Celestial optical theorem and its applications

刘晗 (清华大学)

第5届全国"场论与弦论"学术研讨会

2024 06

- •
- RL and Wen-Jie Ma. Massive celestial amplitudes and celestial amplitudes beyond four points. 4 2024. ulletarXiv:2404.01920.
- RL and Wen-Jie Ma. Celestial Optical Theorem. 4 2024. arXiv:2404.18898. ullet

Chi-Ming Chang, RL, and Wen-Jie Ma. Split representation in celestial holography. 11 2023. arXiv:2311.08736.

Introduction

- Proposal:
 - bulk: (d+2)-dim quantum gravity on AF spacetime;
 - bdry: putative d-dim CCFT on the celestial sphere.
- Symmetry:
 - bulk: Lorentz symmetry SO(d+1,1);
 - bdry: Euclidean conformal symmetry SO(d+1,1);
 - here we do not discuss asymptotic symmetries/large gauge transformations.
- Observables: \bullet
 - bulk: scattering amplitudes *M*;
 - bdry: celestial amplitudes \mathscr{A} as conformal correlators.
- We focus on d = 2, bosonic objects: $(\Delta, J) = (h + \overline{h}, h \overline{h})$ and $J \in \mathbb{Z}$.
- We try to learn universal properties of CCFT from examples: S-matrix unitarity.

Celestial holography

Dictionary

- Continuous complex conformal dimension Δ : ullet
 - $\Delta \in 1 + i\mathbb{R};$
 - required by invertibility and completeness.
- Mass and conformal dimension are **not** related. \bullet
- Massless particle: lacksquare
 - the integral transform is reduced to the Mellin transform;
 - collinear singularity of $\mathcal{M} \Leftrightarrow \mathsf{OPE}$ singularity of \mathcal{A} .

[Pasterski,Shao,Strominger]

scattering amplitudes

Hyperbolic slicing of momentum space

- Defining property: ullet
 - intertwine SO(3,1)'s linear action on $\mathbb{R}^{3,1}$ and conformal action on S²;
 - solutions of EOM;
- Can be constructed from AdS bulk-to-bdry propagator; \bullet
- Quantum numbers:
 - mass m
 - conformal dimension Δ
 - conformal spin J
- bulk spin ℓ wrt SO(3,1) \rightarrow bdry spin J wrt SO(2)
 - massive: $J \in L = \{-\ell, -\ell + 1, \dots, \ell 1, \ell\}$
 - massless: $J \in L = \{-\ell, \ell\}$

Conformal basis $\phi(z, k)$

Particles (Wigner)

conformal basis

Putative operators (PS)

effectively as primary operators

SOC and inner product are modified. [Crawley, Miller, Narayanan, Strominger'21]

Primary operators (Verma)

Example: 3-pt scalar celestial amplitudes at tree-level

00-m \bullet

[Lam,Shao'17]

$$C^{\Delta_1,\Delta_2,\Delta_3}_{1^0_0+2^0_0\to 3^0_{m_3}} = 2^{-\Delta_{12}} m_3^{\Delta_{12}-d-2} \Gamma \begin{bmatrix} \frac{\Delta_{13,2}}{2}, \frac{\Delta_{23,1}}{2} \\ \Delta_3 \end{bmatrix} \,.$$

m0-m: hypergeometric fun. \bullet

[RL,Ma'24]

$$C_{1_{m_{1}}^{0}+2_{0}^{0}\rightarrow3_{m_{3}}^{0}}^{\Delta_{1},\Delta_{2},\Delta_{3}} = d_{\Delta_{1},\Delta_{2},\Delta_{3}} 2^{1-\Delta_{2}} m_{1}^{-\Delta_{23}} m_{3}^{-d+\Delta_{3}} (m_{3}^{2}-m_{1}^{2})^{\Delta_{2}-1} {}_{2}F_{1} \left(\begin{array}{c} \frac{\Delta_{23,1}}{2}, \frac{\Delta_{123}-d}{2} \\ \Delta_{2} \end{array}; \frac{m_{1}^{2}-m_{3}^{2}}{m_{1}^{2}} \right)$$

