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Motivation: The renaissance of the bootstrap method

Classical approach in QFT:
1 UV Lagrangian
2 Perturbative computations
3 RG flow

Modern conformal bootstrap approach:
1 Consistency conditions, e.g., unitarity
2 Crossing symmetry
3 Positivity/Convexity

Remarkable successes: critical 3D Ising model

(Simmons-Duffin, 2016)
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Motivation: Bootstrap strongly coupled gauge theories

Strong coupling phenomena in QCD4:

Conformal window, Confinement, Chiral symmetry breaking

A simplified version– QED3: L = 1
4e2FµνF

µν +
∑Nf

i=1 ψ̄iσ
µ(∂µ + iAµ)ψ

i

The flavor number Nf ∈ 2Z to avoid parity anomaly (Witten 2016)

QED3 is asymptotically free (gauge coupling e2 has mass unit)

Large Nf : IR fixed point at e2∗ = 6π2/Nf (Appelquist et al 1988)

Small Nf : Chiral symmetry breaking (Appelquist et al 1985)

Nf = 0: Gauge confinement (Polyakov 1975, 77)

N∗
f =?
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Motivation: What bootstrap can do

Isolate Nf = 4 QED3 CFT data into a small island (with extra input):

Monte Carlo

Large N f
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Fix the critical flavor number N∗
f ∈ (2, 4) (combined with MC data).
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N∗
f ∈ 2Z for QED3 Method Year and Reference

2 < N∗
f < 4 conformal bootstrap 2018-22 Li & Li et al

64
π2 ≈ 6.5 Schwinger-Dyson equations 1984-88 Pisarski,Appelquist et al

8.6 Schwinger-Dyson equations 1996-97 Maris,Aitchison, et al

≤ 3 thermal free energy 1999-2004 Appelquist et al

≤ 4 hybrid Monte Carlo 2002-04 Hands et al

4.3 divergence of the chiral susceptibility 2002 Franz et al

8 covariant solutions for propagators 2004 Fischer et al

12 perturbative RG in the large-Nf limit 2004 Kaveh et al

10. . . 13 comparison to the Thirring model 2007-12 Christofi,Janssen, et al

3 lattice simulations 2008 Strouthos et al

8 ≤ N∗
f ≤ 20 functional RG 2014 Braun et al

≤ 8 F-theorem 2015 Klebanov et al

≤ 4 one-loop ϵ-expansion 2015 Komargodski et al

5.7 1/Nf expansion 2016 Gusynin et al

5.8 ϵ-expansion 2016 Herbut et al

< 2 lattice simulations 2017 Zi-Yang Meng et al

< 2 lattice simulations 2015-20 Narayanan et al
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Motivation: What bootstrap can NOT do

Hard to distinguish different conformal gauge theories:

Local gauge invariant operators:
No explicitly information on gauge interactions

Bootstrap bound coincidence among different symmetries:
Hidden algebraic structure in the conformal four-point crossing

equation

Non-conformal phase – confinement, chiral symmetry breaking, etc.

Goal of this work:

Bootstrapping non-local gauge invariant operators

Confined phase of lattice gauge theories

Why lattice?
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Outline

1 Lattice gauge theories and loop equations

2 Positivities in lattice theories and bootstrap implementation

3 Where is the limit of the constraint from loop equations + positivity?

4 Bootstrapping the 3D U(1) and Z2 lattice gauge theories

5 Towards bootstrapping the string tension and glueball mass
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1. Lattice gauge theories and loop equations
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Why lattice gauge theory?

To understand the dynamics of Wilson lines/loops (WLs):

Effective field theory description?

A widely open question: What is the bootstrap setup for the WLs:

Correlation functions of WLs?
Operator product expansion of WLs?

Difficulties for WLs in quantum gauge field theories, like QCD:

1 Infinite number of D.O.Fs, divergence and RG flow

2 Strongly coupled

Lattice gauge theories (LGTs):

Discretizing space or spacetime =⇒ Finite number of D.O.Fs.
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What is a lattice gauge theory?

Lattice gauge theories (LGTs):

Discretizing space or spacetime =⇒ Finite number of D.O.Fs.

