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ANOMALIES (TRADITIONAL)

* 'T'he study of anomalies has a long history.

* An important milestone: Wess-Zumino consistency ['71].

— Anomalous transtormation 1s compatible with the symmetry algebra.

* 'logether with the “local” properties ot anomalies led to the descent
equations and a cohomological classification ot perturbative
anomalies.

[ Lectures: Stora’77, Stora’84, Zumino’85, Stora’86
| TASI Lectures Harvey’ 03
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ANOMALIES (MODERN)

* Inflow paradigm: | CGallan-Curtis-Harvey’8)]

* Anomaly in D dimensions 1s the inflow of a classical action in D+1
dimensions.

* (an we classity anomalies using inflow?  [Wen’13, ...]
* Inadequate for e.g. Contormal/Weyl anomalies.

* Assumed to be okay for 't Hooft anomalies (of internal symmetry
or spacetime symmetry).



T HOOFT ANOMALIES

't Hooft anomaly 1s a controlled breaking of symmetries in QF1

T'he partition function on a background @ (e.g. metric, gauge field, ...)
transforms under the background transtormation A (e.g. ditteomorphism, gauge,
...) with an anomalous phase

Z| D] = Z[D] explia[®, A])

Inflow paradigm: 3 D+1 dimensional bulk classical action S, [D]
Zopu @1 = exp(=Spun[@D ,  Zyyy [P = Zyy [ @] exp(—ia[D, Al)

Bulk + boundary 1s free from anomaly.



ANOMALIES (MODERN)

» (lassification of D+1 dimensional bulk phases:

* In D+ 1 =1,2,3 dimensions, bulk phases are classified by group cohomology.
|CGhen-Gu-Liu-Wen’l 1, Hung-Wen’12, Wen’13, ...]

* InD+1=1, ---,6 dimensions, bulk phases are classified by cobordism (Some
results assume bulk reflection-positivity).

| Kapustin’14, Freed-Hopkins’16, Yonekura’ls, ...]

* With topological order. (partition function transtorms more generally)

| Kong-Wen’14, Lan-Wang-Wen’14, Witten’15, Ji-Wen’19, ...]



(1+1)D QFT witTH U(1) SYMMETRY

* Restrict to QFIs defined on Riemannian geometry. (Non-spin QF 1)

Partition functions are scalars under the symmetries.

& o R AL

* (I+1)D anomalies are inflowed by bulk (2

IK 4
. Gravitational anomaly: S, . = 15 [CS(w) , CS(w) = wdw +—w° .

Sl

iKFz ) 3
Bl 5. =T csi), CS@A)=AdA+=AS

A

YD Chern-Simons actions

>
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(1+1)D QFT witTH U(1) SYMMETRY

* For Chern-Simons actions to be well-defined, levels are quantized.
 lranslates to quantization of anomaly coethticients 1n (1+1)D
Kpo € 8Z and kp, € 27

* In GF'1] the anomaly coethicients are related to T X T and J X J OPE
coethcients

Kpm=c_=c—Cc and km=k =k—k



HOLOMORPHIC bc GHOSTS

* Some basics of the holomorphic bc system:

e Free Grassmann fields: b, c.

| .
£ Aclion: S = —szzbdc.

2r
* (Holomorphic) contormal weights: h, =4, h.=1- 4.
* U(l) ghost number symmetry: J =: bc :.
* Ghost number / U(1) charge: ¢,=-1, g.=+1.
& et nsor T =(1—=/):(db)c:—A:boc:.



HOLOMORPHIC bc GHOSTS

When A € Z, b and ¢ have integer spins, and can be defined on
arbitrary Riemann surtaces (without specitying the spin structure).

Central charge: c¢_=1-3Q21-1)°€ -2+ 24Z.
f i evel: b — 1.
Incompatible with the quantization of Chern-Simons levels. Recap:

e T ERZ and k =k-ke2Z



PLAN

[. Classity 't Hooft anomalies tfrom purely (1+1)D perspective.
2. Verity that the holomorphic bc ghost’s anomalies fit 1n.

