
S-Confinement of 3D Argyres-Douglas 
Theories and Seiberg-like Dualties

Chiung Hwang 
University of Science and Technology of China


Peng Huanwu Center for Fundamental Theory


第五届全国场论与弦论学术研讨会

June 26, 2024, USTC



• Introduction


• Part I: 3D Reduction of  Argyres-Douglas Theories and Confinement


• Part II: Revisit Dualities for Adjoint SQCD


• Conclusion

Dp[SU(N)]

Based on CH, Sungjoon Kim, “S-confinement of 3d Argyres-Douglas theories and the Seiberg-like duality with an 
adjoint,” arXiv:2407.XXXX.



What kinds of theories are confining?



Confinement of Supersymmetric Models

• Example I

 4d 𝒩 = 1 SQCD w/ G = SU(2) + 4 (Q, Q̃)

W = 0

SCFT
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SU(2) + 4 (Q, Q̃)

W = 0

SU(2) + 4 (Q, Q̃) + Mij

W = MijQ̃jQi

+ ΔW = mQ3Q̃4 + ΔW = mM34

Q̃iQj , QiQj , Q̃iQ̃j Mij , Q̃iQ̃j , QiQj

Free chirals

Higgs mechanism

Electric-magnetic duality

Free chirals

Confinement

Mass deformation

Electric-magnetic duality (Seiberg)



Confinement of Supersymmetric Models

• Example II

 3d 𝒩 = 2 SQCD w/ G = U(2) + 4 (Q, Q̃)

W = 0

SCFT



Confinement of Supersymmetric Models

• Example II

 3d 𝒩 = 2 SQCD w/ G = U(2) + 4 (Q, Q̃)

W = 0

SCFT

 U(2) + 4 (Q, Q̃) + Mij + V±

W = MijQ̃jQi + V+ ̂v+ + V− ̂v−

Aharony 97



W = 0

+ ΔW = mQ3Q̃4 + ΔW = mM34

Free chirals

Higgs mechanism

Aharony duality

Free chirals

Confinement

Mass deformation

Aharony duality

U(2) + 4 (Q, Q̃)

Q̃iQj , ̂V±

U(2) + 4 (Q, Q̃) + Mij + V±

W = MijQ̃jQi + V+ ̂v+ + V− ̂v−

Mij , V±



(Monopole) 
Higgs mechanism

Free chirals

(Monopole) Confinement

Mass deformation

Aharony duality

W = MijQ̃jQi + V+ ̂v+ + V− ̂v−

Mij , V±

+ ΔW = ̂V+ + ̂V− + ΔW = V+ + V−
Benini, Benvenuti, Pasquetti 17

U(2) + 4 (Q, Q̃) + Mij + V±

W = 0

U(2) + 4 (Q, Q̃)

Q̃iQj , ̂V±

Free chirals

Aharony duality



• SQCDs have supersymmetric deformation leading to confinement of the 
theory


• Other cases? E.g., non-Lagrangian theories?



World of Superconformal Field Theories

• There are many ways to construct SCFTs

SCFTs

(UV) Lagrangians String/M theory

Deformation



World of Superconformal Field Theories

• There are many ways to construct SCFTs

SCFTs

(UV) Lagrangians String/M theory

Deformation

Class S, geometric engineering, …



M5

Riemann surface

4-dimensional superconformal field theories


For example, one compactified on a Riemann 
sphere with an irregular singularity:  
[Dan Xie 12]

(A1, Ak)

A variety of SCFTs have been constructed and  

classified by data of the Riemann surface.



Deformation of Argyres-Douglas theories

• Dan Xie, Wenbin Yan 21


• Deformation of  by the Coulomb branch operator of the lowest 
dimension leads to free chirals in the IR.


• The phenomenon persists for other examples; e.g.,

(A1, Ak)

(A1, D2k+1) = D2k+1[SU(2)] Three free chirals

Compactification on a Riemann sphere with one 
irregular & one regular singularities



Deformation of Argyres-Douglas theories

• Dan Xie, Wenbin Yan 21


• Deformation of  by the Coulomb branch operator of the lowest 
dimension leads to free chirals in the IR.


