Refined Topological Strings on Compact Elliptic-fibered Calabi-Yau 3-folds

Xin Wang (王昕)

WIP with Min-xin Huang (USTC), Sheldon Katz (UIUC), Albrecht Klemm (Bonn)

Korea Institute for Advanced Study

第五届全国场论与弦论学术研讨会

For M-theory compactification on a generic Calabi-Yau 3-fold (CY3),

the microscopic degeneracies N_{j_L,j_R} of spinning BPS states are captured *exactly* by topological string theory on CY3

Motivation

M-theory on CY3

Topological string theory on CY3

5D N=1 / N=2 supergravity theory

compactification

BPS states

Wrapped M2-branes on holo. 2-cycles

The BPS states in 5D are characterized by the spin (j_L,j_R) under the spatial rotation group

- $SO(4) \simeq SU(2)_L \times SU(2)_R$
- which can be captured by the topological A-model string amplitudes
	-

Turning on $SU(2)_R$ gives a refined version of topological strings, known

However, the $SU(2)_R$ contents are irrelevant in the conventional topological string calculations.

as refined topological strings —— Hard to define / calculate

Motivation

The purpose of today's talk :

A proposal for REFINED topological strings on COMPACT Calabi-Yau 3-folds

M-theory on CY3

Topological string theory on CY3

5D N=1 / N=2 supergravity theory

compactification

BPS states

Wrapped M2-branes on holo. 2-cycles

Local SQFT Wilson loops HAES

Refinement

- the topological aspects of the string's worldsheet [Witten '89]
- It defines a map from a 2D $\mathcal{N} = (2, 2)$ worldsheet theory to the target space
	- $\phi_i : \Sigma \to X$ = CY3 vanishing first Chern class
- We can define the A-model and B-model of the topological string theory by different types of topological twists.

Topological String Theory

• Topological String Theory is a simplified version of string theory focusing on

• The A-model is defined as Gromov-Witten theory in mathematics.

$$
\mathcal{F}^{(g)}(t_i) =
$$

 $\beta \in$

free energy of the topological strings. It only depends on the Kähler deformation parameters t_i — the masses of the BPS particles

$$
\mathcal{F}=\sum_{g=0}^{\infty}\lambda^{2g-2}\mathcal{F}^{(g)}(t_i)
$$

$$
\sum_{H_2(X;{\mathbb Z})}\mathrm{GW}_g^{\beta}e^{-\beta\cdot t}
$$

• The generating function of these worldsheet instanton numbers is called the

Topological String Theory

Vafa (GV) invariants:

$$
\mathcal{F}=\sum_{g=0}^{\infty}\lambda^{2g-2}\mathcal{F}^{(g)}(t_i)=\sum_{\beta,g}\sum_{k=1}^{\infty}\frac{n_g^\beta}{k}\left(2\sinh(\frac{k\lambda}{2})\right)^{2g-2}e^{-k\beta\cdot t}
$$

- field
- N_{j_L,j_R}

$$
n_g^{\beta} \sim \sum_{j_R} (2j_R + 1) N_{j_L,j_R}^{\beta}
$$

• The generating function can be expanded in terms of integral Gopakumar-

which is derived by [Gopakumar-Vafa `98], from the Schwinger one-loop calculation for an electric particle in a background constant electromagnetic

• The GV invariant is a topological invariant, it is related to the degeneracies

Topological String Theory

• The A-model GW or GV invariants are usually very hard to compute, but they can be relatively easy to compute from the B-model geometry via mirror

• At genus 0, for a hypersurface CY, we can solve the genus 0 GV from the

- symmetry.
- solutions of GKZ systems. E.g. Quintic CY3

Topological String Theory

- Higher genus invariants can be computed from Holomorphic anomaly equations [Bershadsky, Cecotti, Ooguri, Vafa '93]
	- Quintic CY3
		- gap conditions: genus 51(+2) [Huang, Klemm, Quackenbush '06]
		- Modularities on the DT invariants: genus 80

Topological String Theory

[Alexandrov, Feyzbakhsh, Klemm, Pioline, Schimannek '23] [Alexandrov, Feyzbakhsh, Klemm, Pioline '23]

- Best playground of the resurgence in string theory
-

• Is there an all-genus expression? Black hole entropy Mata's talk at String Math 2024]

Elliptic fibered Calabi-Yau 3-folds: Topological String Theory

E.g. elliptic fibration over \mathbb{P}^2

Base curve Fiber curve

Compact divisor in local P2

• Holomorphic anomaly equation

Local Calabi-Yau 3-folds: Topological String Theory

E.g. local \mathbb{P}^2 , large fiber limit of elliptic \mathbb{P}^2

$$
\begin{array}{ccccc}\nl^{(1)} & = & \left(& -6 \\
l^{(2)} & = & \left(& 0 \right)\n\end{array}
$$