Gauge field on the lattice:
Link ⇔ Parallel transport:

U⟨x,y⟩ = P exp

(
ig

∫ x

y

Aµ(z)dz
µ

)
Parallel transport along a path:

Cyx = Uℓ1Uℓ2Uℓ3Uℓ4

Wilson loop:WC = tr

(∏
ℓi∈C

Uℓi

)
Plaquette: a minimal closed path

UP = tr
(
U⟨x,y⟩U⟨y ,u⟩U⟨u,v⟩U⟨v ,x⟩

)
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Lattice gauge theory and Wilson action

Fundamental D.O.F in LGT with lattice length a:

link x → x + µ̂ : Uµ(x) = e iaAµ(x)

Gauge transformation in continuum field theory and lattice:

on lattice: Uµ(x) → Ω(x)Uµ(x)Ω(x + µ̂)

continuum: U⟨x ,y⟩ → Ω(x)U⟨x ,y⟩Ω
†(y)

Gauge invariant plaquette UP :

UP = tr
(
Uµ(x)Uν(x + µ̂)U†

µ(x + ν̂)U†
ν(x)

)
= −a4

2
trFµνFµν + · · ·

Wilson action for LGTs:

SWilson = − 1

λ

∑
P

(UP + P†
P)

Match the continuum Yang-Mills action to the order O(a2).
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From Wilson action to Loop equations

The physical observables: averaged Wilson loops W [C ] ≡ tr(
∏

ℓ∈C Uℓ):

⟨W [C ]⟩ = 1

Z

∫ ∏
x ,µ

dUµ(x)W [C ]e−SWilson

Loop equations: Schwinger-Dyson equations for ⟨W [C ]⟩.

Take the variation of the link variables

Uµ → (1 + iϵ)Uµ,U
†
µ → U†

µ(1− iϵ),S(W ) → S(W ) + δϵS(W )

Invariance of the integral
∫
DUδϵ

(
WCe

−S
)
leads to the loop equations∑

|α|̸=µ

⟨W [µαµ̄ᾱµC ]⟩ − ⟨W [αµᾱC ]⟩+ nλW [µC ] = 0

Loop equations are (non-)linear for (non-)Abelian LGTs.
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Comments on the loop equations in 2D

2D U(1) LGT: After taking gauge fixing on the lattice, the fundamental
Wilson loops are wm ≡ Um

P :

wm − wm−2 + (m − 1)λwm−1 = 0, w0 = 1.

2D Z2 LGT (J = 1/λ): Since Uℓ ∈ {1,−1}, U2
ℓ = 1, the fundamental

Wilson loops satisfy w2 = 1, there is only one independent observables w1

−1

2
sinh (4J) + (1 + cosh (4J))w1 −

1

2
sinh (4J)w2

1 = 0,

which is solved by w1 = tanh J, the solution of the 1D Ising model.

Duality from loop equations: 2D Z2 LGT ⇐⇒ 1D Ising model
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2. Positivities in lattice theories and bootstrap
implementation
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Square positivity in LGTs

Square positivity (Anderson and Kruczenski, 2016):
Consider the Hilbert space H spanned by the Wilson lines Wi , any state
O =

∑
i ciWi ∈ H has non-negative inner product:

⟨O|O⟩ = c∗j ⟨Wj |Wi ⟩ci ⩾ 0,⇐⇒ ⟨Wj |Wi ⟩ ⪰ 0.

An illustrative example:
Consider two Wilson lines W1/2 along a path 1/2 from 0 → x :

Then the square positivity condition ⟨Wj |Wi ⟩ ⪰ 0 requires

1− u2p ⩾ 0.
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Reflection positivity in LGTs

Choose a direction ρ on the lattice as the “time” direction, the Hilbert
space H is separated into two parts: H+, ρ > ρ0 and H−, ρ < ρ0.

Reflection map: Θ : H+ → H−:

Θ ·W [C ] = W [R · C ]†.