• The phenomenon persists for other examples; e.g.,

(A1, Ak)

(A1, D2k+1) = D2k+1[SU(2)] Three free chirals

Compactification on a Riemann sphere with one 
irregular & one regular singularities

Dp[SU(N)]Multiple M5s



• The  theories allow Lagrangian dual descriptions when  [Cecotti, 
Del Zotto, Giacomelli 13].


• On the other hand, the  theories are non-Lagrangian when 
.

Dp[SU(N)] N = mp

Dp[SU(N)]
gcd(p, N) = 1

2m ⋯m  (p − 1)
m

mp



The Maruyoshi-Nardoni-Song Duality

• Recently, an interesting 4d  duality involving  has been proposed 
for  satisfying  [Maruyoshi, Nardoni, Song 23]:


• Replace an adjoint by a  tail; i.e.,  is confined into a (gauged) 
chiral fields.


• Pass many nontrivial tests

𝒩 = 1 Dp[SU(N)]
p < N gcd(p, N) = 1

Dp[SU(N)] Dp[SU(N)]

FNDp[SU(N)]FN

W = u0W = tr Xp+1



Part I: 3D Reduction of  Argyres-
Douglas Theories and Confinement

Dp[SU(N)]



• Interestingly, the 3d reduction of 4d  theories always has UV 
Lagrangian descriptions [Closset, Giacomelli, Schafer-Nameki, Wang 12]; e.g., if 

,


• If , it includes SU gauge nodes. 


• Confining deformation?

Dp[SU(N)]

gcd(p, N) = 1

gcd(p, N) ≠ 1

3D Reduction of  TheoriesDp[SU(N)]

m2 ⋯m1 mp−1 N mj = ⌊ jN/p⌋ , j = 1,…, p − 1

W =
p−1

∑
i=1

Tri Φ(i)QiQ̃i +
p−2

∑
i=1

Tri+1 Φ(i+1)Q̃iQi

𝔻p[SU(N)]



Confinement of 3D 𝔻p[SU(N)]
• Let’s assume some simplifying conditions.


• 3d  theories are either good or ugly in Gaiotto-Witten’s sense.


• Focus on the good case, where each node satisfies


• Also assume , simplifying the formulas.

𝔻p[SU(N)]

p < N

mj−1 + mj+1 − 2mj ≥ 0

N = ± 1 mod p



• Proposal: The 3d  theory with deformation  is confining.𝔻p[SU(N)] ΔW

ΔW = η
p−1

∑
i=1

Tr Φ(i) +
p−1

∑
i=1

̂v(i),+ + ̂v(1,p−1),−

m2 ⋯m1 mp−1 N mj = ⌊ jN/p⌋ , j = 1,…, p − 1

̂v(i),± = (0i−1 , ± 1 , 0p−i−1)
̂v(1,p−1),± = (±1 , … , ± 1)

W = Tr Xp+1

A matrix-valued chiral field  withX
 with𝔻p[SU(N)]

𝔻p[SU(N)] :



Evidence I

• Superconformal index


• Precisely matching the spectrum of BPS states! (Tested for some  & )N p

I𝔻p[SU(N)]+ΔW = PE
N2 (x

2
p + 1 − x

2p
p + 1)

1 − x2
= IWZ

I = tr (−1)FxR+2j



Evidence II

• More powerfully, one can prove the confinement only assuming the 
Aharony-BBP dualities [Aharony 97, Benini, Benvenuti, Pasquetti 17]:

F

F

 F − N
−α

⋯

F

F

N

WA =
0
̂V+

̂V+ + ̂V−
α = {

0
1
2

WB =
V+ ̂v+ + V− ̂v− + Mq̃q

̂v+ + V− ̂v− + Mq̃q
̂v+ + ̂v− + Mq̃q
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Evidence II

• More powerfully, one can prove the confinement only assuming the 
Aharony-BBP dualities [Aharony 97, Benini, Benvenuti, Pasquetti 17]:

WA =
0
̂V+

̂V+ + ̂V−

Mass def.