- Topological vertex
- Topological recursion / Remodeling conjecture

- 4D or 5D supersymmetric gauge theories (on \mathbb{R}^4 or $\mathbb{R}^4 \times S^1$) can be geometric engineered from local Calabi-Yau 3-folds X, from IIA/M-theory compactification on X
- The instanton partition function of the gauge theory in the (extended) Coulomb branch can be computed via supersymmetric localization, it is equal to the topological string partition function

$$
Z_{\rm gauge}(t,\lambda)
$$

Gauge theory VEV of scalars in the vector multiplets. \boldsymbol{t} Chemical potential for the rotati λ

$$
= Z_{\rm top}(t,\lambda)
$$

Refinement of Local Calabi-Yau 3-folds: Refined Topological String Theory

• Nekrasov proposed the gauge theory on the Omega-deformed background, by turning on the chemical potentials $\epsilon_{\pm} = \frac{1}{2}(\epsilon_1 \pm \epsilon_2)$ for the 4D rotation symmetry

• The BPS particles are characterized by the spins (j_L, j_R)

- $SO(4) \simeq SU(2)_L \times SU(2)_R$
- $Z_{\text{gauge}}(t,\lambda) \quad \frac{\text{refinement}}{\longrightarrow} \quad Z_{\text{gauge}}(t,\epsilon_1,\epsilon_2)$
	-

Refinement of Local Calabi-Yau 3-folds: Refined Topological String Theory

Refinement of Local Calabi-Yau 3-folds: Refined Topological String Theory

$$
Z_{\text{ref}}(t, \epsilon_1, \epsilon_2) = Z_{\text{gauge}}(t, \epsilon_1, \epsilon_2)
$$

= exp
$$
\left[\sum_{\beta \in H_2(X, \mathbb{Z})} \sum_{k=1}^{\infty} \sum_{j_L, j_R} (-1)^{2j_L + 2j_R} \frac{1}{k} N_{j_L, j_R}^{\beta} \frac{\chi_{j_L}(k\epsilon_-) \chi_{j_R}(k\epsilon_+)}{2 \sinh(\frac{k\epsilon_1}{2})} e^{-k\beta \cdot t} \right]
$$

- The non-negative number N_{j_L,j_R}^β counts the degeneracy of the BPS particle curve class β
- It is called refined BPS invariants (non-negative integers)

• Refined topological strings are proposed from the refinement of gauge theory

with spin (j_L,j_R) and mass $\beta{\cdot}t$, it comes from M2-branes wrapping over the

- Refined holomorphic anomaly eq
- Refined topological vertex
- Blowup equations
- Elliptic fibration over non-compact toric surface (6d SCFTs, 6d LSTs)
	- Modular bootstrap: can be refined

Refined topological strings on non-compact CY3 Refined Topological String Theory

$$
\begin{array}{ll}\text{uations} & F = \sum_{g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}(t_i) \\ \text{genus } g \to \text{ genus } (n,g) \end{array}
$$

Known results for refined topological strings on compact CY3's

- $K3 \times T2$ [Katz, Klemm, Pandharipande, `14]
- Elliptic CY3, $(n \leq 1, g)$ done by [Huang Katz, Klemm, 20]

$$
F = \sum_{g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}(t_i)
$$

= exp
$$
\left[\sum_{\beta \in H_2(X,\mathbb{Z})} \sum_{k=1}^{\infty} \sum_{j_L, j_R} (-1)^{2j_L + 2j_R} \frac{1}{k} N_{j_L, j_R}^{\beta} \frac{\chi_{j_L}(k\epsilon_-) \chi_{j_R}(k\epsilon_+)}{2 \sinh(\frac{k\epsilon_1}{2})} e^{-k\beta \cdot t} \right]
$$

Remark: The number N_{j_L,j_R}^{β} may not be an invariant but depends on the complex deformation of the CY3

Our result: refined topological strings on compact (elliptic-fibered) CY3 for any (*n*, *g*)

$$
(t_i)
$$

Refined Topological String Theory

- In gauge theory, Wilson lines/loops are gauge invariant operators
- They arise from the parallel transport of gauge variables around closed loops
- They can be generated from the worldline C of static infinitely massive quarks in rep. \mathbf{r} – Polyakov loop

$$
W_{\mathbf{r}}(C) = \text{Tr}_{\mathbf{r}} \left[\mathcal{P} \exp \left(i \oint_C A_{\mu} dx^{\mu} \right) \right]
$$