- mm-m: triple MB integral or double sum of Wilson pol \bullet [RL,Ma'24] $C^{\Delta_1,\Delta_2,\Delta_3}_{1^0_{m_1}+2^0_{m_2}\to 3^0_{m_3}} = d_{\Delta_1,\Delta_2,\Delta_3} \frac{(2\pi)^{\frac{a_{\pm 1}}{2}} (m_1 m_2)^{\frac{a_{\pm 1}}{2}}}{(m_1 + m_2)\Gamma[\frac{d}{2}]}$
- Proportional to the AdS three-point coefficient $d_{\Delta_1,\Delta_2,\Delta_3}$. ullet
- In AdS/CFT, with $d_{\Delta_1,\Delta_2,\Delta_3}$ and split representation, double-trace operators appear in OPE. •
- What about CCFT? \bullet

$$\frac{m_2)^{-\frac{d+1}{2}}}{\Gamma[\frac{d+1}{2}]} \epsilon^{\frac{d-1}{2}} + O(\epsilon^{\frac{d+1}{2}}) .$$

$$\Delta_3 \cdot d_{\Delta_1, \Delta_2, \Delta_3} = \frac{1}{2} \pi^{d/2} \Gamma \begin{bmatrix} \frac{\Delta_{12,3}}{2}, \frac{\Delta_{13,2}}{2}, \frac{\Delta_{23,1}}{2}, \frac{\Delta_{123}-d}{2} \\ \Delta_1, \Delta_2, \Delta_3 \end{bmatrix}$$

celestial amplitudes and OPE

Conformal partial wave expansion

CPW expansion

Correlation functions

inversion formula

$$\mathcal{A}^{h_i}(z_i) = \left(\prod_{j=1}^{n-3} \sum_{J'_j = -\infty}^{+\infty} \int_1^{1+i\infty} \frac{d\Delta'_j}{2\pi i \mu_{h'_j}}\right) \rho_{h'_i}^{h_i} \Psi_{h'_i}^{h_i}(z_i) ,$$

CPW coefficient CPW integration over reps celestial amplitude

- Based on harmonic analysis of SO(3,1); ullet
- Carrying exactly the same dynamical information as celestial amplitude;
 - pole of CPW coefficient \Leftrightarrow operator in OPE;
 - useful technique for deriving conformal block expansions and OPE. lacksquare

CPW coefficients/OPE

$$\rho_{h'_i}^{h_i} = \frac{1}{\text{Vol SO}(1,3)} \left(\prod_{j=1}^n \int d^2 z_j\right) \left(\Psi_{h'_i}^{h_i}(z_i)\right)^* \mathcal{A}^{h_i}(z_i) \ .$$

Split representation of scalar Feynman propagator

- Based on harmonic analysis of symmetric spaces. \bullet

Feynman propagator integration over mass leaves integration over representation over representation over mass leaves
$$\mathcal{K}_m(X_1, X_2) = \int_0^{+\infty} \frac{dM}{(2\pi)^{d+2}} \frac{iM^{d+1}}{-M^2 + m^2} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{d\Delta}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{d\Delta}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{dM}{(2\pi)^{d+2}} \frac{iM^{d+1}}{M^2 + m^2} \left(\sum_{\epsilon=0,1} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{d\Delta}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{dA}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{dA}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{dA}{(2\pi)^{d+2}} \frac{dM}{M^2 + m^2} \int_{\frac{d}{2}}^{\frac{d}{2} + i\infty} \frac{dA}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i} \frac{dA}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i} \frac{dA}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d}{2} + i} \frac{dA}{2\pi i \,\mu_{\Delta}} \int_{\frac{d}{2}}^{\frac{d$$

[Chang,RL,Ma'23]

Double-trace operators in celestial OPE

In AdS/CFT, there are double-trace operators in the OPE from tree-level exchange diagrams. ullet

In CCFT, we checked that if at most 2-of-5 masses are turned on, there are only double-trace exchanged. \bullet

00000: \bullet

$$\sigma_{\Delta_{a}}^{\Delta_{i}} = -i \pi^{-\frac{3d}{2}-2} 2^{-\Delta_{1234}-d-2} 2\pi \delta_{c} \left(i (\Delta_{1234}-d-4) \right) \\ \times \Gamma \begin{bmatrix} \Delta_{3}, \Delta_{4}, \frac{2d-\Delta_{34a}}{2}, \frac{\Delta_{1a,2}}{2}, \frac{\Delta_{2a,1}}{2}, \frac{\Delta_{a,34}+d}{2}, \frac{\Delta_{3a,4}}{2}, \frac{\Delta_{4a,3}}{2} \end{bmatrix} \\ d - \Delta_{3}, d - \Delta_{4}, \frac{\Delta_{34,a}}{2}, \Delta_{a}, \Delta_{a} - \frac{d}{2}, \frac{\Delta_{34a}-d}{2} \end{bmatrix}$$

