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Progress in amplitudes

Significant progress has been made in the study of 
amplitudes in past years.



Feynman diagram

n-gluon tree amplitudes:

n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

The simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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4-gluon tree:

Feynman diagram is a universal tool, but in practice it 
can be very complicated.



Parke-Taylor MHV formula

Any n-gluon tree MHV amplitudes:
[Parke, Taylor, 1986]

1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

⟨ij⟩4

⟨12⟩ · · · ⟨n1⟩ . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

compare with 
results obtained by 
Feynman diagrams:

so that it is desirable to choose the same reference momenta for all gluons of a
given helicity, and to take this momentum to be the momentum of one of the
opposite-helicity gluons. This will greatly reduce the number of non-vanishing εi ·εj

invariants. It also turns out that within the set of choices suggested by these
properties, it is preferable to choose a reference momentum that is cyclicly adjacent
to the momentum of the gluon.

As one simple example for the amplitude A(1−, 2+, 3+, 4+), consider reference
momenta (k4, k1, k1, k1) for the legs (1,2,3,4) respectively, leading to the simplifica-
tions

εi · εj = 0, k4 · ε1 = k1 · ε2 = k1 · ε3 = k1 · ε4 = 0

k3 · ε1 = −k2 · ε1 , k4 · ε2 = −k3 · ε2 ,

k4 · ε3 = −k2 · ε3 , k3 · ε4 = −k2 · ε4 .

(3.18)

The reason for using the spinor helicity method is now evident; many of the dot
products of polarization vectors amongst themselves and with the external momenta
simply vanish. Since an amplitude consists of sums of products of these dot prod-
ucts, with the spinor helicity method many of the terms in an amplitude will also
vanish with a judicious choice of the reference momenta.

Fig. 7: An unreadable form of the five-gluon tree amplitude in terms of dot
products of momentum and polarization vectors to illustrate its complexity.

The five-gluon tree amplitude provides a rather clear demonstration of the
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[Bern ’93]



     Classical Polylogarithms
                     for
Amplitudes and Wilson Loops

A.B. Goncharov          M. Spradlin          C. Vergu          A. Volovich

=

[Del Duca, Duhr, Smirnov 2010]

Another two-loop example

Six-gluon MHV amplitudes in N=4 SYM

(heroic computation)



Complicated results of 17 pages

[Del Duca, Duhr, Smirnov 2010]
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a line result in terms of classical polylogarithms!

17 pages =

Result can be remarkably simple
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Classical Polylogarithms for Amplitudes and Wilson Loops
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find
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− 1
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24
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π2

12
J2 +

π4

72
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Here we use the functions

L4(x
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8!!
log(x+x−)4
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3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)
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6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

2

and

ℓn(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantity

J =
3
∑

i=1

(ℓ1(x
+
i )− ℓ1(x

−
i )). (6)

Note that in the Euclidean region where all ui > 0, the
x+
i never enter the lower half-plane and the x−

i never
enter the upper half-plane. The expression (3) is valid
in the Euclidean region with the understanding that the
branch cuts of Lin(x

+
i ) and Lin(1/x

−
i ) are taken to lie

below the real axis while the branch cuts of Lin(x
−
i ) and

Lin(1/x
+
i ) are taken to lie above the real axis. (The

quantities x+
i x

−
i appearing as arguments of the logs are

always positive.) In writing (3) extreme care has neces-
sarily been taken to ensure the proper analytic structure.
For example one can easily check that J naively simpli-
fies to 1

2 log(x
−/x+), but this relation only holds in the

regions ∆ > 0 or u1 + u2 + u3 < 1. We caution the
reader that any attempt to use any such naive relations,
including the well-known relation between Lin(1/x) and
Lin(x), without careful consideration of the branch struc-
ture, voids our warranty on (3).
Besides its great simplicity, two notable features of (3)

which set it apart from the DDS formula are manifest
symmetry under any permutation of the ui, and the fact
that the expression is valid and readily evaluated for all
positive ui, in particular also outside the unit cube.

DESCRIPTION OF THE ALGORITHM

A Convenient Choice of Variables

The DDS formula is expressed in terms of the classical
polylogarithms Lik as well as a collection of considerably
more complicated multiparameter generalizations stud-
ied by one of the authors [19] and defined recursively by

G(ak, ak−1, . . . ; z) =

∫ z

0
G(ak−1, . . . ; t)

dt

t− ak
(7)

with G(z) ≡ 1, of which the harmonic polylogarithms
familiar in the physics literature [20] are special cases.
The parameters of the various transcendental functions

which appear in the DDS formula involve not just the
cross-ratios (1), but also the more complicated combi-
nations 1 − ui, (1 − ui)/(1 − ui − uj), ui + uj , u

±
jkl =

1−uj−uk+ul±
√
∆

2(1−uj)ul
, and v±jkl =

uk−ul±
√

(uk+ul)2−4ujukul

2(1−uj)uk
.

This large collection of variables is redundant in an ineffi-
cient way, with many rather complicated algebraic iden-
tities amongst them.

Our computation is greatly facilitated by a judicious
choice of variables which trivializes all of these algebraic
relations. We choose to express the three ui by six vari-
ables zi valued in P1 (with an SL(2,C) redundancy) via

u1 =
z23z56
z25z36

, u2 =
z16z34
z14z36

, u3 =
z12z45
z14z25

, (8)

where zij = zi − zj . One virtue of these coordinates is
that ∆ becomes a perfect square, so that the u±

jkl are

rational functions of the zij . (The v±jkl completely drop
out as explained in the following subsection.)
We anticipate that for general n the best variables for

studying the remainder function will be the momentum
twistors of [21]. Indeed the z variables may be thought
of as a particular simplification of momentum twistors
which is valid for the special case n = 6 via the rela-
tion ⟨abcd⟩ ∝ zabzaczadzbczbdzcd. In terms of momentum
twistors

u1 =
⟨1234⟩⟨4561⟩
⟨1245⟩⟨3461⟩, x+

1 = −⟨1456⟩⟨2356⟩
⟨1256⟩⟨3456⟩, etc. (9)

The Symbol of a Transcendental Function

We define a function Tk of transcendentality degree
k as one which can be written as a linear combination
(with rational coefficients) of k-fold iterated integrals of
the form

Tk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk, (10)

where a and b are rational numbers, Ri(t) are rational
functions with rational coefficients and the iterated inte-
grals are defined recursively by

∫ b

a

d logR1 ◦ · · · ◦ d logRn =

∫ b

a

(∫ t

a

d logR1 ◦ · · · ◦ d logRn−1

)

d logRn(t). (11)

The integrals are taken along paths from a to b. When
the Ri are rational functions in several variables the issue
of local path independence (or homotopy invariance) is

important (see [22]), and we have checked that R(2)
6 has

this property.
A useful quantity associated with Tk is its symbol, an

element of the k-fold tensor product of the multiplicative
group of rational functions modulo constants (see [22,
sec. 3]). The symbol of the function shown in (10) is

symbol(Tk) = R1 ⊗ · · ·⊗Rk, (12)

and this definition is extended to all functions of degree
k by linearity.
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important (see [22]), and we have checked that R(2)
6 has

this property.
A useful quantity associated with Tk is its symbol, an
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require advanced mathematical tools: “Symbol”

Alexander Goncharov



New MethodsNew Structures

Such simplicity is 
unexpected and also hard to 
understand using traditional 

Feynman diagrams.

Progress in amplitudes

Significant progress has been made in the study of 
amplitudes in past years.



Lessons from modern amplitudes

New computational methods

New structures and new formulations

BCFW recursion relation
Unitarity cuts

Witten’s twistor theory 
Double-copy  
CHY formalism 
New mathematical structure

New algebraic reduction and integration methods

Non-BPS operators have non-trivial anomalous dimension through quantum corrections.
The computing of their anomalous dimension is one central topic in the study of integra-
bility of N = 4 SYM.

4 Sudakov Form Factors

In this section, we consider a simplest class of form factors, the Sudakov form factor. This
is defined as a matrix element between a half-BPS operator and two on-shell particles.
The Sudakov form factor plays an important role in determining the soft/cusp anomalous
dimensions in amplitiudes.

Based on on-sehll methods including unitarity cuts, color-kinematics duality, we are
able to study very high loop properties. Below we will start from the simple one-loop cases
and provide some details at two and three loops. We also highlight the new feature of form
factors comparing to amplitudes.

4.1 Unitarity-cut method

Unitarity method plays an important role in modern amplitudes techniques. It provides a
way to construct loop amplitudes or form factors through tree level building blocks. The
precise meaning of doing cut is to put internal propagators to be on-shell,

i

l2

cut
�! 2⇡�+(l

2) , (45)

such that the loop amplitudes is factorized as products of tree-level or lower loop ampli-
tudes.

A simple tree example

A
(0)
3 A

(0)
3

p3

p4

p2

p1

s12-cut
p3

p4

p2

p1

A
(0)
4

P

Figure 7: Four-point tree amplitudes.

One can check the following relation using the Feynman diagram expression of A4 and
A3:

lim
s12!0

s12A4(1, 2, 3, 4) =
X

helicity ✏P

A3(1, 2, P )A3(�P, 3, 4) , (46)
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Spinor helicity variables

c.f. talks by Song He, Bo Feng, Junjie Rao, Zhihao Fu

c.f. talk by Yang Zhang



Spinor helicity formalism

Massless momentum:

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

〈

Tr P exp
(

i

∮

C

dx · A(x)
)〉

∼ (ΛUV)
Γcusp(g,ϑ)
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F (ℓ)
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j=1

dDkj
1
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Ci Ni
∏

a Da
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pµp
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i,αα̇ =

λi ξ̃

[λ̃i ξ̃]
, ε(+)

i,αα̇ =
ξ λ̃i
⟨ξλi⟩

tr(FαβF
βγψγAφBC ψ̄Dα̇ . . .)
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Polarisation vector:
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“Chinese Magic” [Xu, Zhang, Zhang, 84]

Use good on-shell variables



Unitarity cut method (⺓⼳幺正性)

Unitarity-cut method provides an efficient method to compute loop 
integrand.

“The S-matrix is an analytic function of all momentum 
variables with only those singularities required by unitarity.”

“singularities”: physical poles and branch cuts.
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2

Cutkosky cutting rule:
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In the planar limit, N=4 SYM is believed to be exactly solvable.

Many exact solutions were found:

Integrability and AdS/CFT correspondenceThanks to:

Progress in planar N=4 SYM

(Dual conformal and Yangian symmetries)

• anomalous dimensions 
• scattering amplitudes/Wilson loops 
• correlation functions…

See also other theories, Fishnet theory, 3D ABJM, c.f. talk by Junbao Wu

Pentagon OPE program, [Basso, Pedro, Sever; …] 

Hexagon form factor program, [Basso, Komatsu, Pedro; …] 



Operator mixing and spectrum

Different operators can mixing with each other at 
quantum level via renormalization: 

𝒪R,i = Z j
i 𝒪B,j

From the renormalization constant matrix, one can obtain 
the dilatation operator:

𝒟 = −
d log Z
d log μ

The anomalous dimension is given by the eigenvalue of the 
dilatation operator.

𝒟 ⋅ 𝒪eigen = γ ⋅ 𝒪eigen



Integrability
Chapter I.1: Spin Chains in N = 4 Super Yang-Mills

Figure 4: A spin-chain with SO(6) vector sites.

If we compare this result to (5.2), we see that because of the operator mixing the anoma-
lous dimension � should be replaced with an operator, �, where

� =
�

16⇡2

LX

`=1

(1 � C � 2P`,`+1 + K`,`+1) . (5.19)

The possible one-loop anomalous dimensions are then found by diagonalizing �.
The entire class of scalar single trace operators of length L can be mapped to a

Hilbert space which itself is a tensor product of finite dimensional Hilbert spaces

V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL . (5.20)

Each V` is the Hilbert space for an SO(6) vector representation, i.e. CP 5. The tensor
product is the same Hilbert space as that of a one-dimensional spin-chain with L sites,
where at each site there is an SO(6) vector “spin” (see figure 4). Because of the cyclicity
property of the trace, we should include the further restriction that the Hilbert space be
invariant under the shift

V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL ! VL ⌦ V1 · · · ⌦ V`�1 ⌦ · · · ⌦ VL�1 . (5.21)

The operator � in (5.19) acts linearly on this space:

� : V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL ! V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL . (5.22)

Furthermore, it is Hermitian and commutes with the shift in (5.21). Thus, we can treat
� as a Hamiltonian on the spin-chain. The energy eigenstates then correspond to the
possible anomalous dimensions for the scalar operators. Since the Hamiltonian commutes
with the shift, it is also consistent to project onto eigenstates that are invariant under
the shift. Because P`,`+1 and K`,`+1 act on neighboring fields, the spin-chain Hamiltonian
only has nearest neighbor interactions between the spins.

One particular eigenstate of � corresponds to the chiral primary  L in (5.3).  L is
symmetric under the exchange of any field, hence P`,`+1 L =  L for any `. Furthermore,
 L has only Z fields and not Z fields, thus K`,`+1 L = 0. This generalizes to any chiral
primary, which is in the Lth symmetric traceless representation of SO(6). Therefore,

� L =
�

16 ⇡2

LX

`=1

(1 � C � 2) L (5.23)
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1

quantum spin chain. The latter may be related to a string picture.

This picture has been understood to some details for N=4 SYM and 

Direct evidence that N=4 SYM is integrable.

8 Dhritiman Nandan and Gang Yang

defined in the renormalised local operator

OI
ren = ZI

J OJ
bare , (20)

the dilatation operator can be obtained as

δD =
d

dµ
log Z = 2εg2 ∂

∂g2
log Z =

∞
∑

ℓ=1

g2ℓD(ℓ). (21)

We use a modified minimal subtraction scheme with coupling constant g2 =
(

4π e−γE
)ε g2

YMNc

(4π)2 .

The problem is then reduced to computing the renormalization matrix. This

can be extracted from the ultraviolet (UV) divergence of two-point functions as

in the usual strategy. Here we will consider form factors. The advantage is that

powerful on-shell methods can be applied efficiently.

Let us mention that the crucial observation introducing integrability to pla-

nar N = 4 SYM theory was that the one-loop anomalous dilatation operator

takes the form of the integrable Heisenberg spin-chain Hamiltonian within the

SO(6) sector, discovered by Minahan and Zarembo [2003]:

D(1) = HSO(6) =
∑

i

2(1−P)i i+1 + Ti i+1 . (22)

We will reproduce this using form factor results.

One-loop SO(6) sector

Form factors in the loop expansion can be written in the following form:

FO =
(

1 + g2I(1) + g4I(2) + . . .
)

F (0)
O . (23)

For operators that are eigenstates under renormalisation, such as BPS operators

or the Konishi primary, I(ℓ) is simply the ratio of the ℓ-loop and tree-level form

factor. However, for form factors of operators that renormalise non-diagonally,

this is no longer the case, for example, the loop corrections to vanishing tree-

level form factors can be non-vanishing. As we will see in (26), to overcome this

problem, it is necessary to promote I(ℓ) to an operator that acts on the tree-level

form factor F (0)
O and creates a different tree-level form factor from it. This also

makes it convenient to study the symmetry properties of form factors, as we will

show in the end.

