Refined Topological Strings on Compact Elliptic-fibered Calabi-Yau 3-folds

Xin Wang (王昕)

Korea Institute for Advanced Study

WIP with Min-xin Huang (USTC), Sheldon Katz (UIUC), Albrecht Klemm (Bonn)

第五届全国场论与弦论学术研讨会

Motivation

the microscopic degeneracies N_{j_L,j_R} of spinning BPS states are captured exactly by topological string theory on CY3

Topological string theory on CY3

For M-theory compactification on a generic Calabi-Yau 3-fold (CY3),

M-theory on CY3

Wrapped M2-branes on holo. 2-cycles

BPS states

compactification

5D N=1 / N=2 supergravity theory

Motivation

spatial rotation group

However, the $SU(2)_R$ contents are irrelevant in the conventional topological string calculations.

as refined topological strings —— Hard to define / calculate

The BPS states in 5D are characterized by the spin (j_I, j_R) under the

- $SO(4) \simeq SU(2)_L \times SU(2)_R$
- which can be captured by the topological A-model string amplitudes

Turning on $SU(2)_R$ gives a refined version of topological strings, known

The purpose of today's talk :

Topological string theory on CY3

Refinement

A proposal for REFINED topological strings on COMPACT Calabi-Yau 3-folds

M-theory on CY3

Wrapped M2-branes on holo. 2-cycles

BPS states

compactification

5D N=1 / N=2 supergravity theory

Local SQFT HAES Wilson loops

- the topological aspects of the string's worldsheet [Witten '89]
- It defines a map from a 2D $\mathcal{N} = (2, 2)$ worldsheet theory to the target space
 - $\phi_i: \Sigma \to X_{\text{= CY3}}$ vanishing first Chern class
- We can define the A-model and B-model of the topological string theory by different types of topological twists.

Topological String Theory is a simplified version of string theory focusing on

The A-model is defined as Gromov-Witten theory in mathematics.

$$\mathcal{F}^{(g)}(t_i) =$$

 $\beta \in$

free energy of the topological strings. It only depends on the Kähler deformation parameters t_i — the masses of the BPS particles

$$\mathcal{F} = \sum_{g=0}^{\infty} \lambda^{2g-2} \mathcal{F}^{(g)}(t_i)$$

$$\sum_{H_2(X;\mathbb{Z})} \mathrm{GW}_g^\beta e^{-\beta \cdot t}$$

The generating function of these worldsheet instanton numbers is called the

Vafa (GV) invariants:

$$\mathcal{F} = \sum_{g=0}^{\infty} \lambda^{2g-2} \mathcal{F}^{(g)}(t_i) = \sum_{\beta,g} \sum_{k=1}^{\infty} \frac{n_g^{\beta}}{k} \left(2\sinh(\frac{k\lambda}{2}) \right)^{2g-2} e^{-k\beta \cdot t}$$

- field
- N_{j_L,j_R}

$$n_g^\beta \sim \sum_{j_R} (2j_R + 1) N_{j_L, j_R}^\beta$$

The generating function can be expanded in terms of integral Gopakumar-

which is derived by [Gopakumar-Vafa '98], from the Schwinger one-loop calculation for an electric particle in a background constant electromagnetic

• The GV invariant is a topological invariant, it is related to the degeneracies

- symmetry.
- solutions of GKZ systems. E.g. Quintic CY3

d	
1	
2	
3	
4	24
5	22930

• The A-model GW or GV invariants are usually very hard to compute, but they can be relatively easy to compute from the B-model geometry via mirror

At genus 0, for a hypersurface CY, we can solve the genus 0 GV from the

- Higher genus invariants can be computed from Holomorphic anomaly equations [Bershadsky, Cecotti, Ooguri, Vafa '93]
 - Quintic CY3
 - gap conditions: genus 51(+2) [Huang, Klemm, Quackenbush '06]
 - Modularities on the DT invariants: genus 80

[Alexandrov, Feyzbakhsh, Klemm, Pioline, Schimannek '23] [Alexandrov, Feyzbakhsh, Klemm, Pioline '23]

- Best playground of the resurgence in string theory

Is there an all-genus expression? Black hole entropy [Vafa's talk at String Math 2024]

Topological String Theory Elliptic fibered Calabi-Yau 3-folds:

E.g. elliptic fibration over \mathbb{P}^2

Compact divisor in local P2

Topological String Theory Local Calabi-Yau 3-folds:

E.g. local \mathbb{P}^2 , large fiber limit of elliptic \mathbb{P}^2

$$\begin{array}{rcl} l^{(1)} &=& (& -6\\ l^{(2)} &=& (& 0 \end{array} \end{array}$$

Holomorphic anomaly equation

- Topological vertex
- Topological recursion / Remodeling conjecture

Refined Topological String Theory Refinement of Local Calabi-Yau 3-folds:

