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Introduction

• Period integrals are ubiquitous in mathematics and physics. For ex-
ample, they are essential ingredients in classic mirror symmetry, in the
solutions of Seiberg-Witten gauge theories, and are also frequently re-
lated to appealing mathematical objects like modular forms.

• Bethe Ansatz has served as a cornerstone in the developments of ex-
actly solvable many-body quantum systems for almost a century. We
will consider a type of difference equations similar to those that appear
in the Thermodynamic Bethe Ansatz (TBA).

• Quantum periods have been a useful tool in recent studies of topolog-
ical string theory and related topics. We will consider local Calabi-Yau
geometries which can be described by a complex one-dimensional mir-
ror curve with complex coordinates (x, p). Promoting the coordinates
to canonical quantum position and momentum operators, we can then
compute the quantum periods as integrals of a quantum corrected dif-
ferential one-form over cycles.



• We will study the novel relation between quantum periods and TBA-

like equations proposed in Y. Hatsuda, M. Marino, S. Moriyama, and

K. Okuyama, arXiv:1306.1734 . In particular, we focus on the parts

concerning quantum A-periods which can be determined by a residue

calculation at finite Planck constant ~.

• The original proposal is for a particular local P1 × P1 Calabi-Yau ge-

ometry related to the ABJM (Aharony-Bergman-Jafferis-Maldacena)

theory. We will further explore the relation and generalize to a large

class of local Calabi-Yau geometries.



• The classical mirror curves of local Calabi-Yau geometries can be quan-
tized [x̂, p̂] = i~. We have a quantum spectral problem

ρ(x̂, p̂)|ψ〉 = e−E|ψ〉, (1)

where the energy E is related to the only dynamical complex struc-
ture modulus. For the purpose of deriving the corresponding TBA-like
equation, it needs to have the following form

ρ(x̂, p̂) = u(x̂)−
1
2[2 cosh(p̂)]−1u∗(x̂)−

1
2, (2)

• In the 1990’s, it was conjectured in A. B. Zamolodchikov, arXiv:hep-
th/9409108 and proved in C. A. Tracy and H. Widom, arXiv:solv-
int/9509003 that the spectral equation (1) is related to some TBA-
like equations which first appeared in the context of two-dimensional
N = 2 supersymmetric theories.

• We will use the TBA-like difference equation for the function η(X)
after these manipulations

1 + z[η(qX) + η(X)][η(q−1X) + η(X)]|u(q
1
2X)u(q−

1
2X)| = η(X)2, (3)

where we use the exponentiated parameters X = ex, q = ei~.



• The case of local P1 × P1 model, which has the mirror curve

ex + ep + z1e
−x + z2e

−p = 1. (4)

Promote the x, p coordinates to quantum operators and consider a

particular case z1 = q−
1
2z, z2 = q

1
2z which corresponds to the ABJM

theory.

• We make a change of variables

x̂→
x̂

2
− p̂−

i~
4
− E, p̂→

x̂

2
+ p̂+

i~
4
− E, z → e−2E, (5)

which preserve the same canonical commutation relation. Acting the

mirror curve on a quantum state |φ〉 we get

4 cosh(
x̂

2
) cosh(p̂)|φ〉 = eE|φ〉. (6)

• So we have a spectral equation in the form of (1, 2), with the function

u(x) = e
x
2 + e−

x
2.



• For the general case z1 = em̃z, z1 = e−m̃z, it seems difficult to write
the spectral equation in the form of (1, 2) by simple manipulations of
elementary functions. Instead, we will need to use Faddeev’s quantum
dilogarithm function Φb. Using the results of Kashaev et al

ρ = (ex̂ + ep̂ + em̃e−x̂ + e−m̃e−p̂)−1 = f(x̂′)[2 cosh(p̂′)]−1f∗(x̂′), (7)

where the redefined variables are x̂′ = x̂ − p̂ − m̃, p̂′ = 1
2(x̂ + p̂ − m̃),

which satisfy the same canonical commutation relation. The function
f(x) is defined in terms of the quantum dilogarithm

f(x) = e
x
4Φb(

x− m̃
2πb

+ i
b

4
)Φb(

x+ m̃

2πb
− i

b

4
)−1, (8)

with the parameter definition b =
√

~
π. Using the well known functional

relations of quantum dilogarithm, it is straightforward to calculate

|f(x+
i~
2

)f(x−
i~
2

)|−2 = ex + e−x + em̃ + e−m̃. (9)