In the planar limit, ℓ-loop interactions can maximally involve ℓ + 1 neigh-

bouring fields in the colour-ordered form factor at a time. Hence, I(ℓ) can be

[Minahan, Zarembo 02]

Dilatation 
operator

Spin chain 
Hamiltonian

Example: the scalar operators at 1-loop:

c.f. talks by Guangliang Li, Junpeng Cao, 
Wenli Yang, Xiwen Guan, Yuzhu Jiang…



Cusp anomalous dimension

[Gubser, Klebanov,Polyakov’02], 
[Frolov,Tseytlin’02] [Kruczenski’02],
[Makeenko’02] ……

[Belitsky, Gorsky, Korchemsky’03], 
[Kotikov,Lipatov,Onishchenko,Velizhanin’04] 
[Bern,Czakon,Dixon,Kosower,Smirnov’06] 
[Cachazo,Spradlin,Volovich’06] ……

Weak coupling expansion:

Strong coupling expansion (AdS/CFT):

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

1

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

1

Non-perturbative result via 
integrability method:
[Beisert, Eden, Staudacher ’06]

海森堡自旋链的Bethe equation：

eipjL =
∏

k ̸=j

eiδ(pj ,pk) , eiδ(p,q) =
cot(p2)− cot( q2) + 2i

cot(p2)− cot( q2)− 2i
. (14)

或者，通过引入rapidity

u =
1

2
cot(

p

2
) , (15)

方程变成简单的代数方程

(

uj + i/2

uj − i/2

)L

=
∏

k ̸=j

uj − uk + i

uj − uk − i
. (16)

及周期性条件（也称为零动量条件）对应于

∏

j

eipj = 1 ↔
∏

j

uj + i/2

uj − i/2
= 1 . (17)

下午看完了整个五个lecture。最好他提到了一般的Bethe ansatz，特别提到了群论
中的Chevalley表示方法。从这个表示方法很容易推广到整个PSU(2, 2|4)群。他的讲义
中还有关于经典弦的可积性，但没有时间介绍了。

BES求解cusp反常量纲的方法。定义矩阵：

Kij = 2j(−1)i(j+1)

∫ ∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1
. (18)

然后

Γcusp = 4g2
(

1

1 +K

)

11

. (19)

弱耦合这可以微扰展开。

Juli, 2015

⋄ Mittwoch 01. Sonnig. Berlin

上午修改SL(2)计算，发现了一个不很明显的错误。在作数值展开的时候，我只展
开到有限项，这对于计算一圈平方的结果给出的单极点项是错误的！我是在尝试得到
解析结果时，发现结果和数值的不一致才发现这一错误的，不然隐藏得可够深的呢！
但纠正了这个错误后，我发现BPS（length-3，magnon-1）的情形仍然不对。这时却是
犯了一个粗心的愚蠢错误，公式输入错了。最终，BPS的结果完全一致。同时对于其
他Density的结果，在求和为形状因子以后，也给出了自洽的结果。这些说明了最复杂
的两圈约化和计算过程是可靠的！终于从之前的黑暗看到了光亮！！
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insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

1



Underlying picture

single trace 
operators

spin chain 
model

string sigma-
model

Chapter I.1: Spin Chains in N = 4 Super Yang-Mills

Figure 4: A spin-chain with SO(6) vector sites.

If we compare this result to (5.2), we see that because of the operator mixing the anoma-
lous dimension � should be replaced with an operator, �, where

� =
�

16⇡2

LX

`=1

(1 � C � 2P`,`+1 + K`,`+1) . (5.19)

The possible one-loop anomalous dimensions are then found by diagonalizing �.
The entire class of scalar single trace operators of length L can be mapped to a

Hilbert space which itself is a tensor product of finite dimensional Hilbert spaces

V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL . (5.20)

Each V` is the Hilbert space for an SO(6) vector representation, i.e. CP 5. The tensor
product is the same Hilbert space as that of a one-dimensional spin-chain with L sites,
where at each site there is an SO(6) vector “spin” (see figure 4). Because of the cyclicity
property of the trace, we should include the further restriction that the Hilbert space be
invariant under the shift

V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL ! VL ⌦ V1 · · · ⌦ V`�1 ⌦ · · · ⌦ VL�1 . (5.21)

The operator � in (5.19) acts linearly on this space:

� : V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL ! V1 ⌦ V2 · · · ⌦ V` ⌦ · · · ⌦ VL . (5.22)

Furthermore, it is Hermitian and commutes with the shift in (5.21). Thus, we can treat
� as a Hamiltonian on the spin-chain. The energy eigenstates then correspond to the
possible anomalous dimensions for the scalar operators. Since the Hamiltonian commutes
with the shift, it is also consistent to project onto eigenstates that are invariant under
the shift. Because P`,`+1 and K`,`+1 act on neighboring fields, the spin-chain Hamiltonian
only has nearest neighbor interactions between the spins.

One particular eigenstate of � corresponds to the chiral primary  L in (5.3).  L is
symmetric under the exchange of any field, hence P`,`+1 L =  L for any `. Furthermore,
 L has only Z fields and not Z fields, thus K`,`+1 L = 0. This generalizes to any chiral
primary, which is in the Lth symmetric traceless representation of SO(6). Therefore,

� L =
�

16 ⇡2

LX

`=1

(1 � C � 2) L (5.23)
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insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

〈

Tr P exp
(

i

∮

C

dx · A(x)
)〉

∼ (ΛUV)
Γcusp(g,ϑ)

α-representation: G(α) = U(α) + F (α)

F (ℓ)
n =

∑

Γi

∫ ℓ
∏

j=1

dDkj
1

Si

Ci Ni
∏

a Da

pµ → pαα̇ = pµσ
µ
αα̇ =

(

p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)

pµp
µ = 0 → pαα̇ = λαλ̃α̇

ε(−)
i,αα̇ =

λi ξ̃

[λ̃i ξ̃]
, ε(+)

i,αα̇ =
ξ λ̃i
⟨ξλi⟩

tr(FαβF
βγψγAφBC ψ̄Dα̇ . . .)

1Scaling operator /
anomalous dimension

Spin chain 
Hamiltonian/Energy

String Hamiltonian/
Energy

Single trace operators can be viewed as states of a dynamic, cyclic, 
quantum spin chain. The latter can be related to a string picture.

Weak coupling Strong couplingNon-perturbative

See the review by Beisert et.al, 2010
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Form factor: 
A probe to the off-shell World



Form factors

Scattering Amplitudes Correlation Functions

Form Factors

Figure 1: Form factor as a bridge between amplitudes and correlation functions. Under
the unitarity cuts (indicated by the red dash line), the amplitudes enter as building blocks
in form factors, and form factors as building blocks in correlation functions.

The definition of form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are n on-shell momenta for external states, and O is a local operator.
This review will mainly focus on the form factors in N = 4 super-Yang-Mills theory

(SYM). Significant progress has been made in the study of scattering amplitudes in this
theory. Given these developments, attention has been drawn to the study of form factors,
first at strong coupling via AdS/CFT correspondence [9, 10] and then at weak coupling
[11, 12, 13, 14]. The early studies soon inspired many further studies, in particular based
on modern on-shell amplitudes methods. Indeed, similar methods and structures were
also developed and found. Let us mention a few aspects of these developments: strong
coupling computation via AdS/CFT correspondence [9, 10, 15], MHV tree structure and
supersymmetric formalism [13, 16], color-kinematics duality [17, 18], Grassmannian and
polytopes [19, 20, 21, 22, 23], twistor formalism [24, 25, 26, 27], connected description
[28, 29, 30], recursion relation at integrand level [31, 32], form factor/Wilson line duality
and dual conformal symmetry at one loop [11, 33]. Other developments include [12, 14,
34, 35, 36, 37, 38]. There have been several Ph.D thesis that are devoted to the study of
form factors based on modern on-shell formalism [39, 40, 41, 42, 43].

This review aims at providing an introduction to part of these developments from
modern on-shell point of view. We consider both tree form factors and on-shell unitarity
methods for loop form factors. In particular, we will apply the loop form factors to study
both infrared divergences (cusp and collinear anomalous dimensions) and ultraviolet diver-
gences (anomalous dimension of local operators). The main advantage is that the on-shell
formalism and methods that we will apply are based on rather generic principles. There-
fore, although the examples we consider is in N = 4 SYM, the methods can be applied to
general gauge theories. (See the application in Higgs amplitudes [44, 45, 46, 47, 48].)
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

1

⟨p1p2…pn⟩ ⟨𝒪1𝒪2…𝒪n⟩



Gauge invariant operators

Local gauge invariant operators are constructed as traces of 
covariant fields.

Is there a supersymmetric generalization for form factors? We need to understand
the supersymmetric property of the operators.

Super algebra:

[QAα,φBC ] = i
√
2(δABψ

α
C − δACψ

α
B) ,

[QAα,ψBβ ] = δABF
α
β + igYMδ

α
β [φBC ,φ

CA] ,

[QAα, Fβγ] =
√
2δαβ [φ

AB,ψBγ ] + (β ↔ γ) . (2.7)

Chiral multiplet:

T (x, θ−) = eQ
−αθ

−αTr(φ−−φ−−)

= Tr(φ−−φ−−)+

(2.8)

The story here is to generalize the Ward identity to form factors.

2.3 Color-kinematic duality

2.4 A dual description of form factor

Evidences:

One loop duality between form factor and Wilson line. (open question: truncation
v.s. gauge invariance, prescription at higher loops)

Dual MHV diagrams.

Non-planarity. Cylinder picture.

3 Form factor of general operators

3.1 Single trace operators

The single-trace local operators:

O(x) = Tr(W(m1)
1 W(m2)

2 . . .W(mn)
n )(x) , (3.1)

where the letters Wi can be any of the following field

φAB , Fαβ , F̄α̇β̇ , ψ̄α̇A , ψαABC , (3.2)

Furthermore we can dress each letter with covariant derivative

W(m) := DmW , Dαα̇W = ∂αα̇W − igYM[Aαα̇, W] . (3.3)
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3
where the letters Wi can be any of the following field

Wi ∈ {φAB , Fαβ , F̄α̇β̇ , ψ̄α̇A , ψαABC} , (3.2)

Furthermore we can dress each letter with covariant derivative

W(m) := DmW , Dαα̇W = ∂αα̇W − igYM[Aαα̇, W] . (3.3)

In free theory, i.e. gYM = 0, we have

W(n)
i = ∂n Wi . (3.4)

The above construction of operators is rather redundant.

Due to [Dµ, Dν ] = Fµν , it is enough to consider only the symmetric product of Dµ

acting on any field. Furthermore, using equations of motions and Bianchi identities,
for example,

DµFµν = 0 , or DµDµφ = nonderivative-terms , (3.5)

one can git rid of those combination of covariant derivative terms.

3.2 Renormalization and operator mixing

Renormalization constant. Dilatation operators.

Oren = Z · Obar (3.6)

In general the renormalization constant Z is a matrix, such that different operators
are mixed

OA
ren = ZA

BOB
bar . (3.7)

This can be seen from

Renormalization group equation:

logZ(g2, ϵ) =
1

2ϵ

∫ g2 γ(t)

t
dt , (3.8)

or equivalently

γ =
∞
∑

ℓ=1

g2γ(ℓ) = 2ϵg2
∂

∂g2
logZ . (3.9)

For the case of non-eigenstates, one has the matrix version

δD =
∞
∑

ℓ=1

g2δD(ℓ) = 2ϵg2Z−1 ∂

∂g2
Z . (3.10)

Expanding to two-loop order we obtain:

δD(1) = 2ϵZ(1) , δD(2) = 4ϵ
(

Z(2) − 1

2
Z(1) · Z(1)

)

. (3.11)

4

In N=4 SYM, there are following ‘letters’:

W → UWU † (3.3)

Furthermore we can dress each letter with covariant derivative

W(m) := DmW , Dαα̇W = ∂αα̇W − igYM[Aαα̇, W] . (3.4)

In free theory, i.e. gYM = 0, we have

W(n)
i = ∂n Wi . (3.5)

The above construction of operators is rather redundant.

Due to [Dµ, Dν ] = Fµν , it is enough to consider only the symmetric product of Dµ

acting on any field. Furthermore, using equations of motions and Bianchi identities,
for example,

DµFµν = 0 , or DµDµφ = nonderivative-terms , (3.6)

one can git rid of those combination of covariant derivative terms.

3.2 Renormalization and operator mixing

Renormalization constant. Dilatation operators.

Oren = Z · Obar (3.7)

In general the renormalization constant Z is a matrix, such that different operators
are mixed

OA
ren = ZA

BOB
bar . (3.8)

This can be seen from

Renormalization group equation:

logZ(g2, ϵ) =
1

2ϵ

∫ g2 γ(t)

t
dt , (3.9)

or equivalently

γ =
∞
∑

ℓ=1

g2γ(ℓ) = 2ϵg2
∂

∂g2
logZ . (3.10)

For the case of non-eigenstates, one has the matrix version

δD =
∞
∑

ℓ=1

g2δD(ℓ) = 2ϵg2Z−1 ∂

∂g2
Z . (3.11)

Expanding to two-loop order we obtain:

δD(1) = 2ϵZ(1) , δD(2) = 4ϵ
(

Z(2) − 1

2
Z(1) · Z(1)

)

. (3.12)

4

gauge transformation

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

〈

Tr P exp
(

i

∮

C

dx · A(x)
)〉

∼ (ΛUV)
Γcusp(g,ϑ)

α-representation: G(α) = U(α) + F (α)

F (ℓ)
n =

∑

Γi

∫ ℓ
∏

j=1

dDkj
1

Si

Ci Ni
∏

a Da

pµ → pαα̇ = pµσ
µ
αα̇ =

(

p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)

pµp
µ = 0 → pαα̇ = λαλ̃α̇ , α, α̇ = 1, 2

ε(−)
i,αα̇ =

λi ξ̃

[λ̃i ξ̃]
, ε(+)

i,αα̇ =
ξ λ̃i
⟨ξλi⟩

tr(FαβF
βγψγAφBC ψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4
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Operators and on-shell kinematics
In terms of spinor helicity variables:

3.3 Oscillator picture

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇ λ̃α̇λ̃β̇

ψ̄α̇A λ̃α̇ηA

φAB ηAηB

ψαABC ∼ ψD
α λαηAηBηC

Fαβ λαλβη1η2η3η4
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩ = δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩

(1.1)

1

3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The correspondence to the oscillator picture is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.12)

However, the interpretation changes significantly.

tr(F̄αβF
αβ) → λα1λ

β
1λ2αλ2β(η1)

4(η2)
4 = ⟨1 2⟩2(η1)4(η2)4 (3.13)

tr(F̄ β̇
α̇ F̄ γ̇

β̇
F̄ α̇
γ̇ ) → λ̃α̇1 λ̃1β̇λ̃

β̇
2 λ̃2γ̇ λ̃

γ̇
3 λ̃3α̇ = [1 2][2 3][3 1] (3.14)

tr(F̄α̇β̇F̄
α̇β̇) → λ̃α̇1 λ̃

β̇
1 λ̃2α̇λ̃2β̇ = [1 2]2 (3.15)

tr(F β
α F γ

β F α
γ ) → λα1λ1βλ

β
2λ2γλ

γ
3λ3α(η1)

4(η2)
4(η3)

4 = ⟨1 2⟩⟨2 3⟩⟨3 1⟩(η1)4(η2)4(η3)4

(3.16)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.17)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.18)
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2
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One can translate any local operator into the “on-shell” language!

Is there a supersymmetric generalization for form factors? We need to understand
the supersymmetric property of the operators.

Super algebra:

[QAα,φBC ] = i
√
2(δABψ

α
C − δACψ

α
B) ,

[QAα,ψBβ ] = δABF
α
β + igYMδ

α
β [φBC ,φ

CA] ,

[QAα, Fβγ] =
√
2δαβ [φ

AB,ψBγ ] + (β ↔ γ) . (2.7)

Chiral multiplet:

T (x, θ−) = eQ
−αθ

−αTr(φ−−φ−−)

= Tr(φ−−φ−−)+

(2.8)

The story here is to generalize the Ward identity to form factors.

2.3 Color-kinematic duality

2.4 A dual description of form factor

Evidences:

One loop duality between form factor and Wilson line. (open question: truncation
v.s. gauge invariance, prescription at higher loops)

Dual MHV diagrams.

Non-planarity. Cylinder picture.

3 Form factor of general operators

3.1 Single trace operators

The single-trace local operators:

O(x) = Tr(W(m1)
1 W(m2)

2 . . .W(mn)
n )(x) , (3.1)

where the letters Wi can be any of the following field

φAB , Fαβ , F̄α̇β̇ , ψ̄α̇A , ψαABC , (3.2)

Furthermore we can dress each letter with covariant derivative

W(m) := DmW , Dαα̇W = ∂αα̇W − igYM[Aαα̇, W] . (3.3)

3

Starting from tree minimal form factors, one can construct non-minimal 
form factors and loop form factors.