- 4D or 5D supersymmetric gauge theories (on R⁴ or R⁴ × S¹) can be geometric engineered from local Calabi-Yau 3-folds X, from IIA/M-theory compactification on X
- The instanton partition function of the gauge theory in the (extended) Coulomb branch can be computed via supersymmetric localization, it is equal to the topological string partition function

$$Z_{\text{gauge}}(t,\lambda)$$

$$= Z_{\rm top}(t,\lambda)$$

	Topological string theory		
s, mass parameters,	Kähler parameters		
ion symmetry	Tological string coupling		

Refined Topological String Theory Refinement of Local Calabi-Yau 3-folds:

• Nekrasov proposed the gauge theory on the Omega-deformed background, by turning on the chemical potentials $\epsilon_{\pm} = \frac{1}{2}(\epsilon_1 \pm \epsilon_2)$ for the 4D rotation symmetry

• The BPS particles are characterized by the spins (j_L, j_R)

- $SO(4) \simeq SU(2)_L \times SU(2)_R$
- $Z_{\text{gauge}}(t,\lambda) \xrightarrow{\text{refinement}} Z_{\text{gauge}}(t,\epsilon_1,\epsilon_2)$

Refined Topological String Theory Refinement of Local Calabi-Yau 3-folds:

$$Z_{\text{ref}}(t,\epsilon_1,\epsilon_2) = Z_{\text{gauge}}(t,\epsilon_1,\epsilon_2)$$
$$= \exp\left[\sum_{\beta \in H_2(X,\mathbb{Z})} \sum_{k=1}^{\infty} \sum_{j_L,j_R} (-1)^{2j_L+2j_R} \frac{1}{k} N_{j_L,j_R}^{\beta} \frac{\chi_{j_L}(k\epsilon_-)\chi_{j_R}(k\epsilon_+)}{2\sinh(\frac{k\epsilon_1}{2})2\sinh(\frac{k\epsilon_2}{2})} e^{-k\beta \cdot t}\right]$$

- curve class β
- It is called refined BPS invariants (non-negative integers)

Refined topological strings are proposed from the refinement of gauge theory

• The non-negative number N_{j_L,j_R}^{β} counts the degeneracy of the BPS particle with spin (j_L, j_R) and mass $\beta \cdot t$, it comes from M2-branes wrapping over the

Refined Topological String Theory Refined topological strings on non-compact CY3

- Refined holomorphic anomaly eq
- Refined topological vertex
- Blowup equations
- Elliptic fibration over non-compact toric surface (6d SCFTs, 6d LSTs)
 - Modular bootstrap: can be refined

uations
$$F = \sum_{g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}(t_i)$$

genus $g \to \text{genus } (n,g)$

Refined Topological String Theory

Known results for refined topological strings on compact CY3's

- $K3 \times T2$ [Katz, Klemm, Pandharipande, 14]
- Elliptic CY3, $(n \le 1, g)$ done by [Huang Katz, Klemm, 20]

$$F = \sum_{g=0}^{\infty} (\epsilon_1 + \epsilon_2)^{2n} (\epsilon_1 \epsilon_2)^{g-1} F^{(n,g)}(t_i)$$

= $\exp\left[\sum_{\beta \in H_2(X,\mathbb{Z})} \sum_{k=1}^{\infty} \sum_{j_L, j_R} (-1)^{2j_L + 2j_R} \frac{1}{k} N_{j_L, j_R}^{\beta} \frac{\chi_{j_L}(k\epsilon_-)\chi_{j_R}(k\epsilon_+)}{2\sinh(\frac{k\epsilon_1}{2})2\sinh(\frac{k\epsilon_2}{2})} e^{-k\beta \cdot t}\right]$

Remark: The number N_{j_L,j_R}^{β} may not be an invariant but depends on the complex deformation of the CY3

Our result: refined topological strings on compact (elliptic-fibered) CY3 for any (n, g)

$$(t_i)$$

- In gauge theory, Wilson lines/loops are gauge invariant operators
- They arise from the parallel transport of gauge variables around closed loops
- They can be generated from the worldline C of static infinitely massive quarks in rep.r – Polyakov loop

$$W_{\mathbf{r}}(C) = \operatorname{Tr}_{\mathbf{r}} \left[\mathcal{P} \exp\left(i \oint_{C} A\right) \right]$$

Supersymmetric version

$$W_{\mathbf{r}}[C] = \operatorname{Tr}_{\mathbf{r}} \mathcal{P} \exp$$

- a scalar is added to preserve some of the supersymmetries.
- Half-BPS operators in 5D $\mathcal{N} = 1$ gauge theories on S^{\perp}
 - The rotation symmetry SO(4) is preserved
 - GV-like expansion [Huang, Lee, XW, '22][Kim, Kim, Kim, '21]

 $\int_C \left(iA_\mu \dot{x}^\mu + |\dot{x}|\phi \right) ds$

- Coulomb branch: the scalar field ϕ gets the expectation value in the Cartan subalgebra of the gauge group, which breaks the gauge group to $U(1)^r$.
- The scalar expectation values $\phi_i, i = 1, \cdots, r$ parametrize the moduli space on the Coulomb branch.
- The representation of the Wilson loop becomes the electric charge of the Wilson loop particle — a heavy, stationery electric particle located at the origin of the space \mathbb{R}^4

Half-BPS Wilson loop operators — IIB realization [David Tong, '14] ...

