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Introduction



• Proposal:


• bulk: (d+2)-dim quantum gravity on AF spacetime;


• bdry: putative d-dim CCFT on the celestial sphere.


• Symmetry:


• bulk: Lorentz symmetry SO(d+1,1);


• bdry: Euclidean conformal symmetry SO(d+1,1);


• here we do not discuss asymptotic symmetries/large gauge transformations.


• Observables:


• bulk: scattering amplitudes ;


• bdry: celestial amplitudes  as conformal correlators.


• We focus on , bosonic objects:  and .


• We try to learn universal properties of CCFT from examples: S-matrix unitarity.
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Dictionary

• Continuous complex conformal dimension :


• ;


• required by invertibility and completeness.


• Mass and conformal dimension are not related.


• Massless particle:


• the integral transform is reduced to the Mellin transform;


• collinear singularity of   OPE singularity of .
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scattering amplitudescelestial amplitudes

conformal basismass-shell integral

Hyperbolic slicing of momentum space

[Pasterski,Shao,Strominger] 



Conformal basis ϕ(z, k)
• Defining property:


• intertwine ’s linear action on  and conformal action on ;


• solutions of EOM;


• Can be constructed from AdS bulk-to-bdry propagator;


• Quantum numbers: 


• mass  


• conformal dimension 


• conformal spin 


• bulk spin  wrt   bdry spin  wrt 


• massive: 


• massless: 

𝚂𝙾(3,1) ℝ3,1 𝚂2

m

Δ

J

ℓ 𝚂𝙾(3,1) → J 𝚂𝙾(2)

J ∈ L = {−ℓ, − ℓ + 1,⋯, ℓ − 1,ℓ}

J ∈ L = {−ℓ, ℓ}

Particles (Wigner)

Putative operators (PS)

conformal basis

Primary operators (Verma)

effectively as primary operators

SOC and inner product are modified. [Crawley,Miller,Narayanan,Strominger’21]




Example: 3-pt scalar celestial amplitudes at tree-level
• 00-m


• m0-m: hypergeometric fun.


• mm-m: triple MB integral or double sum of Wilson poly.


• Proportional to the AdS three-point coefficient .


• In AdS/CFT, with  and split representation, double-trace operators appear in OPE.


• What about CCFT?

dΔ1,Δ2,Δ3

dΔ1,Δ2,Δ3

[Lam,Shao’17] 

[RL,Ma’24] 

[RL,Ma’24] 



celestial amplitudes and OPE



Conformal partial wave expansion

• Based on harmonic analysis of ;


• Carrying exactly the same dynamical information as celestial amplitude;


• pole of CPW coefficient  operator in OPE;


• useful technique for deriving conformal block expansions and OPE.

𝚂𝙾(3,1)

⇔

CPW coefficient

Correlation functions CPW coefficients/OPE
CPW expansion

inversion formula

CPWintegration over repscelestial amplitude



Split representation of scalar Feynman propagator

• An efficient tool for computing perturbative celestial amplitudes;


• Based on harmonic analysis of symmetric spaces.

[Chang,RL,Ma’23] 

Hyperbolic slicing of momentum space

principal series of L2(𝚍𝚂)

principal series of L2(𝙴𝙰𝚍𝚂)

discrete series of L2(𝚍𝚂)

Feynman propagator integration over mass leaves integration over reps

Feynman diagrams celestial amplitudes
conformal basis

Feynman diagrams CPW coefficients/OPE
split representation + 6j symbol

CPW expansion

CPW coefficients/OPE



Double-trace operators in celestial OPE
• In AdS/CFT, there are double-trace operators in the OPE from tree-level exchange diagrams.


• In CCFT, we checked that if at most 2-of-5 masses are turned on, there are only double-trace exchanged.


• 00000:


• m0000

[RL,Ma’24]



Multi-particle operators in celestial OPE

• New two-particle operator with  were observed by OPE limit analysis.


• Necessary for OPE associativity.


• Confirmed in 5,6-point tree diagrams, and there should be infinitely many new types of operators, even at tree-level.