F

F

 F − N
−α

⋯

F

F

N

α = {
0
1
2

WB =
V+ ̂v+ + V− ̂v− + Mq̃q

̂v+ + V− ̂v− + Mq̃q
̂v+ + ̂v− + Mq̃q



Derivation Using the BBP Dualities

• Let’s consider the  case. (Assume the gauge rank  is odd.)


• Step 1

p = 2 N

𝔻2[SU(3)] :

ΔW



Step 3

Step 2

𝔻2[SU(2n + 3)] :



Step 2

𝔻2[SU(2n + 3)] :

Step 3



Step 2

𝔻2[SU(2n + 3)] :

Step 3



Step 2

WA = Q̃ΦQ + η tr Φ + ̂V+ + ̂V−

WB = Q̃R̃RQ + η tr R̃R + ̂v(2),+ + ̂v(1,2),− + ̂v(1),+ + ξ ̂v(1),−

𝔻2[SU(2n + 3)] :

Step 3
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Step 3

Step 2

WA = Q̃ΦQ + η tr Φ + ̂V+ + ̂V−

WB = Q̃R̃RQ + η tr R̃R + ̂v(2),+ + ̂v(1,2),− + ̂v(1),+ + ξ ̂v(1),−

𝔻2[SU(2n + 3)] :
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Step 3

Step 2

WA = Q̃ΦQ + η tr Φ + ̂V+ + ̂V−

WB = Q̃R̃RQ + η tr R̃R + ̂v(2),+ + ̂v(1,2),− + ̂v(1),+ + ξ ̂v(1),−

𝔻2[SU(2n + 3)] :



Step 3



Confinement of 3D 𝔻p[SU(N)]

• 3d  theory is  quiver gauge theory:


• Confinement of  triggered by 
 

𝔻p[SU(N)] 𝒩 = 4

𝔻p[SU(N)]

ΔW = η
p−1

∑
i=1

Tr Φ(i) +
p−1

∑
i=1

̂v(i),+ + ̂v(1,p−1),−

m2 ⋯m1 mp−1 N mj = ⌊ jN/p⌋ , j = 1,…, p − 1



Confinement of 3D 𝔻p[SU(N)]

• A consequence of the BBP dualities


• An interacting theory in the IR if 


• Support for Xie-Yan’s 4-dimensional result


• Application to Seiberg-like dualities for adjoint SQCDs

p = 2



Part II: Revisit Dualities for Adjoint SQCDs



Dualities for 3D Adjoint SQCDs
• A variety of Seiberg-like dualities for adjoint SQCDs have been studied.


• E.g., the Kim-Park duality for 3d U(N) gauge theories with a single adjoint [Kim, Park 
13]:

W = Tr Xp+1 W = Tr xp+1 +
p−1

∑
i=0

(Mp−i−1 q̃xiq + V+
p−i−1 ̂v+

i + V−
p−i−1 ̂v−

i )

F

F

pF − N ⋯

F

F

N + Vi



Dualities for 3D Adjoint SQCDs
• A variety of Seiberg-like dualities for adjoint SQCDs have been studied.


• E.g., the Kim-Park duality for 3d U(N) gauge theories with a single adjoint [Kim, Park 
13]:

W = Tr Xp+1 W = Tr xp+1 +
p−1

∑
i=0

(Mp−i−1 q̃xiq + V+
p−i−1 ̂v+

i + V−
p−i−1 ̂v−

i )

F

F

pF − N ⋯

F

F

N + Vi

Allowing the deconfinement of the adjoint into the  tail𝔻p[SU(N)]



Deconfined Kim-Park Duality

F

F

pF − N⋯m̃2m̃1 m̃p−1 ⋯

F

F

N⋯m2m1 mp−1

mj = ⌊ jN/p⌋ , j = 1,…, p − 1

m̃j = ⌊ j(pF − N)/p⌋ = jF + mp−j − mp , j = 1,…, p − 1

WA =
p−1

∑
i=1

Tri Φ(i)QiQ̃i +
p−2

∑
i=1

Tri+1 Φ(i+1)Q̃iQi

+η
p−1

∑
i=1

Tr Φ(i) +
p−1

∑
i=1

̂V(i),+ + ̂V(1,p−1),−

WB =
p−1

∑
i=1

Tri Φ(i)QiQ̃i +
p−2

∑
i=1

Tri+1 Φ(i+1)Q̃iQi

+η
p−1

∑
i=1

Tr Φ(i) +
p−1

∑
i=1

̂V(i),+ + ̂V(1,p−1),−

+…

+ η

+ η , Vi



• Matching superconformal indices (tested for some  & )


