Celestial optical theorem
and Its applications
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Introduction



Celestial holography

Proposal:
* bulk: (d+2)-dim quantum gravity on AF spacetime;
* bdry: putative d-dim CCFT on the celestial sphere.
Symmetry:
e bulk: Lorentz symmetry SO(d+1,1);
* bdry: Euclidean conformal symmetry SO(d+1,1);
* here we do not discuss asymptotic symmetries/large gauge transformations.

Observables:
 bulk: scattering amplitudes
 bdry: celestial amplitudes &/ as conformal correlators.

We focus on d = 2, bosonic objects: (A,J) = (h+ h,h—h)and J € Z.

We try to learn universal properties of CCFT from examples: S-matrix unitarity.

(d+2)-dim quantum gravity

d-dim celestial CFT
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Dictionary

[Pasterski,Shao,Strominger]
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celestial amplitudes ~  TTte. scattering amplitudes /\
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Continuous complex conformal dimension A: T e N

Ael+iR;
_ _ o Hyperbolic slicing of momentum space
* required by invertibility and completeness.
e Mass and conformal dimension are not related.

* Massless particle:

* the integral transform is reduced to the Mellin transform;

e collinear singularity of /# < OPE singularity of <.



Conformal basis ¢(z, k)

Defining property: Particles (ng ner)

. intertwine SO(3,1)’s linear action on R*! and conformal action on S*;
conformal basis

e solutions of EOM:;

Can be constructed from AdS bulk-to-bdry propagator;

Quantum numbers: Putative operators (PS)

* Mass m
effectively as primary operators

e conformal dimension A SOC and inner product are modified.  [Crawley,Miller,Narayanan,Strominger'21]

» conformal spin J
bulk spin £ wrt SO(3,1) — bdry spin J wrt S0(2) Prlmary OperatOrS (Verma)
e massive:JeL={-¢,—-¢+1,---,0—1,(}

e« massless:J € L={-,7}



Example: 3-pt scalar celestial amplitudes at tree-level

e (00-m
[Lam,Shao’17]
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e mO-m: hypergeometric fun.
[RL,Ma’24]
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e mm-m: triple MB integral or double sum of Wilson poly.
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« Proportional to the AdS three-point coefficient dAl,Az,A3' dAl,AQ,A:,,:iw/F 2 A21 A22A3 2

e In AdS/CFT, with dAl, AA, and split representation, double-trace operators appear in OPE.

e What about CCFT?



celestial amplitudes and OPE



Conformal partial wave expansion

CPW expansion

Correlation functions = CP\V coefficients/OPE

inversion formula

27Tw o () Pr. ™ Vol SO(1, 3) j=1 %) \Fwis %)

Jj= 1J’

celestial amplitude  integration over reps CPW coefficient CPW

« Based on harmonic analysis of S0(3,1);

e Carrying exactly the same dynamical information as celestial amplitude;

e pole of CPW coefficient < operator in OPE;

» useful technique for deriving conformal block expansions and OPE.



Split representation of scalar Feynman propagator

[Chang,RL,Ma’23]

conformal basis CPW expansion

Feynman diagrams = celestial amplitudes =@ CPW coefficients/OPE

split representation + 6j symbol

Feynman diagrams =——————————_- CPW coefficients/OPE

* An efficient tool for computing perturbative celestial amplitudes;

* Based on harmonic analysis of symmetric spaces. N
Feynman propagator integration over mass leaves integration over reps ...EAdeH
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"*-... discrete series of L*(dS) Hyperbolic slicing of momentum space



Double-trace operators in celestial OPE

[RL,Ma’24]
 In AdS/CFT, there are double-trace operators in the OPE from tree-level exchange diagrams.
/
OAl OAQ ~ CNOAl +Ao+2N + CNOA3+A4+2N

 In CCFT, we checked that if at most 2-0f-5 masses are turned on, there are only double-trace exchanged.
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Multi-particle operators in celestial OPE

[Ball,Hu,Pasterski’23] [Guevara,Hu,Pasterski’24] [RL,Ma’24]

« New two-particle operator with A = A, + A, + 2A; — 4 were observed by OPE limit analysis. (s pastersiizs) Guevara o pastersiizz,

 Necessary for OPE associativity.