The half-BPS Wilson loop operators are realized by adding semi-infinite F1 strings with charge 1, stretched between D3 branes and D5 branes.

most one F1 string stretched between a D3 brane and a D5 brane.

	0	1	2	3	4	5	6	7	8	9
D5	•	•	•	•	•	•				
NS5	•	•	•	•	•		•			
$5_{(p,q)}$	•	•	•	•	•	θ	θ			
F1	•						•			
D3	•							•	•	•

- The lowest energy modes on such F1 strings are fermionic, so there can be at

Half-BPS Wilson loop operators – IIB realization

To have a geometric realization, we can also add a flavor matter by blowing up the geometry at one point.

In the large volume limit of the exceptional curve, only single F1 states contribute

Half-BPS Wilson loop operators – IIB realization

And theories with broken one-form symmetry

• The geometric definition can be extended to non-gauge theory, e.g. local P2

1	2
1	0
-2	1
5	-4
-32	35
286	-400
-3038	5187
	$ \begin{array}{c} 1 \\ -2 \\ 5 \\ -32 \\ 286 \end{array} $

Genus 0 invariants for Wilson loops of local P2

heavy, stationery electric particle

BPS particles

Representation

a non-compact curve C in CY3 extended to infinity Heavy

M2-branes wrapping around C + C, $C \in H_2(X; \mathbb{Z})$

 $q_i = D_i \cdot \mathbf{C}$ Charges of C

Compact divisor

How the Wilson loops of a local CY3 are connected to the compact CY3

Genus 0 GV invariants:

d_h/d_C	0	1	2	
0	0 1		0	
1	1 3 -2		1	
2	-6	-6 5		
3	27	-32	35	
4	-192	286	-400	
5	1695	-3038	5187	

d_h/d_C	0	1	2	
0	0	1	0	
1	3	-2	0	
2	-6	5	0	
3	27	-32	7	
4	-192	286	-110	
5	1695	-3038	1651	

Wilson loops for local P2

one point blowup of local P2

This is not a coincidence, the red numbers are all related to Wilson loops of local P2

d_h/d_C	0	1	2
0	0	$540 \times (1)$	540
1	3	$540 \times (-2)$	143370
2	-6	$540 \times (5)$	-574560
3	27	$540 \times (-32)$	5051970
4	-192	$540 \times (286)$	-57879900
5	1695	$540 \times (-3038)$	751684050

elliptic P2

The Euler number for elliptic P2 is -540

How the Wilson loops of a local CY3 are connected to the compact CY3

Wilson loop of local P2

Wilson loop particle

Ending of the 2-cycle at infinity

elliptic P2

 $\frac{546[0,0] \oplus \left[1,\frac{1}{2}\right]}{2\sinh(\frac{\epsilon_1}{2}) \cdot 2\sinh(\frac{\epsilon_2}{2})}$

If a half-BPS particle in the 5D supergravity theory is heavy enough

It becomes the half-BPS Wilson loop particle in the local 5D quantum field theory

theory via refinement of the 5D Wilson loops

We can refine the BPS spectrum of the 5D supergravity

$$l^{(1)} = (-6 ; 2)$$

 $l^{(2)} = (0 ; 0)$

Define the expansion

$$\mathcal{F}(Q,q;\epsilon_1,\epsilon_2) = \sum_{d_1=0}^{\infty} \mathcal{F}_{d_1}(Q;\epsilon_1,\epsilon_2)(qQ^{1/3})^{d_1}$$

We have the conjecture :

$$\mathcal{F}_1(Q;\epsilon_1,\epsilon_2) = f(\epsilon_1,\epsilon_2)\mathcal{F}_{\mathrm{W},[1]}^{\mathbb{P}^2}$$

BPS numbers in the fiber direction

$$f(\epsilon_1, \epsilon_2) = \frac{546 - 2 \epsilon_1}{2 \epsilon_2}$$

Compact divisor in local P2

Topological string theory on CY3

Refinement

M-theory on CY3

Wrapped M2-branes on holo. 2-cycles

BPS states

compactification

5D N=1 / N=2 supergravity theory

Local SQFT + HAES Wilson loops

We can also consider the gluing of multiple local theories

Figure 1 in 2307.13027

Thank you!