• E.g., the chiral ring generators for :


• Again, proved only assuming the Aharony duality

N p

p = 2



p = 2



p = 3



• The (deconfined) Kim-Park duality, a Seiberg-like duality for adjoint SQCDs, can be 
derived from the Aharany duality.


• Furthermore, such underlying relations between different supersymmetric dualities 
provide new proof of various special function identities through the localization 
computation of supersymmetric partition functions (Spiridonov, Rains, …)


• E.g., the superconformal index identity for the Aharony duality [CH, Yi, Yoshida 17] 
implies the identity for the Kim-Park duality.



Proof of the Index Identity for the Aharony Duality

• 3d superconformal index

I(x; μ) = ∑
𝔪∈ℤN/SN

1
|W𝔪 | ∮

dNa
(2π)N

Zcl(x; μ, a; 𝔪) Z1−loop(x; μ, a; 𝔪)

Zchiral
1−loop(x; μ, a; 𝔪) = ∏

ρ
(eiρ(a+μ)x−1)− ρ(m)

2 (e−iρ(a+μ) x2−R+|ρ(m)|; x2)
(eiρ(a+μ) xR+|ρ(m)|; x2)

I = tr (−1)FxR+2jeiμQ

SUSY localization [Kim 09, Imamura, Yokoyama 11]

⋮



• Factorization [CH, Kim, Park 12] (Holomorhpic blocks, Higgs-branch 
localization)


• For the Aharony duality

I(x; μ) = ∑
𝔪∈ℤN/SN

1
|W𝔪 | ∮

dNa
(2π)N

Zcl(x; μ, a; 𝔪) Z1−loop(x; μ, a; 𝔪)

I = ∑
Higgs vacua

Zpert Zvortex Zpert Zvortex

Zpert = Z̃pert Z̃M

Zvortex = Z̃vortex Z̃V

Residue computation

Easy

Difficult



• Factorization [CH, Kim, Park 12] (Holomorhpic blocks, Higgs-branch 
localization)


• For the Aharony duality

Residue computation

I(x; μ) = ∑
𝔪∈ℤN/SN

1
|W𝔪 | ∮

dNa
(2π)N

Zcl(x; μ, a; 𝔪) Z1−loop(x; μ, a; 𝔪)

I = ∑
Higgs vacua

Zpert Zvortex Zpert Zvortex

BPS partition functions on  w/R2 × S1

EasyZpert = Z̃pert Z̃M

Zvortex = Z̃vortex Z̃V Difficult

Zvortex = ∑
n

wn Zn



• Factorization [CH, Kim, Park 12] (Holomorhpic blocks, Higgs-branch 
localization)


• For the Aharony duality

I(x; μ) = ∑
𝔪∈ℤN/SN

1
|W𝔪 | ∮

dNa
(2π)N

Zcl(x; μ, a; 𝔪) Z1−loop(x; μ, a; 𝔪)

I = ∑
Higgs vacua

Zpert Zvortex Zpert Zvortex

Zpert = Z̃pert Z̃M

Zvortex = Z̃vortex Z̃V

Residue computation

Easy

Difficult
Contributions of the extra singlets on the dual side



The Aharony Duality and Vortex Wall-Crossing

• Type IIB brane picture

NS5

Nc D3

Na D5

(1,k+)

(1,k-)

n D1

NS5

Nf-Nc D3

n D1Nf D5

Nf D5

(1,k+)

(1,k-)

Na D5

ξ3d

ζ1d

-ξ’3d

-ζ1d
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F − NN

n
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The Aharony Duality and Vortex Wall-Crossing

• Type IIB brane picture

NS5

Nc D3

Na D5

(1,k+)