Wilson loop

• Supersymmetric version

$$
W_{\mathbf{r}}[C] = \text{Tr}_{\mathbf{r}} \mathcal{P} \exp
$$

- a scalar is added to preserve some of the supersymmetries.
- Half-BPS operators in 5D $\mathcal{N}=1$ gauge theories on S^1
	- The rotation symmetry $SO(4)$ is preserved
	- GV-like expansion [Huang, Lee, XW, '22][Kim, Kim, Kim, '21]

 $\int_C (iA_\mu \dot{x}^\mu + |\dot{x}|\phi) ds$

Wilson loop

Wilson loop

- Coulomb branch: the scalar field ϕ gets the expectation value in the Cartan subalgebra of the gauge group, which breaks the gauge group to $U(1)^r$. *r*
- The scalar expectation values $\phi_i, i = 1, \cdots, r$ parametrize the moduli space on the Coulomb branch.
- The representation of the Wilson loop becomes the electric charge of the Wilson loop particle —— a **heavy, stationery electric particle** located at the origin of the space \mathbb{R}^4

The half-BPS Wilson loop operators are realized by adding semi-infinite F1 strings with charge 1, stretched between D3 branes and D5 branes.

most one F1 string stretched between a D3 brane and a D5 brane.

-
- The lowest energy modes on such F1 strings are fermionic, so there can be at

Half-BPS Wilson loop operators — IIB realization [David Tong, '14] …

To have a geometric realization, we can also add a flavor matter by blowing up the geometry at one point.

In the large volume limit of the exceptional curve, only single F1 states contribute

Half-BPS Wilson loop operators — IIB realization

• And theories with broken one-form symmetry

• The geometric definition can be extended to non-gauge theory, e.g. local P2

Half-BPS Wilson loop operators — IIB realization

Genus 0 invariants for Wilson loops of local P2

heavy, stationery electric particle a non-compact curve in CY3 extended to infinity Heavy

BPS particles **M2-branes** wrapping around $C + C$, $C \in H₂(X; Z)$

 $q_i = D_i \cdot C$

Representation Charges of

Compact divisor

This is not a coincidence, the red numbers are all related to Wilson loops of local P2

The Euler number for elliptic P2 is -540

How the Wilson loops of a local CY3 are connected to the compact CY3

Genus 0 GV invariants:

Wilson loops for local P2 and the point blowup of local P2 and the elliptic P2

How the Wilson loops of a local CY3 are connected to the compact CY3

Wilson loop particle

 $2\sinh(\frac{\epsilon_1}{2})\cdot 2\sinh(\frac{\epsilon_2}{2})$

Ending of the 2-cycle at infinity

 $546[0, 0] \oplus [1, \frac{1}{2}]$ $\sqrt{2\sinh(\frac{\epsilon_1}{2})\cdot 2\sinh(\frac{\epsilon_2}{2})}$

If a half-BPS particle in the 5D supergravity theory is heavy enough

It becomes the half-BPS Wilson loop particle in the local 5D quantum field theory

We can refine the BPS spectrum of the 5D supergravity

theory via refinement of the 5D Wilson loops

$$
\begin{array}{ccc} l^{(1)} & = & (& -6 & ; & 2 \\ l^{(2)} & = & (& 0 & ; & 0 \end{array}
$$

$$
\begin{array}{c|cc}\n3 & 1 & 0 & 0 & 0 \\
0 & -3 & 1 & 1 & 1\n\end{array}
$$

Compact divisor in local P2

Define the expansion

$$
\mathcal{F}(Q,q;\epsilon_1,\epsilon_2) = \sum_{d_1=0}^{\infty} \mathcal{F}_{d_1}(Q;\epsilon_1,\epsilon_2) (qQ^{1/3})^{d_1}
$$

We have the conjecture :

$$
\mathcal{F}_1(Q;\epsilon_1,\epsilon_2)=f(\epsilon_1,\epsilon_2)\mathcal{F}_{\mathrm{W},[1]}^{\mathbb{P}^2}
$$

BPS numbers in the fiber direction

$$
f(\epsilon_1,\epsilon_2)=\frac{546-}{2\,\mathrm{s}}
$$

M-theory on CY3

Topological string theory on CY3

5D N=1 / N=2 supergravity theory

compactification

BPS states

Wrapped M2-branes on holo. 2-cycles

Local SQFT Wilson loops HAES

Refinement

Figure 1 in 2307.13027

We can also consider the gluing of multiple local theories

Thank you!