Simplicity of MHV Form factors

Parke-Taylor structure of form factors: [Brandhuber, Spence, Travaglini, GY 2011]

Recall the Parke-Taylor formula for amplitudes:

AMHV

n (1+, .., i�, .., j�, .., n+) = �4(
nX

i=1

pi)
hiji4

h12i · · · hn1i

FMHV

n (1+, .., i�, .., j�, .., n
+; tr(�2)) = �4(

nX

i=1

pi � q)
hiji2

h12i · · · hn1i



Form factor via Unitarity

At one-loop, there are only ‘range-2’ interactions:

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4
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ℓ

ℓ− p1 − p2
1
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1
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x
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blahblahblah

g
−
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The basis is very simple:
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Ctri + Cbub

One-loop anomalous dimension is given by the bubble coefficients:

Z(1) = −
Cbub

ϵ
, 𝒟(1) = 2ϵZ(1) = − 2Cbub

Therefore, from bare form factors, one can obtain renormalization constants by requiring
that UV divergences cancel systematically.

Given the renormalization constants Z, the anomalous dimension matrix �, also called
the dilatation operator �D, can be obtained as

�(g) = �D(g) = µ
d

dµ
logZ = 2✏g2

@

@g2
logZ =

1X

l=1

g
2lD(l)

. (111)

Expanding at one and two loops, one can obtain the explicitly relations:

D(1) = 2✏Z(1)
, D(2) = 4✏

⇥
Z

(2)
�

1

2
(Z(1))2

⇤
. (112)

By diagonalizing the anomalous dimension matrix, one can also obtain the eigen-operators
(which are eigenstates) and their corresponding eigenvalues.

The above discussion is the standard procedure of quantum field theory. The main
point here is that one can use modern on-shell methods to compute form factors, and then
also compute the UV information. Such a strategy has been used in [68, 69, 70, 71, 72, 73].
We will review this strategy with explicit examples below. For simplicity, we will restrict
ourselves to the planar limit.

5.2 SO(6) sector at one-loop

The first example we consider is the SO(6) sector, where the operators contain only scalar
fields �I , I = 1, . . . , 6 (or in the SU(4) notation, �AB):

tr(. . .�I�J�K . . .) . (113)

This sector played an important role in the discovery of the integrability of N = 4 SYM:
the one-loop dilation operator in this sector was found to be identical to an integrable
Heisenberg spin chain Hamiltonian [158]:

(D(1))SO(6) =
X

i

2(1� P)i i+1 + Ti i+1 . (114)

In this section, we will reproduce this result using form factors with on-shell methods.
We note that at one loop, the interaction only involves two fields in the operator and

they are adjacent in the planar limit. Without loss of generality, we can focus on two
adjacent fields �I , �J in the operator and consider the contribution where these two
fields are involved in the one-loop interaction. We will call this contribution as a density
contribution, denoted as F (1)

O�I�J
. The full one-loop planar form factor is given by summing

over densities from all adjacent two fields.
As discussed in section 4.1, to determine the one-loop correction, it is enough to

consider the double cut shown in Figure 19. The cut form factor density is

F
(1)
O�I�J

��
cut

=

Z
dPS2 F

(0)
O�I�J

(l�I
1 , l

�J
2 )⇥ A

(0)
4 (p�L

i , p
�K
i+1, l

�J
2 , l

�I
1 ) . (115)
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Loop structure of form factors

General structure of (bare) form factors:

Universal infrared 
divergences

wanted UV 
divergences

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.19)

Next, we recall that the polarisation vectors of gluon are given as:

ε−αα̇ =
λαξ̃α̇

[λ ξ̃]
, ε+αα̇ =

ξαλ̃α̇

⟨ξ λ̃⟩
. (3.20)

Finally, note that in the Feynman diagram computation, after Wick contraction and
LSZ reduction, Aαα̇ in (3.19) is effectively replaced by polarisation vectors. Replacing
also ∂αα̇ by λαλ̃α̇, we reproduce the relation given in (3.13). Similar argument applies
for fermions.

3.5 Structure of form factors

Universality of infrared divergences. Anomalous dimension and renormalizaiton.

logFB =
∞
∑

ℓ=1

g2ℓ
(

− γ(ℓ)cusp

(2ℓϵ)2
− G(ℓ)

0

2ℓϵ

) n
∑

i=1

(
µ2

−sii+1
)ℓϵ −

∞
∑

ℓ=1

g2ℓγ(ℓ)

2ℓϵ
+ Fin +O(ϵ) (3.21)

logFbare =
∞
∑

ℓ=1

g2ℓ
(

− γ(ℓ)cusp

(2ℓϵ)2
− G(ℓ)

0

2ℓϵ

) n
∑

i=1

(
µ2

−sii+1
)ℓϵ − (logZ) + Fin +O(ϵ) (3.22)

4 Examples

Sectors:

4.1 Form factors in the SO(6) sector

One-loop and two-loop result. Application: Konishi operator.

6

At higher loops, the IR and UV are mixed:
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
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F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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We consider scalar gauge invariant local operators:
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In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form
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where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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Such operators also in Higgs EFT obtained by integrating 
heavy Top quark loop:

(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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𝒪 ∼

Anomalous dimensions (~spectrum of hadrons), RG flow, OPE

Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s

2⇡

⇢
1

p2
T

✓
1 �

m2
h

s

◆4

+ 1 +

✓
m2

h

s

◆4�

�
4

s

✓
1 �

m2
h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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Equation of motion:

Bianchi identities:

𝒪 ∼

These operators are generally not independent:

DμFμν = 0

DμFνρ + DνFρμ + DρFμν = 0

𝒪4 = Tr(FμνFμν)dim-4:

𝒪8;1 = ∂4Tr(F2), 𝒪8;2 = ∂2tr(F3), 𝒪8;3 = tr(D1F23D4F23F14),

dim-6:

dim-8:

𝒪6;1 = ∂2Tr(F2), 𝒪6;2 = Tr(F3)

and 8 Length-4 operators

Examples:

We need to remove such 
relations in order to find a 
set of independent basis 
operators.



Operator mixing (quantum)

𝒪R,i = Z j
i 𝒪B,j

From the renormalization constant matrix, one can obtain 
the dilatation operator:

𝒟 = −
d log Z
d log μ

The anomalous dimension is given by the eigenvalue of the 
dilatation operator:

𝒟 ⋅ 𝒪eigen = γ ⋅ 𝒪eigen

Different operators (at same given dimension) can mixing 
with each other at quantum level via renormalization: 



Loop form factor computation

We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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Figure 3. Complete set of cuts fully probing contributions from all the master integrals
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(�1)3, while operator from fabc/dabc sector has C-parity CO = +/�, so the total C-parity of

the form factor is �/+ 2. As a result, coe�cients of integrals (5) and (6) as well as (7) and

(8) are related with each other as:

c6I6 =

(
�c5I5

��
1$2

, f -sector

c5I5
��
1$2

, d-sector
, c8I8 =

(
�c7I7

��
1$3

, f -sector

c7I7
��
1$3

, d-sector
. (3.2)

Notice also that I3 and its two cyclic partners share a degenerate expression, but here we

treat them as distinct ones and sum cyclic permutations together.

A spanning set of planar cuts fully probing these master integrals are shown in Fig. 3.

As already mentioned, a particular cut can probe only a subset of master integrals. Among

master integral coe�cients, c1, c2, c3, c4 are probed respectively by cuts (c), (b), (a), (d)

in Fig. 3. To probe c5 one should apply s123-triple-cut (a), which also probes the coe�cient

of integral I6|(p3!p1!p2!p3). To probe c7 and c9 one can apply s12-triple-cut (b), or s312-

triple-cut. Notice the coe�cients of I8|(1!3!2!1) and I9|(1!2!3!1) can also be probed by

cut (b). Since di↵erent cut channels can probe same or symmetry-related master integrals,

this provides strong consistency checks for the results.

Below we provide some more details of the calculation by considering a particular cut

channel. Taking cut (b) in Fig. 3 as an example, this cut allows us to determine the coe�cients

of master integrals as shown in Fig. 4.

The cut integrand is obtained by sewing a planar four-gluon tree form factor together

with a planar five-gluon tree amplitude. Since we consider D-dimensional cuts, the tree results

are computed via Feynman rules. The sewing process involves the helicity sum of cut states:
Z

dPS
X

helicities of ✏l1,l2,l3

F (0)(p3,�l1,�l2,�l3)A
(0)(p1, p2, l3, l2, l1) , (3.3)

2Considering f
abc

F
a
F

b
F

c, under C-parity it becomes fabc
F

c
F

b
F

a(�1)3 which remains the same.
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Figure 1. (1) The 2-loop non-planar topology has vanishing color factor. (2) Nonplanar topology
contributing to leading color begins to appear at 3-loop.
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Figure 2. Master integrals (plus their cyclic permutations) that contribute to planar two-loop minimal
form factors of length-3 operators.

loops nonplanar topology (even at leading Nc color) will contribute, as shown in Fig. 1(b),

and therefore nonplanar cut is necessary. Since the one-loop case is quite simple, below we

will focus on the two-loop computation.

The complete set of two-loop master integrals for minimal length-3 form factors are given

in Fig. 2. With color decomposition, the two-loop color-ordered form factors, associated with

color factor tr(T a1T a2T a3), can be written as a sum of master integrals Ii as

F (2)
O

=
⇣
c1I1 + c2I2 + c3I3 + c4I4 +

⇥
c5I5 + c6I6

⇤
+
⇥
c7I7 + c8I8

⇤
+ c9I9

⌘
+ cyc.perm.(1, 2, 3) ,

(3.1)

where master integrals {Ii} strictly correspond to the topology and labeling given in Fig. 2.

The master coe�cients ci are what we want to obtain using unitarity-IBP method. Before

considering that, let us discuss one important feature of the master integrals.

One can see that (5), (6) and (7), (8) in Fig. 2 are pairs of ‘mirror’ topologies. In

color-ordered form factors, they should be considered to be independent because they are

inequivalent planar diagrams and therefore probed by di↵erent planar cuts. On the other

hand, they are closely related to each other: graphically, (5) and (6) are related by label

flipping 1 $ 2, while (7) and (8) are related by flipping 3 $ 1. From the planar color point

of view, they are related by reversing color orientation, which is equivalent to a “C-parity

transformation” (see e.g. [56]), so the kinematic parts of a fixed color order tr(123) and the

reversed color order tr(321) only di↵er by an overall C-parity factor decided by external

particles and inserted operator. The external particles are three gluons which have C-parity
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contributing to leading color begins to appear at 3-loop.
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form factors of length-3 operators.

loops nonplanar topology (even at leading Nc color) will contribute, as shown in Fig. 1(b),

and therefore nonplanar cut is necessary. Since the one-loop case is quite simple, below we

will focus on the two-loop computation.

The complete set of two-loop master integrals for minimal length-3 form factors are given

in Fig. 2. With color decomposition, the two-loop color-ordered form factors, associated with

color factor tr(T a1T a2T a3), can be written as a sum of master integrals Ii as

F (2)
O

=
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c1I1 + c2I2 + c3I3 + c4I4 +

⇥
c5I5 + c6I6

⇤
+
⇥
c7I7 + c8I8

⇤
+ c9I9

⌘
+ cyc.perm.(1, 2, 3) ,

(3.1)

where master integrals {Ii} strictly correspond to the topology and labeling given in Fig. 2.

The master coe�cients ci are what we want to obtain using unitarity-IBP method. Before

considering that, let us discuss one important feature of the master integrals.

One can see that (5), (6) and (7), (8) in Fig. 2 are pairs of ‘mirror’ topologies. In

color-ordered form factors, they should be considered to be independent because they are

inequivalent planar diagrams and therefore probed by di↵erent planar cuts. On the other

hand, they are closely related to each other: graphically, (5) and (6) are related by label

flipping 1 $ 2, while (7) and (8) are related by flipping 3 $ 1. From the planar color point

of view, they are related by reversing color orientation, which is equivalent to a “C-parity

transformation” (see e.g. [56]), so the kinematic parts of a fixed color order tr(123) and the

reversed color order tr(321) only di↵er by an overall C-parity factor decided by external

particles and inserted operator. The external particles are three gluons which have C-parity
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Mixing matrices and spectrum
Form factors contain both IR and UV divergences, by subtracting 
the universal IR, one can obtain the UV renormalization matrix. We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:

Z(1)
O8

=
Nc

✏

0

B@
�

11
3 0 0

0 7
6 0

0 0 1
2

1

CA . (4.40)

At two-loop level, the Z(2) matrix is:

Z(2)
O8

���
1
✏ -part.

=
N2

c

✏

0

B@
�

34
3 0 0

�
1
3

269
72

5
2

�1 0 25
12

1

CA . (4.41)

Using (4.25), the dilation operator is given as

DO8 =

0

B@
�

22
3 �̂�

136
3 �̂2 0 0

�
�̂2

ĝ
7
3 �̂+ 269

18 �̂
2 10�̂2

�3 �̂2

ĝ 0 �̂+ 25
3 �̂

2

1

CA . (4.42)

Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.29). Computing the eigenvalues of (4.42), one

obtains the anomalous dimensions up to O(�̂2):

�̂(1)
O8

=

⇢
�
22

3
; 1;

7

3

�
, �̂(2)

O8
=

⇢
�
136

3
;
25

3
;
269

18

�
. (4.43)

From now on we sort eigenvalues according to the lowest dimensions they emerge. For exam-

ple, O(�̂) anomalous dimension �
22
3 appears at dimension four, 1 appears at dimension six,

and 7
3 appears at dimension eight, so they are listed in the order of {�22

3 ; 1;
7
3}.

Dimension 10

There are five length-3 basis operators at dimension 10, as shown in Table 13. Together with

O10;0 =
1
4@

6
O4, they can be classified into three sectors:

(f123;�,�,+) : O10;0, O10;↵;f ;1, O10;↵;f ;2 ,

(f123;�,�,�) : O10;0, O10;�;f ;1, O10;�;f ;2 .

(d123;�,�,+) : O10;↵;d;1 .

(4.44)

Operators with di↵erent color factors will never mix with each other because of their opposite

C-parities, so renormalization matrices of fabc and dabc sectors can be written separately.

The computation of renormalization constant is the same as explained in the dimension-8

case and therefore not repeated here, see the discussion around (4.36) and (4.39). For the
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𝒪8;1 = ∂4Tr(F2), 𝒪8;2 = ∂2tr(F3), 𝒪8;3 = tr(D1F23D4F23F14),

Length-3 operators at dimension-8:

Results were known previously only at one-loop up to dimension-8, 
and at two-loop up to dimension-6 operators.

Gracey 2002; Dawson, Lewis, Zeng 2014; … 
Jin, GY 2019
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The dilation operator matrix can be obtained from (4.25), and for fabc sector it is
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15 + 2848
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Its eigenvalues give the anomalous dimensions:

�̂(1)
O10,f
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⇢
�
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3
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3
;
71

15
,
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�
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�
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3
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3
;
269
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;
2848

125
,
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72

�
. (4.48)

Here eigenvalues emerging at di↵erent dimensions are divided by semicolons and those emerg-

ing at the same dimension are divided by commas.

For the singlet operator in dabc sector, one has:

�̂(1)
O10,d

=
13

3
, �̂(2)

O10,d
=

575

36
. (4.49)

Dimension 12

There are 10 length-3 basis operators at dimension 12, as shown in Table 14. Together

with O12;0 = 1
8@

8
O4, they can be classified into four sectors: (f123;�,�,+), (f123;�,�,�),

(d123;�,�,+), (d123;�,�,�).

We arrange the operators as {O12;0,O12;↵;f ;1, ...,O12;↵;f ;4,O12;�;f ;1, ...,O12;�;f ;3} for fabc-

sector, and {O12;↵;d;1,O12;↵;d;2,O12;�;d;1} for dabc-sector. Renormalization matrices of fabc

and dabc sectors at one-loop level are
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O12,f

���
1
✏ -part.

