright *u* also satisfies $u^r = 1$ because

$$(uV)^r = u^r V^r = (UVU^{-1})^r = UV^r U^{-1} = V^r \to u^r = 1.$$

▶ In particular, when the center is \mathbb{Z}_N , one has $u^N = v^N = 1$ such that

$$u^{\operatorname{gcd}(r,N)} = 1, \quad v \sim v\omega^{\operatorname{gcd}(r,N)}$$

The index in the twist sector is similarly obtained by

$$\mathcal{I}[u,v] = \sum_{UVU^{-1}V^{-1}=u,V^r=v} \mathcal{I}_{U,V}$$

There is only one closed 2-cycle $\Gamma_1 = C_{\tau} \times S^1$ and corresponding operators $U[\Gamma_1], \widetilde{U}[\Gamma_1]$. They satisfy

$$U[\Gamma_1]^r = U[\Gamma_1]^r = 1$$
 and $U[\Gamma_1]^N = U[\Gamma_1]^N = 1$

and they combine to

$$U[\Gamma_1]^{\operatorname{gcd}(r,N)} = \widetilde{U}[\Gamma_1]^{\operatorname{gcd}(r,N)} = 1$$

Those operators commute with each other since Γ₁ has no self-intersection number. It seems the Hilbert space is trivial

Actually, one should include another 2-surface Γ_2 such that

$$\partial \Gamma_2 = r C_{\tau}$$

and consider the operators

$$U[\Gamma_2] = \exp\left[i\oint_{\Gamma_2}B
ight], \quad \widetilde{U}[\Gamma_2] = \exp\left[i\oint_{\Gamma_2}\widetilde{B}
ight]$$

Since Γ_2 is not closed, one might worry they are not gauge invariant under the transformation

$$B \to B + d\lambda, \quad \widetilde{B} \to \widetilde{B} + d\widetilde{\lambda},$$

since by Stokes theorem

$$U[\Gamma_2] \to \omega^{ir \int_{C_\tau} \lambda} U[\Gamma_2], \quad \widetilde{U}[\Gamma_2] \to \omega^{ir \int_{C_\tau} \widetilde{\lambda}} \widetilde{U}[\Gamma_2]$$

► However, for level N BF theory both B, B and λ, λ are Z_N-valued instead of U(1)-valued. One may check the following operators are gauge invariant

$$U[\Gamma_2]^{rac{kN}{\gcd(r,N)}}, \widetilde{U}[\Gamma_2]^{rac{kN}{\gcd(r,N)}}, \quad k, ilde{k} = 0, \cdots, \gcd(r,N) - 1$$

• In summary, we have two kinds of operators generated by $\{U[\Gamma_1], U[\Gamma_2]^{\frac{N}{\text{gcd}(r,N)}}\}, \{\widetilde{U}[\Gamma_1], \widetilde{U}[\Gamma_2]^{\frac{N}{\text{gcd}(r,N)}}\}$

The intersection number between Γ₁ and Γ₂ is one, therefore we have

$$\begin{cases} U[\Gamma_1]\widetilde{U}[\Gamma_2]^{\frac{N}{\gcd(r,N)}} = \omega^{-\frac{N}{\gcd(r,N)}}\widetilde{U}[\Gamma_2]^{\frac{N}{\gcd(r,N)}}U[\Gamma_1]\\ \widetilde{U}[\Gamma_1]U[\Gamma_2]^{\frac{N}{\gcd(r,N)}} = \omega^{+\frac{N}{\gcd(r,N)}}U[\Gamma_2]^{\frac{N}{\gcd(r,N)}}\widetilde{U}[\Gamma_1] \end{cases}$$

The Dirichlet boundary state $|b_1, b_2\rangle$ is parameterized by two \mathbb{Z}_N -valued number b_1, b_2 satisfying

$$gcd(r,N)b_1 = 0, \quad b_2 \sim b_2 + gcd(r,N)$$

with

$$\begin{cases} U[\Gamma_1]|b_1,b_2\rangle = \omega^{b_1}|b_1,b_2\rangle \\ U[\Gamma_2]^{\frac{N}{\gcd(r,N)}}|b_1,b_2\rangle = \omega^{\frac{N}{\gcd(r,N)}b_2}|b_1,b_2\rangle \end{cases}$$

and

$$\left\{egin{array}{l} \widetilde{U}[\Gamma_1]|b_1,b_2
angle=|b_1,b_2-1
angle\ \widetilde{U}[\Gamma_2]^{rac{N}{\gcd(r,N)}}|b_1,b_2
angle=|b_1-rac{N}{\gcd(r,N)},b_2
angle
ight.$$

► The holonomies *u*, *v* are identified as

$$u = \omega^{b_1}, \quad v = \omega^{b_2}$$

and using $gcd(r, N)b_1 = 0, b_2 \sim b_2 + gcd(r, N)$ one recovers $u^{gcd(r,N)} = 1, \quad v \sim v\omega^{gcd(r,N)}$

► The *S*/*T*-transformation acts separately as

$$\begin{cases} V_{\mathcal{S}}|(b_{1},b_{2})\rangle = \frac{1}{\gcd(r,N)} \sum_{b_{1}',b_{2}' \in M_{r,N}} \omega^{b_{1}b_{2}'+b_{2}b_{1}'} |(b_{1}',b_{2}')\rangle \\ V_{T}|(b_{1},b_{2})\rangle = \omega^{\frac{1}{2}\int \mathfrak{P}(b)} |(b_{1},b_{2})\rangle \end{cases}$$

with

$$M_{r,N} = \left\{ b_1 = \frac{Nk_1}{\gcd(r,N)}, b_2 = k_2 | k_1, k_2 \in \mathbb{Z}_{\gcd(r,N)} \right\}$$

The dynamics boundary state is then constructed as

$$|\chi_{ ext{SUSY}}
angle = \sum_{b_1,b_2} \mathcal{I}[b_1,b_2]|b_1,b_2
angle$$

Pontryagin square

► The Pontryagin square is

$$\begin{cases} \mathfrak{P}(b) = b \cup b + b \cup_1 \delta b \mod 2N \quad (N \text{ is even}) \\ \mathfrak{P}(b) = b \cup b \mod 2N \quad (N \text{ is odd}) \end{cases}$$

where

$$b = b_1 \gamma_2 + b_2 \gamma_1$$

and γ_1, γ_2 are Poincare dual of Γ_1, Γ_2 satisfying

$$\delta \gamma_1 = 0, \quad \delta \gamma_2 = r[C_\tau]$$

The cup-1 product reads

$$\int \gamma_2 \cup_1 \delta \gamma_2 = r, \quad \int \gamma_1 \cup_1 \delta \gamma_2 = 0$$

which gives

$$\int \mathfrak{P}(b) = \begin{cases} 2b_1b_2 + rb_1^2 & (N \text{ is even}) \\ 2b_1b_2 & (N \text{ is odd}) \end{cases}$$

Figure: An illustration of the cup-1 product $\int [\alpha] \cup_1 [\beta]$ where $[\cdots]$ denote the Poincare dual. The thickening of β is given in both the positive and negative directions of the Morse flow (both directions pointing away from the central red curve). And $\int [\alpha] \cup_1 [\beta]$ measure the intersection between α and the thickening of β .

Conclusion

Changing global structure of gauge group

Gauging 1-form symmetry/summing over 2-form background

Switching topological boundary state in SymTFT

- We analyse the SymTFT formulated on various kinds of manifold, Spin, torsion, non-Spin.
- We use SymTFT to study the supersymmetric quantities of gauge theory, focusing on the global structure of gauge group.