3. Discussion & future directions



Let us go back to our traditional roots and study the
Wess-Zumino consistency condition.



FINITE WESS-ZUMINO CONSISTENCY

* Anomalous phase:
Z[®M = Z[®] exp(ia[®, A]). Z[®™M]
* Diagram on the right commutes: N A

a[®, A,A ] — a[®M, A,] — a[®,A] € 2aZ.

* Infinitessimal A leads to original Wess-Zumino. 7| ®] > Z[@A2A1]
Ao A

[Book: Azcarraga-Izquierdo’95] °




LOCALITY

. "T'he anomalous phase a[®, A] 1s a local tfunctional ot ®.

2. For infinitesimal A, the anomalous phase a[®, A] 1s a local
functional of both ® and A, and vanishes on the trivial background.

* On trivial background, the current J¥ 1s conserved away from any
other operator insertions. In correlation functions,

(V,J¥(x) ---) = contact terms.

* Had locality been false, Ward 1dentities would violate this structure.



LOCALITY

* 'T'he two locality conditions can be stated more precisely as
* & : DSpace of background transtormations A.
» ¢, : Connected components, &, contains the trivial transtormation.
o 9. [D,A]: Basis ot local functionals that vanish when @ = 0.

* 'l'’he anomalous phase admits an expansion 1n the basis &, [®, A] as

al®, Al = ) k() d[D,Al+0@n),  60)=0.

l



GRAVITATIONAL ANOMALY

* Consider CGF'1 on flat torus. Large difteomorphism: SL(2,2) .

* By locality, the anomalous phases are constants. (No local functional
A . [P, A] could be written down.)

<a1+b at + b
/

: ik Z(T, 1—.) ei@(a,b,c,d).
ct+d ct+d

* (Assume that the partition function does not vanish identically tor all
torus moduli z.)



GRAVITATIONAL ANOMALY

* Solutions to finite Wess-Zumino Consistency

= Group cohomology H'(PSL(2,2),U(1)) = Z,.
[CC-Lin, also in Seiberg-Tachikawa-Yunikura’l8]

* Solution corresponds to the generator of Z; :

* General anomalous phases 8(a, b, ¢, d) are determined by 6 and 6;

| | - ; .
4 —— V. nes, Zat+tlz+ 1) =4Ar ) et
T

%
¢« Go=m mod 2z, 6’T=§ mod 2z = c¢_= O, 41 47
T




GRAVITATIONAL ANOMALY

* For any odd element ot Z

0. =7 mod 2, c. 68/ (&

I
* 'T'his implies that at the S-invariant point (square torus) @
I

sl ==l

* 'T'he square torus 1s reflection symmetric. If the CGF'1 15 reflective
positivity, the partition tfunction on square torus 1s positive. Hence,

c_ € 8Z for reflection positive G 1.



GRAVITATIONAL ANOMALY

What it the partition function vanishes identically tor all z? Consider
torus one-point function instead.

T'he solution to the finite Wess-Zumino condition 1s given by the group
cohomology

H (S1LO2.Z2) Uln=2Z,
It at least one torus one-point function does not vanish identically, then

c. e )/

For c_ € 47 + 2, the CF' 1 must contain Grasmann-valued operators.



U(1l) ANOMALY

» Consider CFE'1 on flat torus.

* Space of U(l) gauge transtormations 4 has many connected
components, labeled by the winding numbers around the non-
contractible cycles €

|
AT =—[ m
o 2



U(1) ANOMALY

* By locality, the general form of the anomalous phase 1s

k(m[A])

alA, 4] = - 50 J A+ Y J [ F + O(IAL).
> i >

* f(4) 1s a basis of periodic functions

f(A+2x) =[(4).

* Restrict to flat gauge orbits, F =0, so that x/ do not contribute.



U(1) ANOMALY

 Finite Wess-Zumino:

s Z[®A1]

l— ) J TRy H(ﬁlz)]
A 5

. [K(mz) J dA,(A + dA)) + e(n—a’z)] / \
A 5

Ao A

(I)A2A1

x(nm
— [ ) J dl, A + 6’(%’1)] =0 mod 2. 2
dr s




U(1) ANOMALY

* A bit of manipulation: * € 1s Intersection matrix.