=
N2

c

✏

0

BBBBBBBBBBBB@

�
34
3 0 0 0 0 0 0 0

�
1
3

269
72 0 0 0 5

2 0 0

�
209
900 �

5579
18000

712
125 0 0 1493

1200
5
36 0

�
31
180

53
3600 �

36227
28800

3575983
432000

9793
21600

13
16

16877
14400 �

7319
14400

�
181
900 �

60979
36000

78487
72000 �

2177
2000

704167
72000

1299
1200

115501
43200 �

9803
43200

�1 0 0 0 0 25
12 0 0

�
19
36

139
2400

499
800 0 0 �

143
288

2195
288 0

�
1
3

4
15

121
400

637
800 �

211
800

119
120 �

15643
7200

79313
7200

1

CCCCCCCCCCCCA

, (4.51)
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The dilation operator matrix can be obtained from (4.25), and for fabc sector it is
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�̂(1)
O10,d

=
13

3
, �̂(2)

O10,d
=

575

36
. (4.49)

Dimension 12

There are 10 length-3 basis operators at dimension 12, as shown in Table 14. Together

with O12;0 = 1
8@

8
O4, they can be classified into four sectors: (f123;�,�,+), (f123;�,�,�),

(d123;�,�,+), (d123;�,�,�).

We arrange the operators as {O12;0,O12;↵;f ;1, ...,O12;↵;f ;4,O12;�;f ;1, ...,O12;�;f ;3} for fabc-

sector, and {O12;↵;d;1,O12;↵;d;2,O12;�;d;1} for dabc-sector. Renormalization matrices of fabc

and dabc sectors at one-loop level are
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are
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Dim-10:



Mixing matrices and spectrum
Form factors contain both IR and UV divergences, by subtracting 
the universal IR, one can obtain the UV renormalization matrix. 

of fabc and dabc sector at one-loop level are
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f
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⇣
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Dim-16 at 1-loop:



Mixing matrices and spectrum
Form factors contain both IR and UV divergences, by subtracting 
the universal IR, one can obtain the UV renormalization matrix. 

Dim-16 at 2-loop:
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(4.68)

The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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of fabc and dabc sector at one-loop level are

Z(1)
O16,f

=
Nc

✏

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
11
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 7
6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
3
5

71
30 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �
5
4

221
60 �

1
6 0 0 0 0 0 0 0 0 0 0

0 �1 1
10 �

19
30

37
10 0 0 0 0 0 0 0 0 0 0

0 17
84 �

17
28 �

47
70 �

17
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337
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5
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3
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31
20 �

1
4

31
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0 13
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15
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10 �

5
2
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15

961
210

8
15 0 0 0 0 0 0

0 71
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71
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223
35
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
, (4.66)
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Mixing matrices and spectrum

Anomalous dimensions for length-3 operators up to dimension 16:
Table 8. Summary of anomalous dimensions for length-2 and length-3 operators. The lower dimension
operators will appear as descendants in the high dimension operators.

dim 4 6 8 10 12 14 16

�
(1)
f,↵ �

22
3 /

7
3

71
15

241
30 ,

101
15

61
6 ,

172
21

331
35 ,

1212±
p

3865
105

�
(2)
f,↵ �

136
3 /

269
18

2848
125

49901119
1404000 ,

8585281
234000

4392073141
87847200 ,

685262197
15373260

231568398949
4253886000 ,

355106171452034±95588158951
p
3865

6576507756000

�
(1)
f,� �

22
3 1 /

17
3 9 43

5
67
6

�
(2)
f,� �

136
3

25
3 /

2195
72

79313
1800

443801
9000

63879443
1058400

�
(1)
d,↵ / / /

13
3

41
6

551±3
p

609
60

321±
p

1561
30

�
(2)
d,↵ / / /

575
36

46517
1440

5809305897±19635401
p
609

131544000
229162584707±225658792

p
1561

4130406000

�
(1)
d,� / / / / 9 /

67
6

�
(2)
d,� / / / /

150391
3600 /

174229
3150

Checks and analysis

Some consistency checks for our calculation have been mentioned above, and here we make a

summary:

1. The O(✏�2) poles of one-loop bare form factors and the O(✏�3),O(✏�4) poles of two-loop

bare form factors have infrared origin and therefore should be totally canceled after IR

subtraction procedure shown in (4.9), (4.10).

2. The O(✏�2) poles of two-loop UV divergences are totally determined by one-loop UV

divergences and �0, as shown in (4.24).

3. At a given dimension, mixing from descendent operators to non-descendent operators

never takes place, such as length-2 to higher length operators in (4.15).

4. As explained in the dimension eight case, mixing from general length-3 operators to

the unique length-2 operator can be probed by form factors with both (�,�,+) and

(�,�,�). So form factors under these two helicity settings should give the same length-

changing matrix elements Z(2)
3!2.

Our results satisfy all these requirements. Some further consistency checks will be also men-

tioned for the computation of finite remainder function in next section.

Let us make a few comments on the anomalous dimensions and dilatation matrix.

• In Table 8, the irrational number appears in the dimension 14 and 16 cases. As eigen-

values of dilatation operators, anomalous dimensions can be obtained straightforwardly

by solving characteristic equation. Alternatively, one can get their series expansions

in �̂ up to arbitrary finite order through perturbation method introduced in quantum

mechanics, which is equivalent to treat dilatation operator as a Hamiltonian of a finite

system, see e.g. [69]. From perturbative calculation, one can find that whether irrational

numbers appear in perturbative expansions is determined by characteristic equation of
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Finite remainder

There are “universal building blocks” that are independent of 
the operators:

The finite remainders ->  Higgs amplitudes with high-order top 
mass corrections in Higgs EFT: 

The full transcendentality degree-4 part is universal:

Table 10. Notation of form factors with three gluons, where ± indicates positive or negative helicity
gluons. f (0),±

O
are scalar factors that depend on the dimension of the operators.

external particles (1�, 2�, 3+) (1�, 2�, 3�)

form factors F
(l),+
O

F
(l),�
O

tree form factors h12i3[13][23]f (0),+
O

h12ih13ih23if (0),�
O

F
(2),�
O,fin = h12ih13ih23i ⇥R

(2),�
O

⇥

(
f (0),�
OL=2

↵-sector

f (0),�
O

�-sector
. (5.3)

Note that for the unmatched helicity cases, i.e. ↵-sector under (�,�,�) and �-sector under

(�,�,+), the tree form factors are zero, so we use the scalar factors of the length-2 operator

OL=2 to normalize the remainder function.

One can further decompose the two-loop remainder according to their trancendentality

degree as:

R
(2),±
O

=
4X

n=0

R
(2),±
O

���
deg-n

+R
(2),±
O

���
log2(�q2)

+R
(2),±
O

���
log(�q2)

. (5.4)

Here q2 = s123 = s12 + s23 + s13, and we separate the q2-dependent terms into R
(2)
O

��
log2(�q2)

and R
(2)

��
log(�q2)

, so the rest terms {R(2)
O

��
deg-n

} only depend on ratio variables:

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

. (5.5)

5.1 Transcendentality structure of remainder

In this subsection, we discuss the two-loop remainders according their transcendentality de-

grees. Explicit results of two-loop finite remainders are given in the ancillary file submitted

together with this paper. As an example, the result of O8;↵;f ;1 is explicitly given in Appendix

E.

Universal building blocks

For two-loop remainders under matched helicities, we find the transcendentality degree-4 part

of two-loop minimal form factors (under match helicity) always share a universal expression:

R
(2),±
O

���
deg-4

=�
3

2
Li4(u) +

3

4
Li4

⇣
�
uv

w

⌘
�

3

4
log(w)

h
Li3

⇣
�
u

v

⌘
+ Li3

⇣
�
v

u

⌘i

+
log2(u)

32

⇥
log2(u) + log2(v) + log2(w)� 4 log(v) log(w)

⇤

+
⇣2
8

⇥
5 log2(u)� 2 log(v) log(w)

⇤
�

1

4
⇣4 + perms(u, v, w) , (5.6)
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(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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Finite remainder

Degree-3 part and degree-2 part are consist of universal 
building blocks {T3, T2}, plus simple log functions:

which is expected and also appears in previous computations of lower dimension operators [12,

13, 31, 49, 51, 52].5 This implies the two-loop minimal form factor of a length-3 operator with

arbitrary dimension in pure Yang-Mills theory always obeys the maximal transcendentality

principle.

For two-loop remainders under unmatched helicities, there are no degree 4 or 3 parts,

in accord with the vanishing of ✏�4, ✏�3 poles in bare form factors. Finite remainders and

poles of the same degree originate from the same term in the master integral coe�cients, so

they usually vanish simultaneously. The absence of degree 4 and 3 poles at two-loop level

can be traced back to the absence of one-loop divergence. As mentioned in section 4.2, under

unmatched helicity the tree-level form factor is zero and the one-loop form factor only has

rational term, so divergence subtraction formula from (4.8) and (4.10) becomes

F
(2)
O,fin =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

� I(1)(✏)
⌘
F

(1)
O,B , (5.7)

which explicitly shows the leading singularity is of O(✏�2) from I(1)(✏)F (1)
B , and no term can

contribute to ✏�3, ✏�4.

Apart from maximal transcendental universality, degree-3 and degree-2 parts also signify

some universal structure, in the sense that complicated transcendental functions can always

be absorbed into a set of universal building blocks, and no other polylogarithm functions like

Li2,Li3 are left outside these basis functions.6

Building blocks of degree-3 part are six functions {T3[�(x),�(y),�(z)]|� 2 S3} together

with ⇡2 log and ⇣3, where T3(u, v, w) is given as

T3(u, v, w) :=
h
� Li3

⇣
�
u

w

⌘
+ log(u)Li2

✓
v

1� u

◆
�

1

2
log(u) log(1� u) log

✓
w2

1� u

◆

+
1

2
Li3

⇣
�
uv

w

⌘
+

1

2
log(u) log(v) log(w) +

1

12
log3(w) + (u $ v)

i

+ Li3(1� v)� Li3(u) +
1

2
log2(v) log

✓
1� v

u

◆
� ⇣2 log

⇣uv
w

⌘
. (5.8)

Similar function has appeared in the N = 4 form factors [45, 47, 49]. Building blocks of

degree-2 part are three functions {T2[�(x),�(y)]|� 2 Z3} together with log2 and ⇡2, where

T2(u, v) is given as (see also [13])

T2(u, v) :=Li2(1� u) + Li2(1� v) + log(u) log(v)� ⇣2 . (5.9)

When expanding the form factor remainders in these building blocks, the coe�cients in front

of them are just rational functions of u, v, w, see examples in Appendix E.

5The computation here in QCD using Catani IR subtraction scheme, and the expression is slightly di↵erent

(as purely a scheme change) from the N = 4 results which are based on the BDS subtraction scheme [70].
6When quark is added, T3, T2 no longer compose complete basis for polylogarithms, see [13].
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13, 31, 49, 51, 52].5 This implies the two-loop minimal form factor of a length-3 operator with

arbitrary dimension in pure Yang-Mills theory always obeys the maximal transcendentality

principle.

For two-loop remainders under unmatched helicities, there are no degree 4 or 3 parts,

in accord with the vanishing of ✏�4, ✏�3 poles in bare form factors. Finite remainders and

poles of the same degree originate from the same term in the master integral coe�cients, so

they usually vanish simultaneously. The absence of degree 4 and 3 poles at two-loop level

can be traced back to the absence of one-loop divergence. As mentioned in section 4.2, under
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B , and no term can

contribute to ✏�3, ✏�4.
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some universal structure, in the sense that complicated transcendental functions can always

be absorbed into a set of universal building blocks, and no other polylogarithm functions like
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Similar function has appeared in the N = 4 form factors [45, 47, 49]. Building blocks of

degree-2 part are three functions {T2[�(x),�(y)]|� 2 Z3} together with log2 and ⇡2, where

T2(u, v) is given as (see also [13])

T2(u, v) :=Li2(1� u) + Li2(1� v) + log(u) log(v)� ⇣2 . (5.9)

When expanding the form factor remainders in these building blocks, the coe�cients in front

of them are just rational functions of u, v, w, see examples in Appendix E.

5The computation here in QCD using Catani IR subtraction scheme, and the expression is slightly di↵erent

(as purely a scheme change) from the N = 4 results which are based on the BDS subtraction scheme [70].
6When quark is added, T3, T2 no longer compose complete basis for polylogarithms, see [13].
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There are “universal building blocks” that are independent of 
the operators:

The finite remainders ->  Higgs amplitudes with high-order top 
mass corrections in Higgs EFT: 

(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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Non-planar form factors in 
N=4 SYM

O1

Tr

O2

Tr1

Tr2

Figure 2. At non-planar level, operators of di↵erent number of traces can mix with each other. This
diagram shows the interaction between a single trance operator and a double trace operator.

where xi, yi “ 1, . . . Nc are (anti)fundamental indices. We choose normalization: trpT a
T
b
q “

�
ab.

For generic loop expansion at non-planar level, we use the color-independent coupling

g̃ “ g{
?
Nc. The loop expansion of full-color form factors is defined as

F “

8ÿ

l“0

g̃
2`
F

p`q
, with g̃

2
“

g
2

YM

p4⇡q2

`
4⇡e´�E

˘✏
. (3.3)

3.1 Trace color basis

We first consider the color structure in terms of trace basis.

Color structure of operators and counting

For local operators, the color structures are naturally defined in terms of color traces. In the

planar limit, one can confine oneself in single-trace operators as given in (2.2), as interactions

between fields of di↵erent traces are suppressed by 1{Nc. For full non-planar considerations,

it is necessary to consider multi-trace operators. We can define a generic operator as

OL “ COpa1, . . . aLqWa1,pn1q
1

Wa2,pn2q
2

. . .WaL,pnLq
L , (3.4)

where there color factor CO in general contains multiple traces and is given as a product of

the following terms:

trp1q “ Nc, trpT a1T
a2q, . . . , trpT a1T

a2 . . . T
amq, . . . . (3.5)

One can characterize the color structure of an operator by the number of traces and the

length of each trace.

Loop corrections can merge or split traces, as illustrated in Figure 2, which lead to the

mixing between operators with di↵erent color structure. Only after considering operators

of all color structures can one determines the anomalous dimensions and eigenstates of the

mixing matrix. When increasing the length (i.e. the number of fields) of the operators, the

number of inequivalent trace factors can grow very fast and the non-planar sectors may be

expected to eventually dominate the contribution.
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(d) Cubic Graph: Ď�4

Figure 14. Cubic Graphs for next-to-minimal two-loop correction densities.

(a) Crossing number=0 (b) Crossing number=1 (c) Crossing number=2

Figure 15. Examples of connection with di↵erent crossing number. The circle with arrow represents
a trace, and the black dots represent possible insertion of external legs.

Channels from di↵erent ordering

To classify cut channels corresponding to certain color factors, one can in principle consider

all possible orderings of each tree blocks and sew them together. Below we will employ a

procedure separately considering internal cut legs and external uncut legs .

In the first step, we consider the sewing of internal cut legs (and ignore the external

legs). The crossing of internal lines can lead to 1{N
2
c suppression. For the convenience of

discussion, we introduce the crossing number, which is the minimal number of lines that have

to be adjusted to reach a planar topology. For example, Figure 15(a) is a planar example

which has crossing number 0, Figure 15(b) shows a connection with crossing number 1, which

means one can move one side of the red line to get a planar topology (although seemingly

the red line cross two other cut lines); Figure 15(c) shows a diagram with crossing number 2,

since it is necessary to adjust two red lines.

The crossing number defined above has a direct meaning in terms of color factors.

Roughly speaking, the crossing number determines the number of traces in color factors.

Here one can regard Nc “ trp1q as a trace. Then the crossing number determines the number

of trace plus the power of Nc (after simplifying the color factor). For connections with the

same crossing number, the power of Nc plus the number of traces at leading order are the

same. The number of traces is reduced by 2j when increasing the crossing number by j.