m0000 \bullet

$$\begin{split} \sigma_{\Delta_{a}}^{\Delta_{i}} &= -i\,\pi^{-d-2}2^{-\Delta_{234}-d-3}m^{\Delta_{234}-d-4} \\ &\times \Gamma \begin{bmatrix} \Delta_{3}, \frac{-\Delta_{1234}+d+4}{2}, \frac{\Delta_{1,234}+4}{2}, \Delta_{4}, \frac{\Delta_{12,a}}{2}, \frac{2d-\Delta_{34a}}{2}, \frac{\Delta_{1a,2}}{2}, \frac{\Delta_{2a,1}}{2}, \frac{\Delta_{2a,2}}{2}, \frac{\Delta_{2a,2$$

 $\mathcal{O}_{\Delta_1}\mathcal{O}_{\Delta_2} \sim \mathcal{C}_N\mathcal{O}_{\Delta_1+\Delta_2+2N} + \mathcal{C}'_N\mathcal{O}_{\Delta_3+\Delta_4+2N}$

 $\left[\frac{\Delta_{12a}-d}{2}, \frac{\Delta_{a,34}+d}{2}, \frac{\Delta_{3a,4}}{2}, \frac{\Delta_{4a,3}}{2}\right]$ $\frac{d}{2}, \frac{\Delta_{a,34}+4}{2}, \frac{\Delta_{34a}-d}{2}$

[RL,Ma'24]

Multi-particle operators in celestial OPE

- ullet
- Necessary for OPE associativity. \bullet
- \bullet [RL,Ma'24]

$$\sigma_{\Delta_{a},\Delta_{b},\Delta_{c}} = -i\pi^{-\frac{7d}{2}-6}2^{-\Delta_{123456}-3d-8}2\pi\delta_{c}\left(i(\Delta_{123456}-d-8)\right)$$

$$\times\Gamma\begin{bmatrix}\Delta_{5},\Delta_{6},\frac{\Delta_{1a,2}}{2},\frac{\Delta_{2a,1}}{2},\frac{\Delta_{3a,b}}{2},\frac{\Delta_{3b,a}}{2},\frac{\Delta_{ab,3}}{2},\frac{\Delta_{4b,c}}{2},\frac{\Delta_{5c,6}}{2},\frac{\Delta_{6c,5}}{2},\frac{\Delta_{4c,b}}{2},\frac{\Delta_{bc,4}}{2}\end{bmatrix}$$

$$\times\Gamma\begin{bmatrix}-\Delta_{5},d-\Delta_{6},\Delta_{a},\Delta_{a}-\frac{d}{2},\Delta_{b},\Delta_{b}-\frac{d}{2},\frac{\Delta_{56,c}}{2},\Delta_{c},\Delta_{c}-\frac{d}{2}\end{bmatrix}$$

$$\times\Gamma\begin{bmatrix}-\frac{-\Delta_{3456a}+d+6}{2},\frac{\Delta_{a,3456}+6}{2},-\frac{-\Delta_{456b}+d+4}{2},\frac{\Delta_{b,456}+4}{2},\frac{\Delta_{3ab}-d}{2},\frac{2d-\Delta_{56c}}{2},\frac{\Delta_{c,56}+d}{2},\frac{\Delta_{4bc}-d}{2},\frac{\Delta_{4bc}-d}{2},\frac{\Delta_{456c}-d}{2},\frac{-\Delta_{456b}+d+6}{2},\frac{\Delta_{b,456}+6}{2},-\frac{-\Delta_{56c}+d+4}{2},\frac{\Delta_{c,56}+4}{2},\frac{\Delta_{56c}-d}{2},\frac{\Delta_{56c}-d}{2}$$

[Ball,Hu,Pasterski'23] [Guevara,Hu,Pasterski'24] [RL,Ma'24]

New two-particle operator with $\Delta = \Delta_1 + \Delta_2 + 2\Delta_3 - 4$ were observed by OPE limit analysis. [Ball,Hu,Pasterski'23] [Guevara,Hu,Pasterski'24]

Confirmed in 5,6-point tree diagrams, and there should be infinitely many new types of operators, even at tree-level.