—7k(my) iy - Q -, + O(m ) — O(nmly) — O(ni,)| * We used

- - 1
- K(ntyp) — k(m ) J 1. A F[ dldA, = my - Q- m,.
4r 5 : o

* A, Ay, 4, are arbitrary, so
J dl, A] O ol e 2nd and 3rd lines vanish.
>

* k(m) = Kk 18 constant.

4 [K(ﬁlz) — x(771,)

A



U(1l) ANOMALY
We are left with
— Ky - Q- m,H + O(my,) — 0(m,) — 0(m,) =0 mod 2x.

On a torus,

. () |
m (maa mb)a <_1 O)

T'his can be explicitly solved:
O(m_, my) = 0(1,0)m, + 6(0,1)m, — nkrm my, K2 € Z .

Mixed tWZ. of U(1) + modular transtorms gives 6(1,0) = 6(0,1) = zxp-.



CONCLUDING REMARKS



SUMMARY

Inflow paradigm + Chern-Simons level quantization:
KR2=C_ESZ, KF2=k_€2Z.
Fimite Wess-Zumino:

Km=c_ € 27, Kkm=k_€/Z.

Saturated by holomorphic be. Can explicitly verity anomalous phases.

CF1 with ¢_ ¢ 47 must include ghosts, and with ¢_ ¢ 87 canneot be
reflection positive.



NEW (2+1)D CLASSICAL ACTION?

* Is there a new (2+1)D classical action responsible tor inflowing the
anomaliesc_=—-2and k_=17?

* A classification ot (2+1)D non-spin invertible topological order using
braided fusion categories by Kong-Wen shows that ¢_ € 2Z.

* However, there 1s no know non-spin ivertible topological order that
realizes the minimal chiral central charge ¢_ = £ 2.

| Kong-Wen'’14]



FINITE WESS-ZUMINO IN HIGHER D

» T°: mapping class group is SL(D, Z). However, H WSL(D, Z7), U(1)) is
trivial for all D > 3. No global gravitational anomaly. 'T'here could still
be nontrivial global U(1) anomaly.

e S§P: There exist large diffeomorphisms in D > 6. For example, the
mapping class group is Z,g in D = 6. fWZ gives H(Z,g, U(1)) = Zq
which agrees with the inflow by (6+1)D Chern-Stmons [Witten’83].
Odd D? fWZ for global U(1) anomaly?

* More general manifolds...



MIXED GRAVITATIONAL ANOMALY

* 'T'he ghost number current J 1s not conserved nontrivial backgrounds:
(VEJ (X)) D kpgR.

* Inflow by a mixed Chern-Simons action:

ik |
Sbulk — AL J' A AN dAR . AR — _8Clbwba .
ioly 7 4

Agp: (2+1)D SO(2) gauge field.

7
4

. GS level quantization: kz; € — |, saturated by holomorphic be. tWZ, quantization?






ISOTOPY ANOMALY

* From the current J¥, construct U(1)
symmetry defect by integration along a
curve 6

Z,(6) =:exp [in flgcg ds nﬂJ”] -

* nlabels U(1) elements, has periodicity 1.

* Detorm € — €'. Swipes over domain 9, *
0D =€¢"-%6. :




ISOTOPY ANOMALY

* 'T'he deformation gives an anomalous phase:

. exXp inﬂg dsn,J"| :
0D=6'-C

. EXp liﬂj dzx\/§ Vv y J* :| . averzenee theorem)
D

exXp |:ii/]KFR“ dzx\/gR] (Anomalous conservation)
D




ISOTOPY ANOMALY

Anomalous phase:

exp [ir]KFR[ dzx\/gR].
P

T'he defect ine &, 1s topological on flat

space but not on curved space, due to
mixed gravitational anomaly kzp .

T'his 15 the 1sotopy anomaly.