After fixing the sewing of internal legs, we next consider the distribution of external legs.
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General strategy via Unitarity

Color decomposition Unitarity with color-ordered blocks

In principle one may apply unitarity with full color dependence

An improved strategy is that:

Below we first outline the general strategy of performing full-color non-planar unitarity in

Section 4.1, then we provide concrete examples in Section 4.2 to illustrate the strategy. The

results of examples will also be used in later calculation in Section 5. Some further details

and features about (non-planar) unitarity are also provided in Appendix B.

4.1 General strategy

From the discussion in the previous section, the full-color form factor takes the color decom-

position form as

F
p`q

“

ÿ

i

Ci
”
F p`q

ı

Ci

, (4.2)

where Ci are the color factors, and the color-stripped kinematic coe�cients are
”
F p`q

ı

Ci

“

ÿ `
momentum integrals

˘
, (4.3)

which are what we want to compute using unitarity cut method.

It should be helpful to first review the planar unitarity. The planar form factors, denoted

as
“
F p`q‰

PL
, satisfies the following planar cut:6

”
F p`q

ı

PL

ˇ̌
ˇ
cut

“

ª
dPStl2au

`
color-ordered tree products

˘
, (4.4)

where the phase space measure is understood as dPStl2au “
±

a d
D
la�`pl

2
aq. The planar uni-

tarity is simple in two aspects: (1) the tree blocks are simple color-ordered quantities, and

(2) the ordering within each blocks and the connection between blocks are completely fixed

by planar topology.

Planar form factors can be regarded as special (planar) components of full-color form

factors, or in other words, they are the kinematic components associated to planar color

factors TPL that are leading in the large Nc limit. The choosing of the tree blocks is determined

by the fact that the product of their trace color factors Ttree-block contribute the planar color

factor: π
Ttree-block “ TPL `

`
subleading terms in Nc

˘
. (4.5)

This understanding allows us to generalize unitarity cut to kinematic component
“
F p`q‰

Ci

with a general color factor Ci. Let us first consider Ci “ Ti as trace basis, and we will comment

on the cases with other basis shortly. For a generic color factor Ti (which can be multi-trace

for example), one can apply unitarity in a similar way as

”
F p`q

ı

Ti

ˇ̌
ˇ
cut

“ ci

ª
dPStl2au

`
color-ordered tree products

˘
, (4.6)

where the tree products are chosen such that

π
Ttree-block “ ciTi `

`
non-Ti factors

˘
, (4.7)

6We consider only tree building blocks here, but sub-loop building blocks are also possible.

– 19 –

perm.� �e

perm.� �i

�e(a1) �e(a2) �e(a3)

ǎl1 ǎl2 ǎl3
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Figure 7. Cubic Graphs for minimal two-loop correction density

Below we will first consider the color decomposition for I
p2q which will help to identify

a set of kinematic functions that are enough to determine I
p2q. Then, we will compute two

classes of form factors: (1) the half-BPS form factors with trpXL
q; (2) the form factor with

non-BPS operators in the SU(2) sector. The similar construction should apply to more general

form factors.

5.1 Color decomposition of two-loop form factors

In this subsection we consider the color decomposition for the density function as in (3.9):

`
I

p2q˘ÄW1ÄW2ÄW3

WiWjWk
p123q “

ÿ

↵

Č↵
„`

Ip2q˘ÄW1ÄW2ÄW3

WiWjWk
p123q

⇢

Č↵

, (5.2)

`
I

p2q˘ÄW1ÄW2

WiWj
p12q “

ÿ

�

Č�
„`

Ip2q˘ÄW1ÄW2

WiWj
p12q

⇢

Č�

. (5.3)

Without loss of generality, we choose the external momenta to be tp1, p2, p3u and set labeling

of I p2q
ijk as I

p2q
ijkp123q and I

p2q
ij as I

p2q
ij p12q. Meanwhile, the color indices of external states are

a1, a2, a3. When there is no ambiguity, the momenta label (123) and (12) can be omitted for

simplicity.

DDM basis

We start with choosing a set of trivalent DDM basis, where Č↵ “ Ď↵ are trivalent color factors

in terms of f̃abc.

Consider first the range-3 color basis. The trivalent topologies can be obtained by sewing

six-point tree-level amplitudes to minimal form factors. One can choose two independent

configurations whose diagrammatically representation are given in Figure 7(a) and 7(b), re-

spectively. They correspond to the following two sets of color structures:

Set1 :
 
Ď�1p�

e
,�

i
q
(

“
 
�
i
�
e

¨ f
ǎl1a1x1f

x1a2x2f
x2x3ǎl2f

x3a3ǎl3
(
, (5.4)

Set2 :
 
Ď�2p�

e
q
(

“
 
�
e

¨ f
ǎl1a1x1f

ǎl2a2x2f
ǎl3a3x3f

x1x2x3
(
, (5.5)
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where the permutations �
e
3

P S3 and they act on color indices of external states ta1, a2, a3u,

while �
i
3

P Z3 (cyclic permutation) act on internal color variation tǎl1 , ǎl2 , ǎl3u (which is to

act on three sites ti, j, ku in the operator). As a check, the number of elements of the above

range-3 basis is 3!ˆ3`3! “ 24, which is the same as the dimension of DDM basis for six-point

amplitude A
p0q
6

.

The range-2 cubic graphs can be understood as sewing a one-loop four-point cubic graph

on minimal form factors. There are also two independent configurations as shown in Fig-

ure 7(c) and 7(d). Thus, range-2 color basis for minimal two-loop correction density can be

given as

Set3 :
 
Ď�3p�

e
q
(

“
 
�
e

¨ f
x1ǎl2x2f

x2ǎl1x3f
x3a1x4f

x4a2x1
(
, (5.6)

Set4 :
 
Ď�4p1q

(
“
 
f
x1ǎl2x2f

x2a2x3f
x3a1x4f

x4ǎl1x1
(
, (5.7)

where the permutations �e
2

P S2 and they act on color indices of external states ta1, a2u.

For the convenience of notation, we will use an explicit set of color factors Ďi to represent

the elements in Ď�a : (1) Ďi, i “ 1, .., 18, for 18 elements Ď�1 in (5.4), (2) Ďj , j “ 19, . . . , 24,

for 6 elements Ď�2 in (5.5), (3) Ď25, Ď26 for 2 elements Ď�3 in (5.6), and (4) Ď27 for the

single element Ď�4 in (5.7). Explicit form of Ďi are listed in Appendix A. Four of the them

will appear frequently in the following discussion, and we give them explicitly here:

Ď1 “ Ď�1p1,1q , Ď19 “ Ď�2p1q , Ď25 “ Ď�3p1q , Ď27 “ Ď�4p1q . (5.8)

The permutational relations for the color factors imply that the kinematic parts also

satisfy certain permutational relations:
„`

Ip2q˘ÄW1ÄW2ÄW3

WiWjWk
p123q

⇢

�ip�e,�iq
“

”`
Ip2q˘�ep ÄW1

ÄW2
ÄW3q

�ipWiWjWkq p�
e
p123qq

ı

�ip1,1q
(5.9)

„`
Ip2q˘ÄW1ÄW2

WiWj
p12q

⇢

�ip�eq
“

”`
Ip2q˘�ep ÄW1

ÄW2q
pWiWjq p�

e
p12qq

ı

�ip1q
. (5.10)

This observation implies that one can focus on the following correction functions:
„`

Ip2q˘ÄW1ÄW2ÄW3

WiWjWk

⇢

Ď1

,

„`
Ip2q˘ÄW1ÄW2ÄW3

WiWjWk

⇢

Ď19

,

„`
Ip2q˘ÄW1ÄW2

WiWj

⇢

Ď25

,

„`
Ip2q˘ÄW1ÄW2

WiWj

⇢

Ď27

, (5.11)

taking into account all possible field configurations of W and ÄW.

Equations for solving correction functions

As discussed in Section 4.1, to apply unitarity, it is convenient to relate the above trivalent

basis to trace basis. In the following, we discuss their relations and select proper Ti and

corresponding
“
F p2q‰

Ti
that are enough to determine the four types of correction functions

defined in (5.11).

The first relation comes from planar form factor with color factor as

Tt1 ” TPL “ N
2

c trpa1 ¨ ¨ ¨ aLq . (5.12)
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General strategy via Unitarity

Color decomposition Unitarity with color-ordered blocks

In principle one may apply unitarity with full color dependence

An improved strategy is that:
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p2

(a)

p1
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· · · p3

F̂ (0)
L+1 Â(0)

5

(b)

p1

p2
pL

F (0)
L

· · · p3

A(1)
4

(c)

Figure 5. Planar cut channels at two loops. Without loss of generality, we choose the external lines
as p1, p2, p3.

Example 1: the planar case

We briefly review the the planar limit case. In this case, our targeting color factor is

TPL “ N
2

c trpa1 ¨ ¨ ¨ aLq . (4.9)

To determine the integrand, it is enough to consider three types of cut channels as shown in

Figure 5.

We start from s123 triple-cut (TC) with planar ordering in Figure 5(a). The product of

two trace factors from tree building blocks gives

trApǎl3 ǎl2 ǎl1a1a2a3q ˆ trF pal1al2al3a4 ¨ ¨ ¨ aLq “ 1 ˆ TPL `
`
subleading terms in Nc

˘
, (4.10)

which indeed contains the planar color factor. The kinematic part under this cut is7

F p2q
PL pp1, p2, p3, . . .q

ˇ̌
ˇ
s123-TC

“

ª
dPS3,lF p0q

L p´l1,´l2,´l3, p4, . . . , pLqAp0q
6

pl3, l2, l1, p1, p2, p3q

“

p1

p3

l1
l2
l3

p2 +

p1

p3

l1
l2
l3

p2

p3p3

´

p1

p3

l1
l2
l3

p2 , (4.11)

where the six-scalar tree amplitude expression (given in Appendix C) and expression for the

tree form factor (here F p0q
L “ 1) are used. In the second line of (4.11), the tree product

is reorganized as three cut integrals (see [14] for more details). Here for convenience, we

introduce in (4.13) a graphic notation to use colored dots to represent numerators: two dots

with the same color on lines with momenta qi and qj means 2pqi ¨ qjq. For example, the

numerators for three integrals in (4.13) are respectively:

4pp1 ¨ p2qrp3 ¨ pl1 ` p1 ` p2qs , 4pp2 ¨ p3qrp1 ¨ pl3 ` p2 ` p3qs , 2pp1 ¨ p3q . (4.12)

7Terms proportional to l2i are possible contributions which can not be fixed by this cut. Other cuts can

detect them so they are contained in “terms fixed by other channels” in (4.13).
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(a) s123 three-particle triple-cut.
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(b) s124 three-particle triple-cut.
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Figure 6. Selected non-planar cut channels at two loops for for F p2q
NP . These cuts serves to calculate

kinematic dependence of p1 to p4 for F p2q
NP .

Other density functions are related to it as:

rF p2q
PLppi, pi`1, pi`2q “ rF p2q

PLpp1, p2, p3q

ˇ̌
t1�i,2�pi`1q,3�pi`2qu . (4.19)

Note that the 1/2 factor in (4.18) shows that we have evenly distributed the range-2 integrals

to two density functions.

Example 2: a non-planar case

Next we consider a non-trivial non-planar example with a triple trace color factor as

TNP “ trpBa1q trpCa3a2q trpAq , (4.20)

where we assume A,B,C are all non-empty and assign A “ ta4, . . . , a8u, B “ ta7, . . . , a6u, C “

ta5, . . .u, representing other sets of color indices in the traces. As in the previous planar case,

we will mainly focus on the cut channels that involve external momenta tp1, p2, p3u.

Following the strategy in Section 4.1, we need to identify the cut channels that contribute

to the color factor TNP. Let us first consider the s123 triple-cut. The allowed configuration is

shown in Figure 6(a). The product of tree tree factors gives the required color factor:

trApǎl3a3a2ǎl2a1ǎl1q ˆ trF pAal1Bal2Cal3q “ 1 ˆ TNP ` ¨ ¨ ¨ , (4.21)

where ‘¨ ¨ ¨ ’ represents other factors. The kinematic part under this cut is:

F p2q
NP pp1, p2, p3, . . .q

ˇ̌
ˇ
s123-TC

“

ª
dPS3,lF p0q

L pA,´l1, B,´l2, C,´l3qAp0q
6

pl3, p3, p2, l2, p1, l1q.

(4.22)

Plugging in the expressions for the tree form factor (here F p0q
L “ 1) and the six-scalar

tree amplitude Ap0q
pl
X̄
3
, p

X
3
, p

X
2
, l

X̄
2
, p

X
1
, l

X̄
1

q (see Appendix C), and after removing the cut, one

has

F p2q
NP pp1, p2, p3, . . .q “ ´KNPp123q `

`
terms determined by other channels

˘
, (4.23)
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Planar cuts:

Non-planar cuts:

Below we first outline the general strategy of performing full-color non-planar unitarity in

Section 4.1, then we provide concrete examples in Section 4.2 to illustrate the strategy. The

results of examples will also be used in later calculation in Section 5. Some further details

and features about (non-planar) unitarity are also provided in Appendix B.

4.1 General strategy

From the discussion in the previous section, the full-color form factor takes the color decom-

position form as

F
p`q

“

ÿ

i

Ci
”
F p`q

ı

Ci

, (4.2)

where Ci are the color factors, and the color-stripped kinematic coe�cients are
”
F p`q

ı

Ci

“

ÿ `
momentum integrals

˘
, (4.3)

which are what we want to compute using unitarity cut method.

It should be helpful to first review the planar unitarity. The planar form factors, denoted

as
“
F p`q‰

PL
, satisfies the following planar cut:6

”
F p`q

ı

PL

ˇ̌
ˇ
cut

“

ª
dPStl2au

`
color-ordered tree products

˘
, (4.4)

where the phase space measure is understood as dPStl2au “
±

a d
D
la�`pl

2
aq. The planar uni-

tarity is simple in two aspects: (1) the tree blocks are simple color-ordered quantities, and

(2) the ordering within each blocks and the connection between blocks are completely fixed

by planar topology.

Planar form factors can be regarded as special (planar) components of full-color form

factors, or in other words, they are the kinematic components associated to planar color

factors TPL that are leading in the large Nc limit. The choosing of the tree blocks is determined

by the fact that the product of their trace color factors Ttree-block contribute the planar color

factor: π
Ttree-block “ TPL `

`
subleading terms in Nc

˘
. (4.5)

This understanding allows us to generalize unitarity cut to kinematic component
“
F p`q‰

Ci

with a general color factor Ci. Let us first consider Ci “ Ti as trace basis, and we will comment

on the cases with other basis shortly. For a generic color factor Ti (which can be multi-trace

for example), one can apply unitarity in a similar way as

”
F p`q

ı

Ti

ˇ̌
ˇ
cut

“ ci

ª
dPStl2au

`
color-ordered tree products

˘
, (4.6)

where the tree products are chosen such that

π
Ttree-block “ ciTi `

`
non-Ti factors

˘
, (4.7)

6We consider only tree building blocks here, but sub-loop building blocks are also possible.
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General strategy

Color decomposition Unitarity with color-ordered blocks

For special cases, an alternative more-power tool is:

In principle one may apply unitarity with full color dependence

“Color-Kinematics Duality”

An improved strategy is that:



Color-Kinematics duality

duality
color factors momentum factors

⟨i j⟩ = ϵαβλαi λ
β
j , [i j] = ϵα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ϵ→ 0
∑

ℓ

ℓ− p1 − p2
1

ℓ2(ℓ−p1−p2)2

ℓ2 → 0(ℓ− p1 − p2)2 → 0
1
ℓ2
→ 2πδ(+)(ℓ2)

−→
x
←−−−−−−−−
blahblahblah

g
−−−−−→

sii+1

F (1)
n =

∑n
i=1 pi pi+1 pi+2

F (2)
n =

∑n
i=1

(

X
X

)

→
(

X
X

) (

X
Y

)

→
(

X
Y

) (

X
Y

)

→
(

Y
X

)

{∆i, Cijk}

⟨Oi(x)Oj(0)⟩ = δij
(x2)∆i

⟨Oi(x1)Oj(x2)Ok(x3)⟩ =
Cijk

|x12|
αij |x23|

αjk |x31|αik
(αij = ∆i +∆j −∆k)

−µ
d

µ
Oi(0) = [D,Oi(0)] = HijOj(0)

f̃abc = i
√
2fabc = Tr([T a, T b]T c)

f̃abc = Tr([T a, T b]T c)

2

⟨i j⟩ = ϵαβλαi λ
β
j , [i j] = ϵα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ϵ→ 0
∑

ℓ

ℓ− p1 − p2
1

ℓ2(ℓ−p1−p2)2

ℓ2 → 0(ℓ− p1 − p2)2 → 0
1
ℓ2
→ 2πδ(+)(ℓ2)

−→
x
←−−−−−−−−
blahblahblah

g
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sii+1
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(
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X
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(

X
X

) (

X
Y

)
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(
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) (

X
Y

)

→
(
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)

{∆i, Cijk}

⟨Oi(x)Oj(0)⟩ = δij
(x2)∆i

⟨Oi(x1)Oj(x2)Ok(x3)⟩ =
Cijk

|x12|
αij |x23|

αjk |x31|αik
(αij = ∆i +∆j −∆k)

−µ
d

µ
Oi(0) = [D,Oi(0)] = HijOj(0)

f̃abc = i
√
2fabc = Tr([T a, T b]T c)

f̃abc = Tr([T a, T b]T c)

sij = (pi + pj)
2

2

[Bern, Carrasco, Johansson 2008]

gauge symmetry spacetime symmetry

A very intriguing duality which is still not understood.



The simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,
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where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)

3

Jacobi identity dual Jacobi relation

A4(1,2,3,4) =
csns

s
+

ctnt

t
+

cunu

u

A four-point example
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BCJ  Gravity loop integrands are free! 

 If you have a set of duality satisfying numerators. 
                                  To get:  
  

simply take 

color factor        kinematic numerator 

gauge theory         gravity theory 

Gravity loop integrands follow from gauge theory! 

Ideas conjectured to generalize to loops:  

ck           nk 

color factor 

kinematic 
numerator (k) (i) (j) 

dual Jacobi relations
nk = ni � nj
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Form factors
For Sudakov form factor (with stress tensor operator),  the 
construction has been obtained up to five loops.
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Fig. 3: Master graphs for the five-loop Sudakov form factor. The blue line corresponds
to q-leg.

s212τ34 , s
2
12τ35 , s

2
12τ45 , s

2
12τi3 , s

2
12τi4 , s

2
12τi5 , s

3
12} , (3.1)

where i, j, k = 1, 2 labels two external on-shell momenta. The Ansatz of the numer-

ator is

N (a) =
36
∑

j=1

ajM
(a)
j , N (b) =

36
∑

j=1

bjM
(a)
j . (3.2)

For graph (c), the numerator is allowed to be quadratic in {ℓ3}, so there are 41 more

monomials comparing to graph (a),

M (c) = M (a) ∪ {τi3τj3τk4 , τi3τj3τk5 , τi3τj3τ45 , τi3τj3s12 , τi3τ34τj5 , τi3τ35τj4 , τ33s
2
12 ,

τ33τ45s12 , τ33τi4τj5 , τ33τi4s12 , τ33τi5s12 , τi3τ34s12 , τi3τ35s12 , τ34τ35s12} . (3.3)

Finally, for graph (d), the numerator is at most cubic in {ℓ3}, which gives 13 mono-

mials,

M (d) = {τi3τj3τk3 , s12τi3τ33 , s12τi3τj3 , s
2
12τi3 , s

2
12τ33 , s

3
12} . (3.4)

The Ansatz of the numerators for graph (c) and (d) is

N (c) =
77
∑

j=1

cjM
(c)
j , N (d) =

13
∑

j=1

djM
(d)
j . (3.5)

Choosing a set of CK relations, we can express all numerators in terms of them. In

total, we have 162 parameters in our Ansatz.

We now fix the parameters by various constrains.

The first type of constraints is the symmetry. The numerator is required to

5

Master graphs
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How about more general high dimensional operators?

𝒪L=2 = tr(ϕ2)

𝒪L = tr(ϕϕ…ϕ)



Two-loop solution of BPS form factors
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Figure 12. Trivalent topologies that contribute to BPS form factors. The numerator func-
tions are defined according the labeling of momenta as functions Nipp1, p2, l1, l2q for i P{a,b}, and
Nipp1, p2, p3, l1, l2, l3q for i P{c,d,e,f,g,h,i}. Color factors are defined with the rule that each vertex
gives a f̃

abc with legs a, b, c arranged in clockwise order. The four topologies in the first row represent,
essentially, the four types of non-vanishing contributions while the topologies in the second row will
disappear after integration.

A set of dual Jacobi relations are:

p1q : Ncpp1, p2, p3, l1, l2, l3q ´ Ncpp3, p2, p1, l3, l2, l1q “ Ndpp1, p2, p3, l1, l2, l3q

p2q : Ncpp1, p2, p3, l1, l2, l3q ´ Ncpp1, p2, p3, l1, l3, l2q “ Nepp1, p2, p3, l1, l2, l3q

p3q : Ncpp1, p2, p3, l1, l2, l3q ´ Ncpp2, p1, p3, l1, l2, l3q “ Nfpp1, p2, p3, l1, l2, l3q

p4q : Nepp1, p2, p3, l1, l2, l3q ´ Nepp1, p3, p2, l1, l3, l2q “ Ngpp1, p2, p3, l1, l2, l3q

p5q : Nepp1, p2, p3, l1, l2, l3q ´ Nepp2, p1, p3, l1, l3, l2q “ Nipp1, p2, p3, l1, l2, l3q

p6q : Ngpp3, p1, p2, l1, l2, l3q ´ Nipp1, p2, p3, l1, l3, l2q “ Nhpp1, p2, p3, l1, l2, l3q.

(6.15)

Diagrammatic representation of these relations are given in Figure 13.

We would like to mention that, among these equations, the last five equations involve

certain special integrals as will be discussed later: diagrams (e)-(i) have non-vanishing

numerators but actually have zero integrals and hence do not contribute to the final form

factor.

3. Constraint and ansatz for master numerators.

Since the half-BPS form factor considered by us has good UV behavior, one may expect

the following power counting properties for the numerators:

• For any n-point one-loop sub-diagram, if this sub-diagram does not contains q2 vertex,

then the power of loop momenta should not exceed n ´ 4.15

15Note that we regard l2i , together with li ¨ pj , as power 1 of li.

– 44 –

Two-planar master topologies
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Figure 12. Trivalent topologies that contribute to BPS form factors. The numerator func-
tions are defined according the labeling of momenta as functions Nipp1, p2, l1, l2q for i P{a,b}, and
Nipp1, p2, p3, l1, l2, l3q for i P{c,d,e,f,g,h,i}. Color factors are defined with the rule that each vertex
gives a f̃

abc with legs a, b, c arranged in clockwise order. The four topologies in the first row represent,
essentially, the four types of non-vanishing contributions while the topologies in the second row will
disappear after integration.

A set of dual Jacobi relations are:

p1q : Ncpp1, p2, p3, l1, l2, l3q ´ Ncpp3, p2, p1, l3, l2, l1q “ Ndpp1, p2, p3, l1, l2, l3q

p2q : Ncpp1, p2, p3, l1, l2, l3q ´ Ncpp1, p2, p3, l1, l3, l2q “ Nepp1, p2, p3, l1, l2, l3q

p3q : Ncpp1, p2, p3, l1, l2, l3q ´ Ncpp2, p1, p3, l1, l2, l3q “ Nfpp1, p2, p3, l1, l2, l3q

p4q : Nepp1, p2, p3, l1, l2, l3q ´ Nepp1, p3, p2, l1, l3, l2q “ Ngpp1, p2, p3, l1, l2, l3q

p5q : Nepp1, p2, p3, l1, l2, l3q ´ Nepp2, p1, p3, l1, l3, l2q “ Nipp1, p2, p3, l1, l2, l3q

p6q : Ngpp3, p1, p2, l1, l2, l3q ´ Nipp1, p2, p3, l1, l3, l2q “ Nhpp1, p2, p3, l1, l2, l3q.

(6.15)

Diagrammatic representation of these relations are given in Figure 13.

We would like to mention that, among these equations, the last five equations involve

certain special integrals as will be discussed later: diagrams (e)-(i) have non-vanishing

numerators but actually have zero integrals and hence do not contribute to the final form

factor.

3. Constraint and ansatz for master numerators.

Since the half-BPS form factor considered by us has good UV behavior, one may expect

the following power counting properties for the numerators:

• For any n-point one-loop sub-diagram, if this sub-diagram does not contains q2 vertex,

then the power of loop momenta should not exceed n ´ 4.15

15Note that we regard l2i , together with li ¨ pj , as power 1 of li.
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Table 5. Various coe�cients for the CK-dual BPS form factor. Trivalent topologies �i are given in
Figure 12. Color factors Ci can be directly read out from diagrams, given the rule that each vertex
gives a f

abc with legs a, b, c arranged in clockwise order. Note that the last topology (e) actually has
zero contribution, we keep it here in order to manifest the CK duality of the numerators.

�i Ni Si

(a) s
2

12
2

(b) s
2

12
4

(c) s12sl2l3 ´
1

2
s123sl112 ´

1

2
l
2

2
s12 `

1

2
l
2

1
s23 1

(d) 2pl1 ¨ p2qs13 ´ sl11s12 `
1

2
sl11s123 ` s13s12 ´

1

2
l
2

1
s23+cyc. 6

(e) 1

2
s12pl

2

2
´ l

2

3
q 2

(f) 1

2
ps13 ´ s12ql

2

1
2

(g) 1

2
ps12 ´ s13qpl

2

2
´ l

2

3
q 2

(h) 1

2
ps12 ´ s13qpl

2

2
´ l

2

3
q 4

i.e. full permutations of tp1, p2, p3u and tl1, l2, l3u, considering both internal and external fields

are identical.

Last but not least, let us compare the above result obtained using CK duality with the

unitarity result in Section 5.2. An obvious di↵erence is that for range-2 densities, the CK

result in (6.25) contains only ladder integrals while in (5.37a) and (5.37b) there are also

another type of integral I 1
p12q ”

p1

p2

. Calculation of the di↵erence between the CK

and the unitarity results shows that the di↵erence �I ” I
CK

´ I
unitarity can be given as:16

�I “

ÿ

i†j†k

" ÿ

�iPZ3
�ePS3

Ď�1p�
e
,�

i
q �

e
¨
`
I 1

pijq ` I 1
pjkq

˘
´

ÿ

�ePS3

Ď�2p�
e
q

`
I 1

pijq ` I 1
pjkq ` I 1

pikq
˘ *

` 2
ÿ

i†j

ÿ

�ePS2

´
Ď�3p�

e
q ´ 2Ď�4p1q

¯
I 1

pijq , (6.26)

16To get this result, one may need to expand CK results on the trivalent basis in Section 5.1 using the

equations like (A.2) in Appendix A.
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Using this cut constraint, one finds four more equations for these parameters:

c2 “ 0, c3 “ 0, 0 “ ´
1

2
` c1,

1

2
´ c4 ` c5 “ 0 . (6.22)

After using (6.20) and (6.22), there are still two parameters, chosen as c4, c6. It turns out

that kinematic terms of these parameters do not change the final results of form factors.

Below we will discuss the role of these parameters in more detail.

6. Final results and discussion

The final results for the range-3 master numerator are

Ncpp1, p2, p3, l1, l2, l3q “ sl2l3s12 ´
1

2
sl112s123 ´

1

2
l
2

2s12 `
1

2
l
2

1s23 ` l
2

2pc4s13 ` c6ps12 ` s23qq .

(6.23)

An interesting fact is that numerators Nj with j P te,f,g,h,iu are not equal to zero, as

required by the CK duality, but all of the them have actually zero contribution to the form

factor.

First, any term proportional to c4 or c6 gives a scaleless integral that are zero in dimensional

regularization. For example, the l
2

2
terms for Nc in (6.23) correspond to massless bubbles;

and similarly for those terms proportional to c4,6 inNj with j P te,f,g,h,iu (c4,6 are cancelled

inNb). If we set c4 “ c6 “ 0, thenNi “ 0 for the last diagram in Figure 12. In the following

discussion, for simplicity and without changing the form factor results, we present results

with c4,6 “ 0.

Second, for the remaining integrals of topology j P te,f,g,hu, they are also all equivalent

to scaleless integrals. Alternatively, one may also argue the vanishing of te,g,hu by using

integral symmetries. For example, for Ne, the integral is proportional to:

9

ª
dDl2d

D
l3

pl
2

3
´ l

2

2
q

l2
1
l2
2
l2
3
pl2 ` l3q2pl1 ` p1q2pl1 ` p1 ` p2q2

“ 0 , (6.24)

which is zero because the numerator Ne is anti-symmetric when exchanging l2 and l3 but

the denominator and measure does not change under this permutation. The dropping out

of topology �i, however, relies solely on zero scaleless integral.

To summarize, the full-color two-loop correction, as given in (3.34), reads

I
p2q
123

“

ÿ

�PS3ˆS3

hÿ

i“c

ª 2π

j“1

dDli

ip⇡q
D
2

1

S123

i

� ¨
Č123

i N
123

i±
a di,a

,

I
p2q
12

“

ÿ

�PS2ˆS2

bÿ

i“a

ª 2π

j“1

dDli

ip⇡q
D
2

1

S12

i

� ¨
Č12

i N
12

i±
a di,a

,

(6.25)

where we summarize the trivalent topology in Figure 12 and the corresponding factors in

Table 5. Note that the permutations here are fully permuting both internal and external fields,
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which is zero because the numerator Ne is anti-symmetric when exchanging l2 and l3 but

the denominator and measure does not change under this permutation. The dropping out

of topology �i, however, relies solely on zero scaleless integral.

To summarize, the full-color two-loop correction, as given in (3.34), reads
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where we summarize the trivalent topology in Figure 12 and the corresponding factors in

Table 5. Note that the permutations here are fully permuting both internal and external fields,
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New features of non-planar results

Form factor computation provides an independent check for non-planar 
IR structure two-loop amplitudes with general n-point.

where

I
p1q

p✏q “ ´
e
�E✏

�p1 ´ ✏q

1

✏2

nÿ

i“1

´
´

si,i`1

µ2

¯´✏
, (7.6)

I
p2q

p✏q “ ´
1

2

“
I

p1q
p✏q

‰
2

´
e

´�E✏�p1 ´ 2✏q

�p1 ´ ✏q

⇡
2

3
I

p1q
p2✏q ` n

e
�E✏

✏�p1 ´ ✏q

⇣3

2
. (7.7)

Although the original Catani subtraction is used in QCD, it can be applied here to N “ 4

SYM theory by simply dropping lower transcendental pieces (including the beta function

contribution). Note that BDS and Catani subtractions are equivalent for the divergence

parts, but they have a (scheme-changing) di↵erence in the finite remainders.

Non-planar IR structure and dipole formula

By dressing color factors, a generalization of (7.2) is [85–87]

I
p2q

“
1

2

´
I

p1q
p✏q

¯
2

` f̃
p2q

p✏qI
p1q

p2✏q ` H
p2q

p✏q ` R
p2q

` Op✏q , (7.8)

which contains a new function H
p2q with only simple pole in ✏. In the planar limit, (7.8)

should reproduce the planar IR structure (7.1), therefore, the new extra contribution H
p2q

should be a pure non-planar e↵ect. This form can be understood based on the dipole-formula

(see [58, 59] for further discussion):

�dip.
n ptpiu , µq “ ´

1

2
�cusppgYM;Ncq

ÿ

i†j

log

ˆ
´sij

µ2

˙
T̂i ¨ T̂j `

nÿ

i“1

Gcoll,ipgYM;Ncq . (7.9)

Note that the coupling constant before I
p2q should be g̃

4 rather than g
4 (see also (3.3)):

g̃
2

“
g
2

YM

p4⇡q2

`
4⇡e´�E

˘✏
, g̃

2
“ g

2
{Nc . (7.10)

Correspondingly, f̃ p2q
“ Ncf

p2q where the Nc factor comes from g
2
{g̃

2. Below we justify this

formula and derive the explicit form of H p2q using the BPS form factor results.