Staggered operators in celestial OPE

- Former examples are s-channel diagram expanded in s-channel OPE; only EAdS part contributes. \bullet
- t-channel diagram in t-channel OPE; dS (continuous and discrete) parts contribute. \bullet

$$= \frac{im^{\beta-2}}{2^{5+\beta}(2\pi)^4} \csc\left[\frac{\pi\beta}{2}\right] \left[2a_0 G_{\frac{1}{2},\frac{1}{2}}^{\Delta_{13},\Delta_{24}} + \sum_{n=0}^{+\infty} \left(b_n G_{\frac{n+2}{2},\frac{n+2}{2}}^{\Delta_{13},\Delta_{24}} + G_{\mathrm{sta},-\frac{n}{2},\frac{n}{2}+1}^{\Delta_{13},\Delta_{24}} + G_{\mathrm{sta},\frac{n}{2}+1,-\frac{n}{2}}^{\Delta_{13},\Delta_{24}} \right) \right] ,$$

Why they appear? Relation to celestial diamonds? \bullet

$$L_0 |\mathcal{O}^1\rangle = \Delta |\mathcal{O}^1\rangle, \qquad \qquad L_1 |\mathcal{O}^1\rangle = 0,$$

$$L_0 |\mathcal{O}^2\rangle = (1 - \Delta) |\mathcal{O}^2\rangle, \qquad \qquad L_1 |\mathcal{O}^2\rangle = aL_{-1}^{-2\Delta} |\mathcal{O}^1\rangle.$$

[Chang,RL,Ma'23] [Chang,RL,Ma,to appear]

primary operators

staggered operators

$$G_{\Delta}^{\Delta_{13},\Delta_{24}}(\chi) = \chi^{\Delta} \sum_{k=0}^{\infty} \frac{(\Delta - \Delta_{13})_k (\Delta + \Delta_{24})_k}{\Gamma[k+1](2\Delta)_k} \chi^k$$

$$\begin{aligned} G_{\mathrm{sta},-\frac{n}{2}}^{\Delta_{13},\Delta_{24}}(\chi) &= \sum_{k=0}^{n} \frac{(-1)^{k}(-\frac{n}{2}-\Delta_{13})_{k}(-\frac{n}{2}+\Delta_{24})_{k}(n-k)!}{n!\Gamma[k+1]}\chi^{k-\frac{n}{2}} \\ &+ \sum_{s=0}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{n}(-\frac{n}{2}-\Delta_{13})_{k+n+1}(-\frac{n}{2}+\Delta_{24})_{k+n+1}}{n!\Gamma[k+n+2]\Gamma[k+1](k+1+s)}\chi^{k+\frac{n+2}{2}} \end{aligned}$$

Celestial optical theorem

Celestial optical theorem

S-matrix unitarity

S-matrix unitarity

completeness + conformal basis + on-shell split-rep + CPW expansion

$$i\mathcal{M}_{F\to I}^* - i\mathcal{M}_{I\to F} = \sum_{n=1}^{+\infty} \sum_{\alpha_n} \int d\Pi_{\alpha_n} \mathcal{M}_{F\to\alpha_n}^* \mathcal{M}_{I\to\alpha_n}.$$

2-2 CPW coefficients

internal conformal dimensions

[RL,Ma'24]

completeness

optical thm

celestial optical thm

$$i(\mathcal{A}_{3+4\to1+2}^{\overline{h}_{3}^{*}\overline{h}_{4}^{*}|\overline{h}_{1}^{*}\overline{h}_{2}^{*}})^{*} - i\mathcal{A}_{1+2\to3+4}^{h_{1}h_{2}|h_{3}h_{4}} = \sum_{n=1}^{\infty}\sum_{\alpha_{n}}\frac{1}{S_{\alpha_{n}}}\left(\prod_{j_{\alpha_{n}}=1}^{n}\sum_{J_{j_{\alpha_{n}}}\in L_{j_{\alpha_{n}}}}\int_{1-i\infty}^{1+i\infty}\frac{d\Delta_{j_{\alpha_{n}}}}{2\pi i N_{h_{j_{\alpha_{n}}},m_{j_{\alpha_{n}}}}}\right) \\ \cdot \cdot \blacktriangleright \times \left(\mathcal{A}_{3+4\to\alpha_{n}}^{\overline{h}_{3}^{*}\overline{h}_{4}^{*}|h_{\alpha_{n}}}(z_{3},z_{4}|w_{\alpha_{n}})\right)^{*}\mathcal{A}_{1+2\to\alpha_{n}}^{h_{1}h_{2}|h_{\alpha_{n}}}(z_{1},z_{2}|w_{\alpha_{n}}).$$

