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Holography: geometric manifestation of CFT ingredients
in 1-higher dimensional bulk AdS spacetime

Can be understood as saddle-point objects in the
holographic limit: N — oco,g > 1

Simplest probe of geometry: entanglement entropy via
the RT formula
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Motivation

Entanglement entropy: pA = tl‘g |¢> <¢|

Sqa=tr(palnpa)

Entanglement entropy via replica trick — Renyi entropies

L n .
—n), Ln =trpy S4 = lim S,(A)
1 n—1
PA ~PA
saddle-point f\//\
approximation P % ?
PA
# ?
= N G
smooth bulk gravity solution
PA




Motivation

~ “cosmic brane” prescription for constructing (quotient of) bulk X Dong, 16

n—1
4nGN

© brane tension: 7T =
~ can analytically continue n to real values

~ take replica limit, extract leading order in O(n-1)

Area(X4)
AG N

~ RT formula emerges: Sa =

Lewkowycz & Maldacena 14
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Motivation

2 underlying assumptions:

1. Only “replica symmetric” saddles are important
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2. One particular saddle-point dominates the path-integral
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What happens when the assumptions break down?

Two competing saddle points having comparable contribution

Area (X5) = Area (X5)

“entanglement phase transition”
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Motivation

A prototype: entanglement entropy of a black hole micro-state (chaotic)

V.S.

A

Goal: how do saddle-points participate at the transition?

~ Replica-symmetric saddle-points switching dominance
© Effects of replica non-symmetric saddle-points?

© Focus on a particular aspect of the transition: enhanced correction
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Enhanced correction at the transition

Has been shown for chaotic high energy eigenstates
E) = Z cis|Ei)a ® |Ey) 4 C. Murthy and M. Srednicki, 2019
|E,+E;—E|<A

C;J are independent Gaussian random variables, an ansatz based on eigenstate
thermalization hypothesis (ETH), i.e. small subsystems look thermal

t T AS, VY
Y
5 >
1/2 f=Va/V

We would like to understand this in the context of AdS/CFT, via RT formula

Via replica-trick: revisit renyi entropy calculation in AdAS/CFT
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Renyi entropy for Chaotic Black hole micro-states

In terms of Euclidean path-integral, how does a chaotic energy
eigenstate differ from a true canonical ensemble?

o =Y e PEIEYE v.S. pE = |E)(E]
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Black hole geometry = canonical ensemble Black hole micro-state = | E) ( F|
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Independent Gaussian random variables: wick contractions cc* o< 1
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Reduced density matrix: pa = 1T 1pE
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Renyi entropy for Chaotic Black hole micro-states

~ Can show: only wick-contraction of planar type dominates in holographic

1 1

imit, e.g. planar: - — ; non-planar: ci ¢icacs ... cpc
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C1C1C2Cs ... CpCy, N

- Re-order the segments of path-integral, so that the wick contraction takes

uniform form: c¢1c] cacs ... cpcl (canonical representation)

~ Different branch structures along A and A complement (to maintain topology)



Renyi entropy for Chaotic Black hole micro-states

~ Different (planar) wick-contractions give rise to different closed
boundary branched manifolds {M;} for computing 7,

~ Need to fill them into bulk solutions {B;}, corresponding to different
bulk saddles for computing S,,(A)
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Constructing bulk saddle-points

Example: n=3

In canonical representation, need to fill the following boundary manifolds:
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Constructing bulk saddle-points

Example: n=3

In canonical representation, need to fill the following boundary manifolds:

Black hole geometry
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Constructing bulk saddle-points

Example: n=3

By ~ B3 ~ By

In general, breaks replica symmetry

Difficult to construct such bulk geometries

We are interested in high temperature BH micro-states
In this case, we can neglect features along the thermal
circles and boundary phenomena near 9 A

bulk solutions can be approximately constructed by
simply gluing “segments” of black hole geometries,

subject to matching conditions
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Recipe for a generic saddle-point for general 71 :
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Constructing bulk saddle-points

Recipe for a generic saddle-point for general 71 :

Alternatively, the quotient of such a geometry can be obtained by double defect construction,
similar to the cosmic brane construction

XN
TA:n—m’ T_:m—l — X
AnG N AnG s 24




Re-summing saddles: effective action for cosmic brane

n
Zn — E d(m) Zn (Bm) degeneracy from different gluing choices
m=1

Zn(gm) — /Dg DZA,A G—Sbulk_Zi:A,A T Sbrane (24) Sbrane(z) — /Edy\/g

b

n—m _— m — 1 double defects

T'x =
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Can re-sum over m explicitly:
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effective action for the cosmic branes



Re-summing saddles: effective action for cosmic brane

Effective action from re-summation:

/ _
AIbragne

ﬁsbrane(zz‘l) —In {2F; |1 - n,—n; 2; e *°N ])7 Alprane < 0
Seff = 9 - N
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~ “non-local” effective brane action from re-summing all saddles
© can analytically continue to non-integer n, and take replica limit.
~ solve the dynamics of this effective brane action (in fixed-area basis)

~ in high T limit, path-integral reduces to 1-dimensional:

()

Z, = /dg enSA(g)+nSA(E_8)_Ieff(SA(5),SA(E—5>,
e4.4(2) :subsystem density of

states at subsystem energy x
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-~ We can use compute the effective action approximately using stationary point
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Enhanced correction from effective action

-~ We can use compute the effective action approximately using stationary point
o At the transition V4 = Vz, FY is reflection symmetric about F /2

~ For generic n>1, the integrand has two well-separated stationary points, can be

approximated by two independent full Gaussian integrals
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~ The flat segment results in an enhancement compared to the Gaussian approximation
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Enhanced correction from effective action

- As n->1, the two stationary points collide, a “flat direction” emerges in-between
© Width of the flat segment AE* = & — £* proportionalto d =n — 1
~ The flat segment results in an enhancement compared to the Gaussian approximation

o . InZ,
~ In the replica limit n->1, 5S4 = lim
n—11—n

gives the enhanced correction to

entanglement entropy
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Discussions and Outlooks

~ 8o, are the replica non-symmetric saddles important at the transition?

Definitely. Including only the replica symmetric saddles By and B,,
Ly & /d€ [e_SE(Bl’g) +e_SE(B”’5)] *

could dynamically produce both sides of the transition, but would miss
the important phenomena of enhanced correction at the transition.

~ Ok, what exactly do they do at the transition?

It is shown that one can get the enhanced correction if imposing by hand
the ansatz (D. Marolf, et al, 2020):

Ly N /dg o~ Min{Sg(B1,£),Se(Bn,£)}

which is different from * Including the replica non-symmetric saddles
dynamically implement this ansatz with small deviations.



Discussions and Outlooks

Questions for the future:

~ More dynamics of the non-local effective action: interaction between brane defects?

© “flat segment”: exchanging soft modes between brane defects?

~ Are cosmic branes more than auxiliary tools? Do they have intrinsic dynamics, including
non-perturbative effects?

~ How do these effects manifest without averaging over randomness?

~ Enhanced corrections at other entanglement transitions, e.g. two-interval entanglements in

AdS3/CFT2.

Thank you!