Reflection positivity: ⟨Θ · O|O⟩ ⩾ 0 (Osterwalder and Seiler 1978,
Kazakov and Zheng, 2022)
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Algorithm for bootstrapping Abelian LGTs

Target: constraints on the averaged Wilson loops: ⟨W [C ]⟩

Bootstrap computations:

1 Select Wilson lines Wi up to the maximum length L ⩽ Lmax/2;

2 Construct all the semi-positive matrices Ma ⪰ 0 from square and
reflection positivity

M ij
a ≡ ⟨Wi |Wj⟩, M ij

a′ ≡ ⟨Θ ·Wi |Wj⟩;

3 Generate the loop equations for the Wilson loops in Ma;

4 Using the loop equations to reduce the free variables in Ma;

5 Extract the constraints on ⟨W [C ]⟩ for each fixed gauge coupling λ

Ma ⪰ 0 =⇒ xmin ⩽ ⟨W [C ]⟩ ⩽ xmax
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Griffiths’ inequalities: positivity before modern bootstrap

Positivity/convexity has been extensively studied long before the modern
bootstrap endeavor!

Griffiths’ inequalities are satisfied by correlators in many lattice theories

Ferromagnets Ising model (Griffiths, 1967, 1969)

More spin lattice models (Kelly and Sherman, 1968)

General lattice theories including the LGTs (Ginibre, 1970)

Their roles in bootstrap studies (Cho et al., 2022)
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Griffiths’ inequalities: general form

Consider a compact space X and a convex function space Q on X :

For any p(x), q(x) ∈ Q and a, b ⩾ 0, the functions

ap(x) + bq(x), p(x)q(x), p∗(x) ∈ Q.

For any finite set of functions pi ∈ Q∫
dµ(x)dµ(y)

n∏
i=1

(pi (x)± pi (y)) ⩾ 0.

Then the functions pi (x) ∈ Q satisfy:
∫
dµ(x)

∏
i
pi (x) ⩾ 0.

Griffiths’ inequalities: If a lattice action −S(x) ∈ Q, then

I : ZS =

∫
dµ(x)e−S(x) > 0, ⟨p(x)⟩ = Z−1

S

∫
dµ(x)p(x)e−S(x) ⩾ 0;

II : ⟨p(x)q(x)⟩ − ⟨p(x)⟩⟨q(y)⟩ ⩾ 0.
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Applications of the Griffiths’ inequalities

Consider a finite-size lattice Λ ⊂ ZD , the action of the U(1) LGT:

SΛ = − 2

λ

∑
P∈Λ

cos θP , − S ∈ QU(1).

For another lattice Λ′ = Λ+Λ̄ with action SΛ−SΛ′ = β
∑
P∈Λ̄

cos θP ∈ QU(1)

d

dβ
⟨cos θC ⟩ =

1

Z 2
Λ′

∑
P∈Λ̄

⟨cos θC cos θP⟩ − ⟨cos θC ⟩⟨cos θP⟩ ⩾ 0.

Prove the thermodynamics limit:
⟨cos θC ⟩ is monotonic and bounded, so it has a unique limit Λ → ZD .

Bound ⟨W [C ]⟩ in general D:
Take Λ = ZD−1,Λ′ = ZD , since SΛ′ |β=0 = SΛ, the monotonicity gives

⟨W [C ]⟩D ⩾ ⟨W [C ]⟩D−1 ⩾ ... ⩾ ⟨W [C ]⟩D=2.
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3. Where is the limit of the constraint from loop
equations + positivity?
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Lattice bootstrap bounds and Wilson line truncation Lmax

Lattice bootstrap bounds: strong but not enough

SU(∞) LGT bootstrap bounds Lmax ⩽ 16 3D Ising nearest-neighbor correlator

(Kazakov and Zheng, 2022) (Cho et al., 2022)

Question: can the bound converge to high precision with larger Lmax? or,
are the loop equations and positivity sufficient to pin down the LGTs?
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Explore the limit of bootstrap bound: a 2D example

Take temporal gauge θ0(n) = 0,Ux ,0 = 1,
phase of Wilson loop W [C ] = e iθC satisfies

θC =
∑
ℓ∈C

θℓ =
∑
{PC}

θP(n).

Variable change in the path integral:

dθℓ → dθP(n).