One-loop square

To perform IR subtraction as in (7.8), one needs to compute the square of full-color one-loop

correction I
p1q

“
∞

i1†i2
I

p1q
i1i2

which is reviewed in Appendix D. The one-loop square has the

following structure

´
I

p1q
¯
2

“

ÿ

i1†i2,i3†i4

I
p1q
i1i2

I
p1q
i3i4

“
`
I

p1q˘2
ˇ̌
ˇ
range-2

`
`
I

p1q˘2
ˇ̌
ˇ
range-3

`
`
I

p1q˘2
ˇ̌
ˇ
range-4

, (7.11)

where the range is defined in terms of length of ti1, i2u
î

ti3, i4u. For example:

`
I

p1q˘2
ˇ̌
ˇ
range-2

“

ÿ

i1†i2

`
I

p1q
I

p1q˘
i1i2

,
`
I

p1q˘2
ˇ̌
ˇ
range-3

“

ÿ

i1†i2†i3

`
I

p1q
I

p1q˘
i1i2i3

. (7.12)
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The color factor of range-2 and range-3 interactions here can also be expanded on the triva-

lent basis of loop correction densities, i.e. Ďj defined in (5.4)-(5.7). Although the detailed

definition of one-loop square is a little bit subtle which will be clarified in Appendix F.1, the

final result is clear and simple:

˝ Range-2

`
I

p1q
I

p1q˘
12

“

27ÿ

j“25

Ďj

”`
Ip1qIp1q˘

pp1, p2q

ı

Ďj

,

”`
Ip1qIp1q˘

pp1, p2q

ı

Ď25

“ Ip1q
p12q

2
,

”`
Ip1qIp1q˘

pp1, p2q

ı

Ď27

“ 0 .

(7.13)

˝ Range-3

`
I

p1q
I

p1q˘
123

“

24ÿ

j“1

Ďj

”`
Ip1qIp1q˘

pp1, p2, p3q

ı

Ďj

,

”`
Ip1qIp1q˘

pp1, p2, p3q

ı

Ď1

“ 2 Ip1q
p12qIp1q

p23q , (7.14)
”`
Ip1qIp1q˘

pp1, p2, p3q

ı

Ď19

“ ´Ip1q
p12qIp1q

p23q ´ Ip1q
p23qIp1q

p13q ´ Ip1q
p13qIp1q

p12q .

Note that the range-4 part is straightforward to write down and we will not give them here.

Also, in the context of BPS form factors Ip1q
pijq “ Itrirsijs with Itri in Appendix D.

Verification of IR structure

Using two-loop form factor results (5.37a)-(5.38b), and the expression for one-loop-square

(7.11), we can now apply (7.8) to check the cancellation of IR singularity.18 The dipole

formula implies that the divergent part of the following quantity

I
p2q

´
1

2

´
I

p1q
p✏q

¯
2

´ f̃
p2q

p✏qI
p1q

p2✏q (7.15)

is expected to have ✏ simple pole only, which we will verify by direct calculation.

The remaining 1{✏ divergent terms are summarized in the function H
p2q, whose kinematic

dependence is only polynomial of log sij . More precisely, we find the following form:

H
p2q

“

ÿ

i†j†k

H
p2q
ijk ,

H
p2q
123

“

ˆ ÿ

�PS3

p´1q
�Ď�2p�q

˙
1

4✏
log

ˆ
´s12

´s23

˙
log

ˆ
´s23

´s13

˙
log

ˆ
´s13

´s12

˙
,

(7.16)

18The computation of the integrated result is standard: one can first perform IBP reduction for the integrand

using public packages, (see e.g. [102–104]), and the master integrals in our problem are all known in terms of

2d harmonic polylogarithms [105, 106].
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color-dipole formula which determines the complete IR singularities up to two loops [58, 59].

Our computation of n-point form factors will provide an independent concrete check for the

dipole formula of amplitudes and form factors that involve arbitrary number of external legs.

Below we first briefly review the planar IR structure and then consider the generalization

to full-color dependence.

Planar IR structure and BDS ansatz formula

At planar level, IR structure has a very simple form because all the Feynman diagrams are

planar so that all the internal lines are confined to the wedges formed between two adjacent

hard lines. As a result, planar IR divergences can be simply captured by the two-point

Sudakov form factor [88–90]. Analysis via renormalization group shows that IR divergence

can be given as a simple exponential form [84, 91]:

log I “ ´

8ÿ

l“1

g
2l

«
�

plq
cusp

p2l✏q2
`

Gplq
coll

2l✏

�
nÿ

i“1

p´sii`1q
´l✏

¨ 1 ` O
`
✏
0
˘
, (7.1)

where Iplq is l loop renormalized planar loop correction (for BPS form factor, I “ I), �cusp
is cusp anomalous dimension [92, 93] and Gcoll is collinear anomalous dimension [94, 95].17

Note that the trivial Nc dependence are included in g
2l; for the non-planar case, we will use

gYM rather than g and explicitly write down the Nc dependence.

It is convenient to rewrite (7.1) as the BDS form [84], and at two-loop level:

Ip2q
“

1

2

´
Ip1q

p✏q

¯
2

` f
p2q

p✏qIp1q
p2✏q ` Rp2q

` Op✏q, (7.2)

where the divergences are all captured in the first two terms and are determined by the

one-loop correction Ip1q, together with a universal kinematic independent quantity

f
p2q

p✏q “ ´2⇣2 ´ 2⇣3✏ ´ 2⇣4✏
2
, (7.3)

which contains the information of two-loop cusp and collinear anomalous dimensions. The

remaining function Rp2q is two-loop finite remainder function.

As a pure side remark, one may compare the BDS subtraction with the Catani IR sub-

traction [100] (see also [101]):

F p1q
“ I

p1q
p✏qF p0q

` F p1q,fin
` Op✏q , (7.4)

F p2q
“ I

p2q
p✏qF p0q

` I
p1q

p✏qF p1q
` F p2q,fin

` Op✏q , (7.5)

17The non-planar corrections of cusp and collinear anomalous dimensions only start at fourth loop order.

The analytic expression of the non-planar N “ 4 cups anomalous dimension were obtained based on both

Wilson loop [96] and form factor [97, 98] computations. The N “ 4 non-planar collinear anomalous dimension

is so far only known numerically [99].
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IR:

Bern, De Freitas and Dixon, 2002, …. 
Explained by dipole formula:  Becher and M. Neubert; Gardi and L. Magnea 2009

BDS ansatz is no-longer enough:



New features of non-planar results
BDS ansatz is no-longer enough:

where

I
p1q

p✏q “ ´
e
�E✏

�p1 ´ ✏q

1

✏2

nÿ

i“1

´
´

si,i`1

µ2

¯´✏
, (7.6)

I
p2q

p✏q “ ´
1

2

“
I

p1q
p✏q

‰
2

´
e

´�E✏�p1 ´ 2✏q

�p1 ´ ✏q

⇡
2

3
I

p1q
p2✏q ` n

e
�E✏

✏�p1 ´ ✏q

⇣3

2
. (7.7)

Although the original Catani subtraction is used in QCD, it can be applied here to N “ 4

SYM theory by simply dropping lower transcendental pieces (including the beta function

contribution). Note that BDS and Catani subtractions are equivalent for the divergence

parts, but they have a (scheme-changing) di↵erence in the finite remainders.

Non-planar IR structure and dipole formula

By dressing color factors, a generalization of (7.2) is [85–87]

I
p2q

“
1

2

´
I

p1q
p✏q

¯
2

` f̃
p2q

p✏qI
p1q

p2✏q ` H
p2q

p✏q ` R
p2q

` Op✏q , (7.8)

which contains a new function H
p2q with only simple pole in ✏. In the planar limit, (7.8)

should reproduce the planar IR structure (7.1), therefore, the new extra contribution H
p2q

should be a pure non-planar e↵ect. This form can be understood based on the dipole-formula

(see [58, 59] for further discussion):

�dip.
n ptpiu , µq “ ´

1

2
�cusppgYM;Ncq

ÿ

i†j

log

ˆ
´sij

µ2

˙
T̂i ¨ T̂j `

nÿ

i“1

Gcoll,ipgYM;Ncq . (7.9)

Note that the coupling constant before I
p2q should be g̃

4 rather than g
4 (see also (3.3)):

g̃
2

“
g
2

YM

p4⇡q2

`
4⇡e´�E

˘✏
, g̃

2
“ g

2
{Nc . (7.10)

Correspondingly, f̃ p2q
“ Ncf

p2q where the Nc factor comes from g
2
{g̃

2. Below we justify this

formula and derive the explicit form of H p2q using the BPS form factor results.

One-loop square

To perform IR subtraction as in (7.8), one needs to compute the square of full-color one-loop

correction I
p1q

“
∞

i1†i2
I

p1q
i1i2

which is reviewed in Appendix D. The one-loop square has the

following structure

´
I

p1q
¯
2

“

ÿ

i1†i2,i3†i4

I
p1q
i1i2

I
p1q
i3i4

“
`
I

p1q˘2
ˇ̌
ˇ
range-2

`
`
I

p1q˘2
ˇ̌
ˇ
range-3

`
`
I

p1q˘2
ˇ̌
ˇ
range-4

, (7.11)

where the range is defined in terms of length of ti1, i2u
î

ti3, i4u. For example:

`
I

p1q˘2
ˇ̌
ˇ
range-2

“

ÿ

i1†i2

`
I

p1q
I

p1q˘
i1i2

,
`
I

p1q˘2
ˇ̌
ˇ
range-3

“

ÿ

i1†i2†i3

`
I

p1q
I

p1q˘
i1i2i3

. (7.12)
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The color factor of range-2 and range-3 interactions here can also be expanded on the triva-

lent basis of loop correction densities, i.e. Ďj defined in (5.4)-(5.7). Although the detailed

definition of one-loop square is a little bit subtle which will be clarified in Appendix F.1, the

final result is clear and simple:

˝ Range-2

`
I

p1q
I

p1q˘
12

“

27ÿ

j“25

Ďj

”`
Ip1qIp1q˘

pp1, p2q

ı

Ďj

,

”`
Ip1qIp1q˘

pp1, p2q

ı

Ď25

“ Ip1q
p12q

2
,

”`
Ip1qIp1q˘

pp1, p2q

ı

Ď27

“ 0 .

(7.13)

˝ Range-3

`
I

p1q
I

p1q˘
123

“

24ÿ

j“1

Ďj

”`
Ip1qIp1q˘

pp1, p2, p3q

ı

Ďj

,

”`
Ip1qIp1q˘

pp1, p2, p3q

ı

Ď1

“ 2 Ip1q
p12qIp1q

p23q , (7.14)
”`
Ip1qIp1q˘

pp1, p2, p3q

ı

Ď19

“ ´Ip1q
p12qIp1q

p23q ´ Ip1q
p23qIp1q

p13q ´ Ip1q
p13qIp1q

p12q .

Note that the range-4 part is straightforward to write down and we will not give them here.

Also, in the context of BPS form factors Ip1q
pijq “ Itrirsijs with Itri in Appendix D.

Verification of IR structure

Using two-loop form factor results (5.37a)-(5.38b), and the expression for one-loop-square

(7.11), we can now apply (7.8) to check the cancellation of IR singularity.18 The dipole

formula implies that the divergent part of the following quantity

I
p2q

´
1

2

´
I

p1q
p✏q

¯
2

´ f̃
p2q

p✏qI
p1q

p2✏q (7.15)

is expected to have ✏ simple pole only, which we will verify by direct calculation.

The remaining 1{✏ divergent terms are summarized in the function H
p2q, whose kinematic

dependence is only polynomial of log sij . More precisely, we find the following form:

H
p2q

“

ÿ

i†j†k

H
p2q
ijk ,

H
p2q
123

“

ˆ ÿ

�PS3

p´1q
�Ď�2p�q

˙
1

4✏
log

ˆ
´s12

´s23

˙
log

ˆ
´s23

´s13

˙
log

ˆ
´s13

´s12

˙
,

(7.16)

18The computation of the integrated result is standard: one can first perform IBP reduction for the integrand

using public packages, (see e.g. [102–104]), and the master integrals in our problem are all known in terms of

2d harmonic polylogarithms [105, 106].
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where the last term in (7.31) precisely corresponds to H
p2q
123

in (7.16), and to cancel the

divergence we also add auxiliary function Upijq. The range-2 remainder is defined as

1

2

”
Rp2q

p12q

ı

Ď27

“

„
Ip2q
BPS,c

p12q ´ 4Up12q ´ f
p2q

p✏q
`
Ip1q

p12q
˘
✏�2✏

⇢
, (7.32)

and
“
Rp2q‰

Ď27
is also a pure number equals to 2 ˆ p´17⇣4q.

Now one may ask the question that: does the non-planar remainder have the same

maximal transcendental part as the planar remainder? Interestingly, the answer is no. A

simple calculation reveals that
“
Rp2q

p123q
‰
Ď19

can not be given as a linear combination of

Rbasis function in (7.20) plus pure numbers. To compute its analytic form, we follow the

similar strategy as described above for the planar remainder.

We first check the Goncharov criterion (7.21). Observing that

� ˝ S
ˆ”

Rp2q
ı

Ď19

˙ ˇ̌
ˇ
⇤2B2

“ ´� ˝ pS pGpt1 ´ u, 1 ´ u, 1, 0u, vq ` cycpu, v, wqqq

ˇ̌
ˇ
⇤2B2

, (7.33)

we know that non-classical part of
”
Rp2q

ı

Ď19

can be chosen as the same G functions as in

Rbasis.

Inspired by this, we define19

RNP
“

”
Rp2q

ı

Ď19

` Rbasispu, v, wq ` Rbasispv, w, uq ` Rbasispw, u, vq ´ 3 ˆ
19

4
⇣4 , (7.34)

as new non-planar (NP) information with the following symmetry property

RNP
pu, v, wq “ p´1q

�RNP
p�pu, v, wqq . (7.35)

Since RNP passes the Goncharov criterion and can be expressed as classic polylogarithm

consequently. It can be fixed using the ansatz method aforementioned and the final expression

takes a very simple form as

RNP
pu, v, wq “ RNP

basis
pu, v, wq ` cycpu, v, wq , (7.36)

where we introduce another basis function

RNP
basis

pu, v, wq “ Li3

ˆ
1 ´

1

u

˙
log

´
v

w

¯
`

1

12
logpuq

3 log
´
v

w

¯
` ⇣2 logp1´ uq log

´
v

w

¯
. (7.37)

As a result, the range-3 non-planar remainder density can be given as
”
Rp2q

p123q

ı

Ď19

“

„
´Rbasispu, v, wq ` RNP

basis
pu, v, wq `

19

4
⇣4

⇢
` cycpu, v, wq . (7.38)

With the symmetry of (7.35), we can also dress color factor to RNP
basis

pu, v, wq. Define

R
NP

“

ÿ

i†j†k

R
NP
ijk ,

R
NP
123 “

ÿ

�PS3

Ď�2p�qRNP
basis

p�pu, v, wqq “

ˆ ÿ

�PS3

p´1q
�Ď�2p�q

˙
RNP

basis
pu, v, wq .

(7.39)

We discuss more on this new non-planar contribution in Section 7.4.
19The ⇣4 term is separated intentionally to get symmetric properties of RNP

123 in (7.35).
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color-dipole formula which determines the complete IR singularities up to two loops [58, 59].

Our computation of n-point form factors will provide an independent concrete check for the

dipole formula of amplitudes and form factors that involve arbitrary number of external legs.

Below we first briefly review the planar IR structure and then consider the generalization

to full-color dependence.