So we can now derive the TBA-like equation for P1 × P1 model with
general mass parameter

1 + z[η(qX) + η(X)][η(q−1X) + η(X)](X + 1/X + em̃ + e−m̃) = η(X)2,

(10)



The Om,1 operators: first method

• We consider a class of three-term quantum operators of the form

Om,n = ex̂ + ep̂ + e−mx̂−np̂, (11)

where m,n are natural numbers and in this section we will focus on

the case of n = 1 where the corresponding TBA-like equation can be

derived.

• The case of m = n = 1 corresponds to the well studied local P2

Calabi-Yau geometry, while the case of (m,n) = (2,1) corresponds

to a subfamily of local Hirzebruch F2 Calabi-Yau geometry. In general,

the operator corresponds to a C3/Zm+2 resolved orbifold Calabi-Yau

space. For m > 2, the operator has multiple complex deformations

which correspond to different dynamical Hamiltonians, we will consider

a one-parameter subfamily of such deformations.



• Quantum period: the Om,1 operator can be parametrized as

ex̂ + ep̂ + ze−mx̂−p̂ = 1. (12)

We act the quantum curve on a wave function ψ(x) and denote V (x) =
ψ(x)

ψ(x−i~), then we have a difference equation

X − 1 +
1

V (X)
+
zV (qX)

q
m
2Xm

= 0, (13)

where again the notation is X = ex, q = ei~.

• The difference equation for V (X) can then be solved perturbatively as a

power series in z, and for example up to order z we have the expression

V (X) =
1

1−X
+

q−
m
2X−mz

(1−X)2(1− qX)
+O(z2). (14)



• We consider the residue around X = 0

Πm = ResX=0
log[V (X)]

X
= ResX=0

log[(1−X)V (X)]

X
. (15)

• This is the quantum period (up to a possible logarithmic term). For

example

Π1 =
(1 + q)z
√
q

+
[2(1 + q4) + 7(q + q3) + 12q2]z2

2q2
+ [3(1 + q9)

+ 9(q + q8) + 36(q2 + q7) + 88(q3 + q6) + 144(q4 + q5)]
z3

3q9/2
+O(z4),

Π2 =
(1 + q + q2)z

q
+ [

27

2
+ 10(q + q−1) +

13

2
(q2 + q−2) + 2(q3 + q−3)

+ q4 + q−4]z2 +O(z3),
(16)



• To derive the corresponding TBA-like equation, we change variables

x̂→ x̂, p̂→ −m
x̂

2
+ p̂−

im~
4
− E, z → e−2E. (17)

Acting the mirror curve on a quantum state |φ〉, we find

2 cosh(p̂)|φ〉 = e
mx̂
2 (1− ex̂)eE|φ〉. (18)

After a simple redefinition of the quantum state, we can now write

the spectral equation in the form of (1, 2) with the function u(x) =

e−
mx
2 (1− ex)−1.

• We should note that unlike the examples in literature, in our case the

integral
∫∞
−∞ |u(x)|−1dx is actually divergent, which implies the corre-

sponding integral kernel (2) may not be a trace class operator. However

this is not really an issue since we are not studying the spectral theory,

but just use it as a formal trick to derive the TBA-like equations. Our

end result should justify ignoring such subtleties in the process.



• So we arrive at a TBA-like equation for the Om,1 operator

1 + z[ηm(qX) + ηm(X)][ηm(q−1X) + ηm(X)]/[Xm+1(X +X−1 − q
1
2 − q−

1
2)]

= ηm(X)2.
(19)

We take the residue and check up to the first few orders that it is

indeed simply related to the residue (16) in quantum periods

ResX=0
1

X
ηm(X, q, z) = 1 + 2θzΠm, (20)

where θz ≡ z∂z.