The path integral with variable θP factorized to incomplete Bessel
functions:

Im (2/λ) =

∫ 2π

0
dθPe

2
λ
cos θP cosmθP

and the Wilson loop averages are

wm ≡ W [Pm] = Im/I0.
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Bootstrap setup of the 2D U(1) LGT

Take the Wilson lines Wi = Pm,m = 1, 2, ..., n, its positivity matrix is

M2D =


w0 w1 w2 · · · wn

w1 w0 w1 · · · wn−1

w2 w1 w0 · · · wn−2

...
...

...
. . .

...
wn wn−1 wn−2 · · · w0

 ⪰ 0,

associated with the loop equations and boundary condition

wm − wm−2 + (m − 1)λwm−1 = 0, w0 = 1.

The averaged Wilson loops wm can be restricted to extremely high
precision!
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Bootstrap bounds on the 2D U(1) LGT
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Yellow region: Lmax = 8; orange lines: Lmax = 12; blue line(s): Lmax = 24.
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Bootstrap bounds with Lmax = 60 on the 2D U(1) LGT

The first 10 digits of the bootstrap bounds on w1 in 2D U(1)

λ Lower bound Upper bound Exact value

0.01 0.9974968514 0.9974968595 0.9974968592

0.1 0.9746705040 0.9746705172 0.9746705078

0.2 0.9485998188 0.9485998342 0.9485998259

0.4 0.8933831327 0.8933831412 0.8933831370

0.6 0.8319000705 0.8319000717 0.8319000711

0.8 0.7649967470 0.7649967481 0.7649967475

1.0 0.6977746575 0.6977746583 0.6977746579

2.0 0.4463899656 0.4463899661 0.4463899659

4.0 0.2424996125 0.2424996126 0.2424996125

6.0 0.1643939155 0.1643939155 0.1643939155
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What we learn from the 2D U(1) LGT bootstrap

Where is the limit of the lattice bootstrap? For Lmax ≃ 60, the
lattice bootstrap can numerically pin down the 2D U(1) LGT!

“Scaling law” in lattice bootstrap: The precision of the bootstrap
bounds ln δw1 is improved linearly with increasing Lmax.
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4. Bootstrapping the 3D U(1) and Z2 lattice gauge
theories
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A short review of the 3D U(1) LGT

3D U(1) LGT: one of the simplest examples for gauge confinement!

On the lattice, the compact gauge group U(1) can generate U(1)
monopoles;

In the long distance limit, the monopole gas can screen the electric
interaction, lead to the gauge confinement! (Polyakov, 1975, 77);

One of the very few examples for which the confinement can be
understood analytically;

An important target for quantum simulation (e.g., Zohar et al., 2012,
Paulson et al., 2021).
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What we know about 3D U(1) LGT

The theory is confined in the long distance for general λ;

Plaquette average in the weak coupling limit (Horsley and Wollf,
1981)

uP = 1− 1

6
λ− 1

72
λ2 − 0.0041375λ3 − 0.000175λ4 + · · · .

Plaquette average in the strong coupling limit (Balian et al., 1975)

uP =
1

λ
− 1

2λ3
+

7

3λ5
− 395

48λ7
+
1173

40λ9
− 507803

4320λ11
+

7352027

15120λ13
−443004913

215040λ15
+· · · .

Monte Carlo simulation with intermediate λ (Loan, et al., 2002);

Effective string and flux tube description of the confinement (Caselle,
et al., 2014, 2016);

Monte Carlo simulation for the glueball mass spectrum and string
tension (Athenodorou and Teper, 2019).
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Bootstrap bounds with Lmax = 16 on the 3D U(1) LGT

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

λ

u
P

Black dot-dashed line: 2D U(1) lattice gauge theory w1; red dashed lines: strong
and weak coupling expansions; green dots: Monte Carlo results.
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Summary of the bootstrap bounds

Strong/weak couplings: the two-sided bootstrap bounds converge
quickly and consistent with the perturbative results;

Intermediate coupling: the two-sided bootstrap bounds well agree
with the Monte Carlo results, but precision is weaker;

Universal behavior in confinement: with large λ, both upper and
lower bounds quickly converge to the 2D solution!
Bootstrap constraints ⇐⇒ Griffiths’ inequalities
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A short review of the 3D Z2 LGT

Dual to the 3D Ising model, 3D version of the Kramers-Wannier
duality, provides phase transition with topological order;

Plaquette average in the strong coupling limit (Balian et al., 1975):

uP = J−J3

8
+
7J5

48
−395J7

3072
+
1173J9

10240
−507803J11

4423680
+
7352027J13

61931520
−443004913J15

3523215360
+· · ·

Monte Carlo results on 3D Ising model can be transfered to the 3D
Z2 LGT through transformation

FIsing(J
′) = FZ2 gauge(J)−

3

2
ln sinh(2J) +

1

2
ln 2.

