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 Recent developments suggest 

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories 

(e.g.   Jackiw-Teitelboim gravity is dual to random matrix theories )

 E.g.   Spectral 2-point function                                            ( Saad, Shenker, Stanford, 2018 )
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 Recent developments suggest 

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories 

(e.g.   Jackiw-Teitelboim gravity is dual to random matrix theories )

 E.g.  A topological model of  “Baby universes”                               ( Marolf, Maxfield, 2020 )
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(Figures from MM2020)
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 Recent developments suggest 

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories 

 Other discussions about ensemble averages

 Pollack, Rozali, Sully and Wakeham 2002.02971

 McNamara and Vafa 2004.06738

 Afkhami-Jeddi,  Cohn,  Hartman and  Tajdini 2006.04839             

 Maloney and Witten                           2006.04855

 Belin and de Boer           2006.05499

 Cotler and Jensen             2006.08648

 Bousso and  Wildenhain 2006.16289

 Stanford                                   2008.08570

 …



 Questions:  

How should we understand the ensemble average of random theories ?

No such averages in familiar examples, don’t know how to quantize

here any way to connect them precisely?Is
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Microscopic models

Pseudo-randomness

True randomness

 Idea: 

 Models with true randomness

 Microscopic model that display 

pseudo-randomness after coarse graining

 The true randomness is an analogue

of the pseudo-randomness

 Emergent pseudo-randomness and emergent gravity



 Previous analyses focus on Gaussian distributions

 Simple 

 Well studied

 We consider discrete Poisson distributions

 Quantum theories have discrete Hilbert space

 Discrete distributions could appear in GPI                                     (Marolf, Maxfield 2020 )

 Under control 
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 In practice, we consider                                   where  

 𝐽0(𝑥) a classical source    

 𝐽1(𝑥) a random source

 Integrate over the random source to get an effective action

 Questions:

 What set of theories/sources to be included ?

 What is the measure for the average ?

7

( ) J

      
0 1( ) ( )x JJ xJ  

eff
( ) ( )

1 1( ) ( ( ))
dV xS

e J x J x e
  



 A sensible choice is ( the physical description ):

where   Pois and                                                

 Properties:

 The distribution is local (x-dependent)

 The discretization 𝑑𝑉(𝑥) enters the probability distribution

 The “fluxes” obey the discrete distribution

 Shape of the distribution measured by 8
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 A sensible choice is ( the physical description ):

where   Pois and                                                

 Properties:

 The distribution is local (x-dependent)

 The discretization 𝑑𝑉(𝑥) enters the probability distribution

 The “fluxes” obey the discrete distribution 

 “Shape” of the distribution measured by 9
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 Averaging over the random source with this measure leads to 

 Adding back the other terms gives the effective action 

Generalized Liouville theory
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 The sign of the potential term is “wrong”

 To cure this we consider instead the integration measure

 This leads to the averaged action

 Is there a more accurate description of what we did?
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 Consider the same theory, now reconsider it in terms of the Poisson Process.

Definition:  Poisson process    

A random countable subset       on a given carrier space      , s.t.

 For disjoint subsets              , the random variable                                  

are mutually independent

 satisfies the Poisson distribution Pois

with

 Mean measure         ,  determined by the intensity function 
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 In terms of  the Poisson processes, we reinterpret our computation as follows:

 The fluxes of the random source is identified with the random counting measure

For infinitesimal subset                 , we get 

 Average over the random source is identified with the Laplace functional
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 Generically, the Laplace functional of a test function         is 

 In our computation, we thus have 

 Same as the result we got previously

 Sign flip can be accomplished by an              factor 

or by modifying the measure  to 
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 What we have done is similar to the known example

SYK                                  effective action                                    Schwarzian/JT gravity

 We have demonstrated the importance of choosing 

 which set of theories to be averaged over  ( fluxes but not sources )

 what is an appropriate measure for the average  ( the             factor )
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Average over 

random couplings

Low energy limit

Average over random potentials
Our model                                                                     Liouville gravity

−1 ℱ



 Recap: 

the ensemble average of random potentials could be an analogue of some pseudo-
randomness originated from the ignorance of some microscopic structure

 We will 

 Construct a microscopic model

 Go to a special double scaled, low energy limit

 Illustrate how pseudo-randomness appears

 Demonstrate its equivalence to the type of true randomness we have discussed previously

17



 A lattice, sites labelled by a position vector    

 On each site:   A complex fermion : 

A real boson:       

 The Hamiltonian of the system: 

 Prepare the system in the state

where           is the probability of fermionic excited state on site  
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 Consider the continuous limit:                            

where     is the lattice spacing,      is the number of site per unit volume

 In this limit, countable infinite lattice sites in each open set. 

 Further a double scaling limit: the number of sites (per unit volume) where 
fermionic d.o.f. is excited remains finite
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 The fermionic factor of the density matric in a small enough subset           is

 In the above limit,                 becomes 

a Poisson distribution with                             .
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 Next we get an effective action for the bosonic field         

 Integrating over the fermionic degrees of freedom

 Such a trace is chosen so that it is base free
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 Tracing over the fermions leads to

 Redefining                                                              ,

and adding back the pure bosonic terms, we get 
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 Take the low energy limit by focusing on the lowest few Fourier modes

 For simplicity, we choose

 The low energy effective theory is

where 
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 Can also integrate out the     field to get a quantum mechanical model of the fermions

where                                                            and leads to a nearest neighbor coupling.

 Expanding by number of derivatives, the only relevant piece of the  interaction is

 The range of parameter is 

 A branch cut at               , corresponding to integrating out a massless mode. 

24

x

eff ,

1 1
log( )

2 2

~
x x x x xy x x y y

x x x y

g dt i m g
dtL dtL

xe e e
       



 
   
  
 
  

  
1 2

, , 1, , 1 , 1 , 1xy x y x y x x y x x x y xg M t t   

       

 

2| | 2| | 1

1

, 1, , 1 , 1 , 1 , 2 , 2 12| | 2| | 12
2 2

2
2 2

2 2

1

4 4 41 1 1 1 1

p p

xy x y x x y x x x y x y x p y x pp p
p

t t

M M
g M t t

t t tM
MM M

    






      


   
   
       

   
       

   
   



2

2(1 ) 2
mM

t t


  

𝑚𝜙 = 0



 In previous analyses, probabilistic measures emerge.  Interpret it as a geometric 
volume measure in gravity ?

 This helps understand Gravitational Path Integral = Ensemble Average of Theories

 Recall our effective action 

and the Liouville gravity action
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 Comparing the actions, we find they are identical once we identify

 The last relation trivializes in the conformal gauge , and the remaining  two 
relations become

 This gives the relation between the probabilistic measure 

and the geometric measure
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 Comments

1. This connection is only true if           correlates with          according to

i.e.  not all average of random theories have gravity descriptions 

2. Curiously           was introduced as a source of        :                                   .  Recall                          

is originally the Weyl factor in getting Liouville; this put         and          on the same 

footing, and confirms the geometric interpretation of

3. The parameter     sets up a scale. 

4. The gravity description only captures the “mean” probability measure        , but not 

the details of the microscopic model. They could encode the information of the 

quantum aspects of gravity?
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Microscopic models

Pseudo-randomness

True randomness

 Quantum theories have discrete Hilbert spaces, so we consider 

averaging over theories with discrete random variables. 

 Suitable ensemble average of these discrete theories, with a 

mathematically rigorous description in terms of Poisson processes. 

 Averaged theories of this type have an equivalent description of 

tracing over parts of the microstates in a single theory. 

 The results from both approaches mirror Liouville gravity.