• The case m = 2 is somewhat interesting, as it is known that the F2

model is related to the F0 ≡ P1 × P1 model by a reparametrization.

After identifying the parameters, we have another TBA-like equation

for the m = 2 case as

1 + z
1
2[η̃(qX) + η̃(X)][η̃(q−1X) + η̃(X)](X + 1/X) = η̃(X)2. (21)

The perturbative solution for η̃ has half integer powers of z. However

after taking residue, only the integer powers survive. We check that it

is indeed simply related to η2 by the following intriguing equation

ResX=0
1

X
[2η2(X, q, z)− η̃(X, q, z)] = 1. (22)



• Surprisingly, without concerning about Calabi-Yau conditions and mir-

ror symmetry, the formalism can be actually applied to a much more

general curve

ep̂ + ze−mx̂−p̂ = r(X), (23)

where the function r(X) can be a general rational function of X = ex̂.

• It is more convenient to directly normalize V (X) and also define a

function s(X) as

Ṽ (X) ≡ r(q−
1
2X)V (q−

1
2X), s(X) ≡ 1/[Xmr(q

1
2X)r(q−

1
2X)]. (24)

Here we also shift X by a factor of q−
1
2 in the definition of Ṽ (X), so

that the difference equation looks much simplified

1

Ṽ (X)
+ Ṽ (qX)s(X)z = 1. (25)



• We can recursively compute the small z expansion of Ṽ (X) and its

logarithm. The explicit expression up to a few orders is

log(Ṽ (X)) = s(X)z +
1

2
s(X)[s(X) + 2s(qX)]z2 +

1

3
s(X)[s(X)2

+ 3s(X)s(qX) + 3s(qX)2 + 3s(qX)s(q2X)]z3 +O(z4).
(26)

The residue is then defined by

Πs(X) = ResX=0
log[Ṽ (X)]

X
. (27)

• On the other hand, the derivation of the TBA-like equation for a func-

tion ηs(X) also goes through smoothly for this class of curves, we have

1 + s(X)[ηs(X)(qX) + ηs(X)(X)][ηs(X)(q−1X) + ηs(X)(X)]z = ηs(X)(X)2.

(28)

We can also explicitly compute the small z expansion up to a few orders

ηs(X)(X) = 1 + 2s(X)z + 2s(X)[s(X) + s(q−1X) + s(qX)]z2 +O(z3).

(29)



• We can now check that the following relation is still valid as a formal

z power series for various functions s(X)

ResX=0
1

X
ηs(X)(X, q, z) = 1 + 2θzΠs(X). (30)

This is true for any function s(X) as long as it has a Laurent expansion

around X ∼ 0.

• It is not difficult to explicitly check the relation (30) up to a finite order

in z expansion. We note for any function f(X) with a Laurent expansion

around X ∼ 0, the constant term remains the same with a scaling of

X by any constant a, i.e. we have ResX=0
1
X [f(aX) − f(X)] = 0. We

can then for example show that the relation (30) holds up to second

order using e.g. ResX=0
1
Xs(X)[s(qX)− s(q−1X)] = 0.



The Om,1 operators: second method

• we provide another method to derive the TBA-like equation for the
Om,1 operator. This approach use the formulas for writing the O−1

m,n
operator in terms of Faddeev’s quantum dilogarithm, in similar fashion
as in (1, 2). The notable difference is that the momentum operator is
shifted by a constant.

• After some transformations, the integral kernel becomes the following
expression

〈x1|ρm,n|x2〉 =
um,n(x1)−

1
2um,n(x2)−

1
2

2(m+ n+ 1)~ cosh( π(x1−x2)
(m+n+1)~ + i(m−n+1)π

2(m+n+1) )
, (31)

where the potential um,n(x) can be described by Faddeev’s quantum
dilogarithm

um,n(x) = e
− m
m+n+1x|Φb(

x− i~(m+ 1)/2

2πb
)|2, (32)

with the parameter b :=

√
(m+n+1)~

2π .