Second order phase transition at J = 0.761413292(11) (Ferrenberg et
al., 2018)

Important applications in quantum computing, higher form symmetry,
etc.
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Bootstrap bounds for the 3D Z2 LGT with Lmax = 16
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Light/dark blue region: Lmax = 12/16; green dots: MC data; red dashed line: strong
coupling expansion; black dashed line: solution of 2D Z2 LGT.
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Summary of the bootstrap bounds

Strong/weak couplings: the two-sided bootstrap bounds converge
quickly and consistent with the perturbative/Monte Carlo results;

Similar interesting observation: with large λ, both upper and lower
bounds quickly converge to the 2D solution! Why?

Numerical precision: Even with Lmax = 16, the numerical precision
is notably better than the 3D Ising model bootstrap bounds by the
Harvard group (Cho et al., 2022)!
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5. Towards bootstrapping the string tension and
glueball mass
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Confinement: string tension

Confinement: key problem for QCD. Can bootstrap do more?

String tension σ: large Wilson loop and area law

⟨W [C ]⟩ ≡ ⟨W [R,T ]⟩ ∝ e−σRT−γ(R+T )−a.

Potential between static quark pair and string tension:

V (R) = − lim
T→∞

1

T
log ⟨W [R,T ]⟩, σ = lim

R→∞

V (R)

R
.

Static quark pair with distance R:

Confinement: ⟨W [R,T ]⟩ ∼ e−TV (R) ∼ e−σ×area

Deconfinement: ⟨W [R,T ]⟩ ∼ e−TV (R) ∼ e−γ×perimeter
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Bootstrap estimation of the string tension σ

Bootstrap: estimate σ with Wilson loops at finite lengths.
Creutz ratio: cancel the linear and constant terms in V (R):

χ(I , J) = − ln

(
W [I , J] W [I − 1, J − 1]

W [I , J − 1] W [I − 1, J]

)
.

Strict bounds:

λ W [3, 2] W [3, 1] W [2, 2] W [2, 1] χext MC

0.6 0.57(16) 0.71(8) 0.66(10) 0.79(6) 0.04 N.A.

0.8 0.44(26) 0.60(14) 0.53(17) 0.70(11) 0.05 0.010

1.0 0.34(34) 0.49(20) 0.42(23) 0.61(16) 0.06 0.050
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Glueball mass spectrum

The millennium problem: Mass gap in Yang-Mills theories

Can bootstrap, or positivity play a substantial role for mass gap problem?

Consider two parallel Wilson loops with distance R, the correlation
function is dominated by the lowest exciting states:

⟨W [P]W [P ′]⟩connect ≃
∑
i

e−miR
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Primary bootstrap results

Parallel plaquettes with distance T = 1, 2, 3, 4:

τ = 1 τ = 2 τ = 3 τ = 4

⟨P(τ)P(0)⟩ 0.56(12) 0.58(14) 0.59(15) 0.61(22)

⟨P(τ)∗P(0)⟩ 0.64(15) 0.60(15) 0.59(15) 0.63(22)

Comments: Nontrivial constraints but need one order higher precision to
evaluate glueball mass.
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Summary

1 Can the loop equations and positivity be enough to pin down a LGT?
Yes for 2D U(1) LGT! With Lmax = 60, the precision ∼ 10−8!

2 Strong two-sided bootstrap bounds on 3D U(1) and Z2 LGT

3 Modern bootstrap constraints ⇐⇒ Classical Griffiths’ inequalities!
Generalize to the Yang-Mills theories?

4 Bootstrapping the string tension and glueball mass spectrum.
Needs higher precision. To be continue...

Can we solve the gauge confinement problem in QCD using bootstrap?
We will see...

Thank you!
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