 Confirmed in 5,6-point tree diagrams, and there should be infinitely many new types of operators, even at tree-level.

[RL,Ma’24]
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Staggered operators in celestial OPE

[Chang,RL,Ma’23] [Chang,RL,Ma,to appear]

 Former examples are s-channel diagram expanded in s-channel OPE; only EAdS part contributes.

 t-channel diagram in t-channel OPE; dS (continuous and discrete) parts contribute.

 Why they appear? Relation to celestial diamonds?
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Celestial optical theorem



Celestial optical theorem

[RL,Ma’24]
completeness

S-matrix unitarity — =—————————]- Optical thm

S-matrix unitarity = =———————- celestial optical thm

completeness + conformal basis + on-shell split-rep + CPW expansion
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Celestial optical theorem

 QOptical thm:  QOptical thm:
e unitarity of S-matrix + completeness relation;  phase space integrals are hard to manipulate;
 nonlinear relations between scattering amplitudes; * no natural partial wave expansion for higher-points.
e on-shell, nonperturbative. e (Celestial optical thm:

e (Celestial optical thm: e scalar integral equations of CPW coefficients;
e unitarity of S-matrix + completeness relation;  natural basis for all points.

e nonlinear relations between CPW coefficients;

 on-shell, nonperturbative.



Positivity
We focus on elastic scattering 1 +2 — 1 + 2.

hyhylhshy

Notice: ) 1» 142,

= p]]i(A; A) is a function of A and A, for each fixed spin J and J..
Positivity:
 nonperturbative criterion of CCFT;

® S|m||ar 'tO that |n CosmO|Og|Ca| bOOtStrap fr()m dS un|tar|ty, [ Hogervorst,Penedones,Vaziri’21] [ Di Pietro,Gorbenko,Komatsu’21]

Im(py 2522 )y >0, if Ael+iR.



Analyticity assumptions

e Analyticity assumptions:
o pJ]i(A; A ) is meromorphic with respect to A € C and decays to zero as A — o0;

 natural assumption for CFT;

e can be loosened to include branch points.

. p]]i(A; A)) is is also meromorphic with respect to the external conformal dimensions A, € C*;

 technical assumption, inspired by perturbative results;

 can be loosened to smaller domain of A;, to include branch points.



Applications

 Exactly one of the following statements is true:
. foranyJandJ, pjji(A; A)=0;
e forJ;=—-JyandJ, =—-J,, pJ]"(A; A,) contains at least one A-pole.

« Given any celestial three-point coefficient Clhjrh;z’a, if A =f(A, A,) is a pole of Cf’jgzzla for some meromorphic f, and the intersection between the
hypersurface A = f(A,, A,) and the principal series RA = 1 is nonempty, then A = f(A,, A,) is a pole of pJ]"(A; A)whenJ, = —Jy;and J, = — J,.

« Hence double-trace poles A = A; + A, + --- do not have anomalous dimensions, in contrast to AdS/CFT!

« If the two incoming particles are both massless, exactly one of the statements is true:
. foranyJandJ, pJJi(A; A)=0;
e forJ;=—-JyandJ, =—-J,, p}’i(A; A;) contains only simple A-poles in a definite set;

* in shadow basis, only double-trace operators appear in the OPE.

 All the properties are consistent with known perturbative examples.



Future directions



Future directions

(Off-shell) Split representation for spinning particles are still incomplete.
S-matrix crossing symmetry should lead further constraints on CPW coefficients.
Solving the bootstrap equations from the celestial optical theorem.

Better understanding of staggered modules (work in progress).



Thanks for attention!