Δ = Δ1 + Δ2 + 2Δ3 − 4

[Ball,Hu,Pasterski’23] [Guevara,Hu,Pasterski’24] [RL,Ma’24]

[Ball,Hu,Pasterski’23] [Guevara,Hu,Pasterski’24]

[RL,Ma’24]
4-pt 5-pt

6-pt



Staggered operators in celestial OPE
• Former examples are s-channel diagram expanded in s-channel OPE; only EAdS part contributes.


• t-channel diagram in t-channel OPE; dS (continuous and discrete) parts contribute.


• Why they appear? Relation to celestial diamonds?

[Chang,RL,Ma’23] [Chang,RL,Ma,to appear]

staggered operatorsprimary operators



Celestial optical theorem



Celestial optical theorem
[RL,Ma’24] 

S†S = 1

S-matrix unitarity optical thm
completeness

S-matrix unitarity celestial optical thm
completeness + conformal basis + on-shell split-rep + CPW expansion 

3-pt coefficients 3-pt coefficients in shadow basis

2-n CPW coefficients

2-2 CPW coefficients

external conformal dimensionsinternal conformal dimensions



Celestial optical theorem
• Optical thm:


• unitarity of S-matrix + completeness relation;


• nonlinear relations between scattering amplitudes;


• on-shell, nonperturbative.


• Celestial optical thm:


• unitarity of S-matrix + completeness relation;


• nonlinear relations between CPW coefficients;


• on-shell, nonperturbative.

• Optical thm:


• phase space integrals are hard to manipulate;


• no natural partial wave expansion for higher-points.


• Celestial optical thm:


• scalar integral equations of CPW coefficients;


• natural basis for all points.



Positivity
• We focus on elastic scattering .


• Notice:  is a function of  and  for each fixed spin  and .


• Positivity:


• nonperturbative criterion of CCFT;


• similar to that in cosmological bootstrap from dS unitarity;

1 + 2 → 1 + 2

ρh1h2|h3h4
1+2→1+2,h ≡ ρJi

J (Δ; Δi) Δ Δi J Ji

[ Hogervorst,Penedones,Vaziri’21] [ Di Pietro,Gorbenko,Komatsu’21] 



Analyticity assumptions
• Analyticity assumptions:


•  is meromorphic with respect to  and decays to zero as ;


• natural assumption for CFT;


• can be loosened to include branch points.


•  is is also meromorphic with respect to the external conformal dimensions ;


• technical assumption, inspired by perturbative results;


• can be loosened to smaller domain of , to include branch points.

ρJi
J (Δ; Δi) Δ ∈ ℂ Δ → ∞

ρJi
J (Δ; Δi) Δi ∈ ℂ4

Δi



Applications
• Exactly one of the following statements is true:


• for any  and , ;


• for  and ,  contains at least one -pole. 


• Given any celestial three-point coefficient , if  is a pole of  for some meromorphic , and the intersection between the 
hypersurface  and the principal series  is nonempty, then  is a pole of  when  and .


• Hence double-trace poles  do not have anomalous dimensions, in contrast to AdS/CFT!


• If the two incoming particles are both massless, exactly one of the statements is true:


• for any  and , ;


• for  and ,  contains only simple -poles in a definite set;


• in shadow basis, only double-trace operators appear in the OPE.


• All the properties are consistent with known perturbative examples.

J Ji ρJi
J (Δ; Δi) = 0

J1 = − J3 J2 = − J4 ρJi
J (Δ; Δi) Δ

Ch1h2|h
1+2→α Δ = f(Δ1, Δ2) Ch1h2|h

1+2→α f
Δ = f(Δ1, Δ2) ℜΔ = 1 Δ = f(Δ1, Δ2) ρJi

J (Δ; Δi) J1 = − J3 J2 = − J4

Δ = Δ1 + Δ2 + ⋯

J Ji ρJi
J (Δ; Δi) = 0

J1 = − J3 J2 = − J4 ρJi
J (Δ; Δi) Δ



Future directions



Future directions

• (Off-shell) Split representation for spinning particles are still incomplete.


• S-matrix crossing symmetry should lead further constraints on CPW coefficients. 


• Solving the bootstrap equations from the celestial optical theorem.


• Better understanding of staggered modules (work in progress).



Thanks for attention!