Celestial optical theorem

- Optical thm:
 - unitarity of S-matrix + completeness relation;
 - nonlinear relations between scattering amplitudes;
 - on-shell, nonperturbative.
- Celestial optical thm:
 - unitarity of S-matrix + completeness relation;
 - nonlinear relations between CPW coefficients;
 - on-shell, nonperturbative.

- Optical thm:
 - phase space integrals are hard to manipulate;
 - no natural partial wave expansion for higher-points.
- Celestial optical thm:
 - scalar integral equations of CPW coefficients;
 - natural basis for all points.

Positivity

- We focus on elastic scattering $1 + 2 \rightarrow 1 + 2$. ●
- Notice: $\rho_{1+2 \to 1+2,h}^{h_1h_2|h_3h_4} \equiv \rho_J^{J_i}(\Delta; \Delta_i)$ is a function of Δ and Δ_i for each fixed spin J and J_i .
- Positivity: \bullet
 - nonperturbative criterion of CCFT; ullet
 - similar to that in cosmological bootstrap from dS unitarity; [Hogervorst, Penedones, Vaziri'21] [Di Pietro, Gorbenko, Komatsu'21] ullet

$$\operatorname{Im}(\rho_{1+2\to1+2,h}^{h_1h_2|\overline{h}_1^*\overline{h}_2^*})$$

 ≥ 0 , if $\Delta \in 1 + i \mathbb{R}$.

- Analyticity assumptions: \bullet
 - $\rho_I^{J_i}(\Delta; \Delta_i)$ is meromorphic with respect to $\Delta \in \mathbb{C}$ and decays to zero as $\Delta \to \infty$;
 - natural assumption for CFT; ullet
 - can be loosened to include branch points. ullet
 - $\rho_I^{J_i}(\Delta; \Delta_i)$ is is also meromorphic with respect to the external conformal dimensions $\Delta_i \in \mathbb{C}^4$;
 - technical assumption, inspired by perturbative results; \bullet
 - can be loosened to smaller domain of Δ_i , to include branch points.

Analyticity assumptions

Applications

- Exactly one of the following statements is true:
 - for any *J* and J_i , $\rho_I^{J_i}(\Delta; \Delta_i) = 0$;
 - for $J_1 = -J_3$ and $J_2 = -J_4$, $\rho_I^{J_i}(\Delta; \Delta_i)$ contains at least one Δ -pole.
- Given any celestial three-point coefficient $C_{1+2\rightarrow\alpha}^{h_1h_2|h}$, if $\Delta = f(\Delta_1, \Delta_2)$ is a pole of $C_{1+2\rightarrow\alpha}^{h_1h_2|h}$ for some meromorphic f, and the intersection between the
 - Hence double-trace poles $\Delta = \Delta_1 + \Delta_2 + \cdots$ do not have anomalous dimensions, in contrast to AdS/CFT! •
- If the two incoming particles are both massless, exactly one of the statements is true: \bullet
 - for any *J* and J_i , $\rho_I^{J_i}(\Delta; \Delta_i) = 0$;
 - for $J_1 = -J_3$ and $J_2 = -J_4$, $\rho_I^{J_i}(\Delta; \Delta_i)$ contains only simple Δ -poles in a definite set;
 - in shadow basis, **only** double-trace operators appear in the OPE.
- All the properties are consistent with known perturbative examples. ۲

hypersurface $\Delta = f(\Delta_1, \Delta_2)$ and the principal series $\Re \Delta = 1$ is nonempty, then $\Delta = f(\Delta_1, \Delta_2)$ is a pole of $\rho_I^{J_i}(\Delta; \Delta_i)$ when $J_1 = -J_3$ and $J_2 = -J_4$.

Future directions

Future directions

- (Off-shell) Split representation for spinning particles are still incomplete. ullet
- S-matrix crossing symmetry should lead further constraints on CPW coefficients. ullet
- Solving the bootstrap equations from the celestial optical theorem. \bullet
- Better understanding of staggered modules (work in progress). \bullet

Thanks for attention!