(1,k-)

n D1

NS5

Nf-Nc D3

n D1Nf D5

Nf D5

(1,k+)

(1,k-)

Na D5

ξ3d

ζ1d

-ξ’3d

-ζ1d

The Aharony duality of a 3d gauge theory = the wall-crossing of a 1d vortex GLSM

F − NN

n

F



I = ∑
Higgs vacua

Zpert Zvortex Zpert Zvortex

Zvortex = ∑
n

wn Zn

Zn =
1

|W |
JK-Res ⃗η=ζ1⃗ [g(u) dnu] F − NN

n

F

gn(u) =
(∏n

i≠j sinh
ui − uj

2 ) (∏n
j=1 ∏F

a=1 sinh
uj − m̃a + μ − γ

2 )
(∏n

i,j sinh
ui − uj − 2γ

2 ) (∏n
i=1 ∏N

b=1 sinh ui − mb − μ − γ
2 ) (∏n

j=1 ∏F
a=N+1 sinh

−uj + ma + μ − γ

2 )

Alternative method for computing 
the vortex partition function Zvortex



I = ∑
Higgs vacua

Zpert Zvortex Zpert Zvortex

Zvortex = ∑
n

wn Zn

Zn =
1

|W |
JK-Res ⃗η=ζ1⃗ [g(u) dnu] F − NN

n

F

gn(u) =
(∏n

i≠j sinh
ui − uj

2 ) (∏n
j=1 ∏F

a=1 sinh
uj − m̃a + μ − γ

2 )
(∏n

i,j sinh
ui − uj − 2γ

2 ) (∏n
i=1 ∏N

b=1 sinh ui − mb − μ − γ
2 ) (∏n

j=1 ∏F
a=N+1 sinh

−uj + ma + μ − γ

2 )

The contribution of each vortex 
number can be computed using 
the Jeffrey-Kirwan residue method 
[CH, Kim, Kim, Park 14, Hori, Kim, 
Yi 14].

Alternative method for computing 
the vortex partition function Zvortex



• For each vortex sector, it can be shown that

Zn(ζ) = Zn(−ζ) + Zwall−crossing
n

∑
n

wn Zn = Zvortex ∑
n

wn (Zn(−ζ) + Zwall−crossing
n ) = Z̃vortex Z̃V

Zvortex = Z̃vortex Z̃V

I = Ĩ
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• For each vortex sector, it can be shown that

Zn(ζ) = Zn(−ζ) + Zwall−crossing
n

∑
n

wn Zn = Zvortex ∑
n

wn (Zn(−ζ) + Zwall−crossing
n ) = Z̃vortex Z̃V

Zvortex = Z̃vortex Z̃V

I = Ĩ

Residues inside the integration circle Residues outside the integration circle

Provides a proof of the index identity 
motivated by a physical D-brane picture



Concluding Remarks



• The  theories enjoy other dualities such as 3d mirror symmetry and the 
flip-flip duality.


• Our confining deformation can be translated into Higgsing potential by the mirror 
symmetry and the flip-flip duality.


• Another realization of confinement as dual Higgs mechanism.


• The Aharony duality, or its monopole deformed cousin, is a building block of various 
supersymmetric 3d dualities, such as the Seiberg-like duality with an adjoint matter 
and 3d mirror symmetry [CH, Pasquetti, Sacchi 21].


• Their fundamental mechanism must be universal.

𝔻p[SU(N)]



Many possible generalizations


• Relaxing the conditions among the parameters


• Multiple adjoints with ADE-type superpotentials


• Non-supersymmetric counterparts?


- Many versions of 3d bosonization/particle-vortex dualities, resembling 
supersymmetric mirror symmetry, and generalized level-rank dualities of Chern-
Simons-matter theories


- Further relations between SUSY dualities and non-SUSY dualities?

WA = tr (Xp+1 + Y2)
WD = tr (Xp+1 + X Y2)
WE6

= tr (Y3 + X4)
WE7

= tr (Y3 + YX3)
WE8

= tr (Y3 + X5)

Kim, Park 13

CH, Kim, Park 13
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