Planar IR structure and BDS ansatz formula

At planar level, IR structure has a very simple form because all the Feynman diagrams are

planar so that all the internal lines are confined to the wedges formed between two adjacent

hard lines. As a result, planar IR divergences can be simply captured by the two-point

Sudakov form factor [88–90]. Analysis via renormalization group shows that IR divergence

can be given as a simple exponential form [84, 91]:

log I “ ´

8ÿ

l“1

g
2l

«
�

plq
cusp

p2l✏q2
`

Gplq
coll

2l✏

�
nÿ

i“1

p´sii`1q
´l✏

¨ 1 ` O
`
✏
0
˘
, (7.1)

where Iplq is l loop renormalized planar loop correction (for BPS form factor, I “ I), �cusp
is cusp anomalous dimension [92, 93] and Gcoll is collinear anomalous dimension [94, 95].17

Note that the trivial Nc dependence are included in g
2l; for the non-planar case, we will use

gYM rather than g and explicitly write down the Nc dependence.

It is convenient to rewrite (7.1) as the BDS form [84], and at two-loop level:

Ip2q
“

1

2

´
Ip1q

p✏q

¯
2

` f
p2q

p✏qIp1q
p2✏q ` Rp2q

` Op✏q, (7.2)

where the divergences are all captured in the first two terms and are determined by the

one-loop correction Ip1q, together with a universal kinematic independent quantity

f
p2q

p✏q “ ´2⇣2 ´ 2⇣3✏ ´ 2⇣4✏
2
, (7.3)

which contains the information of two-loop cusp and collinear anomalous dimensions. The

remaining function Rp2q is two-loop finite remainder function.

As a pure side remark, one may compare the BDS subtraction with the Catani IR sub-

traction [100] (see also [101]):

F p1q
“ I

p1q
p✏qF p0q

` F p1q,fin
` Op✏q , (7.4)

F p2q
“ I

p2q
p✏qF p0q

` I
p1q

p✏qF p1q
` F p2q,fin

` Op✏q , (7.5)

17The non-planar corrections of cusp and collinear anomalous dimensions only start at fourth loop order.

The analytic expression of the non-planar N “ 4 cups anomalous dimension were obtained based on both

Wilson loop [96] and form factor [97, 98] computations. The N “ 4 non-planar collinear anomalous dimension

is so far only known numerically [99].
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Planar

non-planar

IR:

Finite remainder:

where the last term in (7.31) precisely corresponds to H
p2q
123

in (7.16), and to cancel the

divergence we also add auxiliary function Upijq. The range-2 remainder is defined as

1

2

”
Rp2q

p12q

ı

Ď27

“

„
Ip2q
BPS,c

p12q ´ 4Up12q ´ f
p2q

p✏q
`
Ip1q

p12q
˘
✏�2✏

⇢
, (7.32)

and
“
Rp2q‰

Ď27
is also a pure number equals to 2 ˆ p´17⇣4q.

Now one may ask the question that: does the non-planar remainder have the same

maximal transcendental part as the planar remainder? Interestingly, the answer is no. A

simple calculation reveals that
“
Rp2q

p123q
‰
Ď19

can not be given as a linear combination of

Rbasis function in (7.20) plus pure numbers. To compute its analytic form, we follow the

similar strategy as described above for the planar remainder.

We first check the Goncharov criterion (7.21). Observing that

� ˝ S
ˆ”

Rp2q
ı

Ď19

˙ ˇ̌
ˇ
⇤2B2

“ ´� ˝ pS pGpt1 ´ u, 1 ´ u, 1, 0u, vq ` cycpu, v, wqqq

ˇ̌
ˇ
⇤2B2

, (7.33)

we know that non-classical part of
”
Rp2q

ı

Ď19

can be chosen as the same G functions as in

Rbasis.

Inspired by this, we define19

RNP
“

”
Rp2q

ı

Ď19

` Rbasispu, v, wq ` Rbasispv, w, uq ` Rbasispw, u, vq ´ 3 ˆ
19

4
⇣4 , (7.34)

as new non-planar (NP) information with the following symmetry property

RNP
pu, v, wq “ p´1q

�RNP
p�pu, v, wqq . (7.35)

Since RNP passes the Goncharov criterion and can be expressed as classic polylogarithm

consequently. It can be fixed using the ansatz method aforementioned and the final expression

takes a very simple form as

RNP
pu, v, wq “ RNP

basis
pu, v, wq ` cycpu, v, wq , (7.36)

where we introduce another basis function

RNP
basis

pu, v, wq “ Li3

ˆ
1 ´

1

u

˙
log

´
v

w

¯
`

1

12
logpuq

3 log
´
v

w

¯
` ⇣2 logp1´ uq log

´
v

w

¯
. (7.37)

As a result, the range-3 non-planar remainder density can be given as
”
Rp2q

p123q

ı

Ď19

“

„
´Rbasispu, v, wq ` RNP

basis
pu, v, wq `

19

4
⇣4

⇢
` cycpu, v, wq . (7.38)

With the symmetry of (7.35), we can also dress color factor to RNP
basis

pu, v, wq. Define

R
NP

“

ÿ

i†j†k

R
NP
ijk ,

R
NP
123 “

ÿ

�PS3

Ď�2p�qRNP
basis

p�pu, v, wqq “

ˆ ÿ

�PS3

p´1q
�Ď�2p�q

˙
RNP

basis
pu, v, wq .

(7.39)

We discuss more on this new non-planar contribution in Section 7.4.
19The ⇣4 term is separated intentionally to get symmetric properties of RNP

123 in (7.35).
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Hierarchy of simplicity
Introduction to scattering amplitudes 8

massive
massless

sYM
N=4 sYM

planar N=4 sYM

Figure 3. Hierarchy of simplicity in scattering amplitudes for various types of
gauge theory.

in dimensional regularization.

There is a hierarchy of simplicity in the scattering amplitudes for various types of
gauge theory, as sketched in fig. 3. This hierarchy begins to be revealed at one loop. The

outer region of the diagram stands for a generic gauge theory with massive matter fields,

and perhaps massive gauge bosons, if the gauge symmetry is spontaneously broken, as

in electroweak theory. One-loop amplitudes in such a theory generically contain tadpole

integrals. One-particle cuts are nontrivial, and are particularly delicate because of

external-leg contributions [50, 24]. The cut structure of loop integrals containing massive
propagators in the loop is generically somewhat more complicated than the purely

massless case. Massive particles in the loop can be unstable, which usually necessitates

complex masses. When one enters the “massless” ring in fig. 3, corresponding to massless

gauge bosons and matter fields, most of these complications vanish, although there are

still generically rational parts to compute. The ring “sYM” stands for supersymmetric

gauge theories. Their one-loop amplitudes can be constructed from four-dimensional
unitarity cuts alone, i.e. there are no non-trivial rational parts [23].

Moving further inward in fig. 3, we arrive at N = 4 sYM. As mentioned earlier,

at one loop the coefficients of bubble and triangle integrals now vanish, as well as the

independent rational parts. (There are other gauge theories with vanishing bubble and

triangle coefficients, at least for their n-gluon amplitudes [51, 24].) The theory becomes

conformally invariant. It has been conjectured that the leading singularities — the
multi-loop analogs of the quadruple cuts — are sufficient to determine the amplitudes

at any loop order [18]. In addition, scattering amplitudes have empirically a predictable,

uniform transcendental weight [52, 53]. This weight refers to their construction out of

polylogarithms, logarithms, and Riemann ζ(n) values. For example, the finite (O(ϵ0))

terms in one-loop N = 4 sYM amplitudes are of weight two: They contain some terms

proportional to the polylogarithm Li2, and others which are products of two logarithms,
or proportional to ζ(2), but they do not contain any terms of lower transcendentality.

Lance Dixon 1105.0771

Non-planar 
N=4 SYM

Non-supersymmetric 
QCD



Loop structure of form factors

IR divergences

UV divergences

The IR and UV are mixed in general in a non-trivial way.

General structure of (bare) amplitudes/form factors:

Form factors have divergences:

soft and collinear divergences

renormalization of coupling g and operators O

full result = IR     +         UV + finite remainder

Universal infrared 
divergences

wanted UV divergences 
and finite parts



IR structure in QCD

Universal IR structure:

we have the relations between the renormalized components F (l) and the bare ones F (l)
b as

F (0) = F (0)
b , (2.18)

F (1) = S−1
ϵ F (1)

b +
(

Z(1) −
x

2

β0
ϵ

)

F (0)
b , (2.19)

F (2) = S−2
ϵ F (2)

b + S−1
ϵ

[

Z(1) −
(

1 +
x

2

)β0
ϵ

]

F (1)
b

+
[

Z(2) −
x

2

β0
ϵ
Z(1) +

x2 + 2x

8

β2
0

ϵ2
−

x

4

β1
ϵ

]

F (0)
b . (2.20)

The renormalized form factor contains IR divergences, which take a universal structure

[41, 42] (see also [28]):

F (1) = I(1)(ϵ)F (0) + F (1),fin +O(ϵ) , (2.21)

F (2) = I(2)(ϵ)F (0) + I(1)(ϵ)F (1) + F (2),fin +O(ϵ) , (2.22)

where for the form factor with n external gluons, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

(

Nc

ϵ2
+

β0
2ϵ

) n
∑

i=1

(−si,i+1)
−ϵ , (2.23)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ)

+
e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+

(

67

9
−

π2

3

)

Nc

]

I(1)(2ϵ)

+ n
eγEϵ

ϵΓ(1− ϵ)

[(

ζ3
2

+
5

12
+

11π2

144

)

N2
c

]

. (2.24)

3 Computation

Unitarity method is a power tool to construct the integrand for loop amplitudes or form factors

from their discontinuities, i.e. by applying cuts. On the cut, the loop integrand factorizes

into a product of tree-level or lower-loop amplitudes and form factors. The commonly used

strategy of unitarity method is to reconstruct the full integrand. Given the cut integrand, one

can apply reduction techniques to write the result in a form that can be identified as a sum of

all possible cut of a set of integrals, which form an ansatz for the full integrand. In general,

not all integrals may appear in a given cut, and additional cuts have to be considered. The

complete ansatz must be consistent with all possible cut.

There are two shortcomings of this strategy. First, it is not a trivial task to reconstruct

the full uncut integrand. At one-loop, a complete set of simple basis integrals are well known.

However, this is not true at two loops and beyond, and there is a significant increase of the

number and complexity of loop topologies, and a single integral may contribute several cut

terms. Second, even after reconstruct the full integrand, one still needs to perform further

reduction, such as IBP reduced to a set of master integrals which allows integral evaluations.

Often it is the IBP reduction which is a main bottle-neck of the full computation.
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[Catani 1998]

e.g. for pure external gluons:

Expanding the renormalized form factor as

F = gxs S
−x/2
ϵ

∞
∑

l=0

(αs

4π

)l
F (l) , (2.26)

we have the relations between the renormalized components F (l) and the bare ones F (l)
b as

F (0) = F (0)
b , (2.27)

F (1) = S−1
ϵ F (1)

b +
(

Z(1) −
x

2

β0
ϵ

)

F (0)
b , (2.28)

F (2) = S−2
ϵ F (2)

b + S−1
ϵ

[

Z(1) −
(

1 +
x

2

)β0
ϵ

]

F (1)
b

+
[

Z(2) −
x

2

β0
ϵ
Z(1) +

x2 + 2x

8

β20
ϵ2

−
x

4

β1
ϵ

]

F (0)
b . (2.29)

The renormalized form factor contains IR divergences, which take a universal structure

[6, 7] (see also [8]):

F (1) = I(1)(ϵ)F (0) + F (1),fin +O(ϵ) , (2.30)

F (2) = I(2)(ϵ)F (0) + I(1)(ϵ)F (1) +F (2),fin +O(ϵ) , (2.31)

where for the form factor with n external gluons, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

(

CA

ϵ2
+
β0
2ϵ

) n
∑

i=1

(−si,i+1)
−ϵ , (2.32)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ) (2.33)

+
e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+

(

67

9
−
π2

3

)

CA −
10

9
nf

]

I(1)(2ϵ)

+ n
eγEϵ

ϵΓ(1− ϵ)

[

(

ζ3
2

+
5

12
+

11π2

144

)

C2
A +

5n2
f

27
−

(

π2

72
+

89

108

)

CAnf −
nf

4CA

]

.

For the case with external quarks, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

[(

CA

ϵ2
+

3CA

4ϵ
+
β0
4ϵ

)

(

(−s13)
−ϵ + (−s23)

−ϵ
)

−
1

CA

(

1

ϵ2
+

3

2ϵ

)

(−s12)
−ϵ

]

,

(2.34)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ) +

e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+K

]

I(1)(2ϵ) +
eγEϵ

ϵΓ(1− ϵ)
H(2)

Ω ,

where

K =

(

67

9
−
π2

3

)

CA −
10

9
nf , (2.35)
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Finite remainder 

There are six different color factors:

we have the relations between the renormalized components F (l) and the bare ones F (l)
b as

F (0) = F (0)
b , (2.18)

F (1) = S−1
ϵ F (1)

b +
(

Z(1) −
x

2

β0
ϵ

)

F (0)
b , (2.19)

F (2) = S−2
ϵ F (2)

b + S−1
ϵ

[

Z(1) −
(

1 +
x

2

)β0
ϵ

]

F (1)
b

+
[

Z(2) −
x

2

β0
ϵ
Z(1) +

x2 + 2x

8

β2
0

ϵ2
−

x

4

β1
ϵ

]

F (0)
b . (2.20)

The renormalized form factor contains IR divergences, which take a universal structure

[41, 42] (see also [28]):

F (1) = I(1)(ϵ)F (0) + F (1),fin +O(ϵ) , (2.21)

F (2) = I(2)(ϵ)F (0) + I(1)(ϵ)F (1) + F (2),fin +O(ϵ) , (2.22)

where for the form factor with n external gluons, we have

I(1)(ϵ) = −
eγEϵ

Γ(1− ϵ)

(

Nc

ϵ2
+

β0
2ϵ

) n
∑

i=1

(−si,i+1)
−ϵ , (2.23)

I(2)(ϵ) = −
1

2

[

I(1)(ϵ)
]2

−
β0
ϵ
I(1)(ϵ)

+
e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

[

β0
ϵ

+

(

67

9
−

π2

3

)

Nc

]

I(1)(2ϵ)

+ n
eγEϵ

ϵΓ(1− ϵ)

[(

ζ3
2

+
5

12
+

11π2

144

)

N2
c

]

. (2.24)

3 Computation

Unitarity method is a power tool to construct the integrand for loop amplitudes or form factors

from their discontinuities, i.e. by applying cuts. On the cut, the loop integrand factorizes

into a product of tree-level or lower-loop amplitudes and form factors. The commonly used

strategy of unitarity method is to reconstruct the full integrand. Given the cut integrand, one

can apply reduction techniques to write the result in a form that can be identified as a sum of

all possible cut of a set of integrals, which form an ansatz for the full integrand. In general,

not all integrals may appear in a given cut, and additional cuts have to be considered. The

complete ansatz must be consistent with all possible cut.

There are two shortcomings of this strategy. First, it is not a trivial task to reconstruct

the full uncut integrand. At one-loop, a complete set of simple basis integrals are well known.

However, this is not true at two loops and beyond, and there is a significant increase of the

number and complexity of loop topologies, and a single integral may contribute several cut

terms. Second, even after reconstruct the full integrand, one still needs to perform further

reduction, such as IBP reduced to a set of master integrals which allows integral evaluations.

Often it is the IBP reduction which is a main bottle-neck of the full computation.
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The intrinsic information is contained in the finite part:

ℛ(2)
𝒪 = C2

Aℛ(2),C2
A

𝒪 +CACFℛ(2),CACF
𝒪 +C2

Fℛ(2),C2
F

𝒪 + nfCAℛ(2),nfCA
𝒪 + nfCFℛ(2),nfCF

𝒪 + n2
f ℛ(2),n2

f
𝒪

CA = Nc , CF =
N2

c − 1
2Nc

ℛ(2)
𝒪 = N2

c ℛ(2),N2
c

𝒪 +N0
c ℛ(2),N0

c
𝒪 +

1
N2

c
ℛ(2),N−2

c
𝒪 + nf Ncℛ

(2),nf Nc
𝒪 +

nf

Nc
ℛ(2),nf /Nc

𝒪 + n2
f ℛ(2),n2

f
𝒪

A different expansion:

ℛ(l)
𝒪 = ℱ(l),fin

𝒪 /ℱ(0)
𝒪