• The derivations of the TBA-like equations with this shift have been
worked out in K. Okuyama and S. Zakany, arXiv:1512.06904. We
focus on the Om,1 case where the TBA equation can be solved per-
turbatively. The key idea to to separate the generating function of
integral kernel into m + 2 parts, generalizing Tracy and Widom. We
skip the technical details here.

• After some calculations, we find the following TBA-like difference equa-
tion for a properly defined function ηm(X) with only elementary func-
tions

(1− ηm(X))
0∏

i=−m
B(qiX) = −zX−m

m/2∏
k=−m/2

(1 + qkX)
0∏

i=−(m+1)

A(qiX),

with A(X) :=
m+1∑
i=0

ηm(qiX), B(X) := 1 +
m∑
i=0

ηm(qiX).

(33)

• We check perturbatively the relation with quantum periods

ResX=0
1

X
ηm(X, q, z) = 1 + (m+ 2)θzΠm. (34)



Discussion and Conclusion

• In the WKB expansion of small ~ parameter, the quantum corrections
to classical periods can be expressed exactly as differential operators
acting on the classical periods. In the classical limit ~ → 0, the TBA-
like equation in the first method becomes a simple quadratic equation
with no linear term, which is simpler than the analogous equation in
the calculations of the classical period. One simplification is that it is
symmetric with ~→ −~, so the WKB expansion has only even powers of
~. On the other hand, the WKB expansion of quantum wave function
log(V (X)) defined in (13) does have odd powers of ~, which turn out
to be total derivatives and only vanish after taking residue.

• However, the TBA-like equations (33) of the second method are more
complicated. In the classical limit, it becomes a degree m+ 2 polyno-
mial equation for ηm. For m = 1,2 one can still have analytic solution.
However it does not generically have an algebraic solution for m > 2.
So it seems that the TBA-like equations (33) are only suitable for cal-
culations in small z perturbation, but not much in small ~ perturbation.



• It is well known that many 5d supersymmetric gauge theories are geo-
metrically engineered by toric Calabi-Yau geometries. In the 4d limit,
the quantum operator reduces to that of a non-relativistic particle with
the standard quadratic kinetic term p̂2. The connections between quan-
tum periods of the 4d Seiberg-Witten-like curves and certain TBA-like
equations have appeared many times in the literature.

• In our case, the appearance of the factor of cosh(p̂) in the quantum
operator e.g. (2) is crucial, and we are also taking residue with the
exponentiated parameter X = ex. So it seems the relation studied here
is intrinsically 5 dimensional, and we are not aware of a simple 4d limit.
It would be interesting to study this issue further.

• We should mention that in both 4d and 5d supersymmetric gauge the-
ories, there is yet another method to determine the quantum mirror
maps by a calculation of the vacuum expectation value of 4d chiral
operators or 5d Wilson loop operators in the NS limit of the Ω back-
ground. It would be interesting to study the potential relation of the
present work to this different method.



• The most intriguing feature of this paper is that the two different

approaches give rise to entirely different TBA-like equations and per-

turbative solutions for the class of Calabi-Yau geometries. However,

in both cases, the residues of the perturbative solutions of TBA-like

equations are related to the same quantum period.

• In one particular case, namely the geometry of O2,1 operator, we even

have three different TBA-like equations due to a geometric equivalence

of the local F0 and F2 Calabi-Yau models.

• In this sense, our paper provides multiple different realizations of the

same geometry. It would be interesting to study how the residues

in these different looking TBA-like equations may be directly related

without using quantum periods as a connecting hub.



• While the first method applies more generally to a larger class of curves,

the second method appears to work more specifically for the Om,1
operators. Certainly, it would be interesting to further generalize the

results to more Calabi-Yau geometries and consider a bigger moduli

space instead of the one-parameter space in this paper.

• It may be interesting to follow the steps in J. Kallen and M. Marino,

arXiv:1308.6485 to provide a more rigorous derivation of the relation

between quantum periods and TBA-like equations discussed here. How-

ever, for the first method, the spectral theory is merely used as a formal

trick, and may not be well behaved since the integral kernel may not

be of trace class. So it seems unlikely at least in this case that one

may establish a rigorous link using the spectral theory, and some new

and more unifying approaches may be needed.



Thank You


