Integral equations of the Heisenberg chain with a finite temperature

Integral equations of the Heisenberg chain with a finite temperature

Wen-Li Yang

Northwest University

Joint Works with J. Cao, G.-L. Li, K. Shi and Y. Wang

arXiv:21MM.XXXXX

PCFT20, USTC, Hefei, November 26-30, 2020

Outline

- Introducation
- ullet Exact solution of the Heisenberg chain at T=0
 - Bethe ansatz solution.
 - Ground state.
- Thermodynamics of the Heisenberg Spin Chain
 - String hypothesis and TBA.
 - Quantum Transfer Matrix Method.
- Non-linear Integral equation for the partition function
 - T-W relation .
 - Non-linear Integral equation.
- Conclusion and Comments

Introducation

Motivations

Quantum integrable systems have many applications in

- String/ Gauge theories: AdS/CFT, Super-symmetric Yang-Mills theories...
- Statistical mechanics: The Ising model, the six-vertex models...
- ullet Condensed Matter Physics: The super-symmetric t-J Model, the Hubbard model...
- Mathematics: Quantum group, Representation theory, Algebraic Topology, ...

Introducation

Methods to solve the spectrum

There are many methods to solve quantum integrable systems (The case of T = 0):

- The Coordinate Bethe Ansatz method (H. Bethe 1931)
- The Baxter's T Q relation method (R. Baxter 1970s)
- The Quantum Inverse Scattering (or Algebraic Bethe Ansatz) method (L. Faddeev's School 1979s) and its generalizations
- The off-diagonal Bethe Ansaz method (2013s)

Introducation

Methods to solve the thermodynamic

There are many methods to solve quantum integrable systems (With a finite T):

- The Thermodynamical Bethe Ansatz method (C.N Yang & C.P. Yang 1969)
- TBA based on the string hypothesis (M. Takahashi 1971s)
- The Quantum transfer matrix method (A. Klumper et al 1992s)
- A generalized version of QTM

Bethe ansatz solution

The Hamiltonian of the closed Heisenberg chain is

$$H = \sum_{k=1}^{L} \left(\sigma_k^{\mathsf{x}} \, \sigma_{k+1}^{\mathsf{x}} + \sigma_k^{\mathsf{y}} \, \sigma_{k+1}^{\mathsf{y}} + \sigma_k^{\mathsf{z}} \, \sigma_{k+1}^{\mathsf{z}} \right),$$

where

$$\sigma_{L+1}^{\alpha} = \sigma_1^{\alpha}, \quad \alpha = x, y, z.$$

The system is integrable, i.e., there exist enough conserved charges

$$i\hbar \frac{\partial}{\partial t} h_i = [H, h_i] = 0, \qquad i = 1, \ldots.$$

and

$$[h_i,h_j]=0.$$

Bethe ansatz solution

It is convenient to introduce a generation function of these charges, the so-called transfer matrix

$$t(u) = \sum_{i=0}^{\infty} h_i u^i.$$

Then

$$[t(u), t(v)] = 0,$$
 $H = 2\eta \frac{\partial}{\partial u} \ln t(u)|_{u=0} - L,$

or

$$H \propto h_0^{-1} h_1 + const,$$

 $h_0 \sigma_i^{\alpha} h_0^{-1} = \sigma_{i+1}^{\alpha}.$

The eigenstates and the corresponding eigenvalues can be obtained by Quantum Inverse Scattering Method (QISM). In the framework of QISM, the monodromy matrix T(u)

$$T(u) = \begin{pmatrix} A(u) & B(u) \\ C(u) & D(u) \end{pmatrix},$$

has played a central role. It is built from the six-vertex R-matrix of

$$T_0(u) = R_{0L}(u) \dots R_{01}(u),$$

where the well-known six-vertex R-matrix is given by

$$R(u) = rac{1}{\eta} \left(egin{array}{cccc} u + \eta & & & & \ & u & \eta & & \ & & \eta & u & \ & & & u + \eta \end{array}
ight).$$

The transfer matrix is t(u) = trT(u) = A(u) + D(u).

Bethe ansatz solution

The R-matrix satisfies the Yang-Baxter equation (YBE)

$$R_{12}(u-v)R_{13}(u)R_{23}(v) = R_{23}(v)R_{13}(u)R_{12}(u-v).$$
 (1)

The above fundamental relation leads to the following so-called RLL relation between the monodromy matrix

$$R_{0\,0'}(u-v)\,T_0(u)\,T_{0'}(v) = T_{0'}(v)\,T_0(u)\,R_{0\,0'}(u-v). \tag{2}$$

This leads to

$$[t(u), t(v)] = 0, \tag{3}$$

which ensures the integrability of the Heisenberg chain with periodic boundary condition.

Bethe ansatz solution

The eigenvalue $\Lambda(u)$ of the transfer matrix t(u) can be parameterized by some parameters $\{\lambda_1, \cdots, \lambda_M | M=0, \cdots, L\}$ as follows (H. Bethe, Z. Phys. 71, 205 (1931)):

$$\Lambda(u) = a(u) \frac{Q(u - \eta)}{Q(u)} + d(u) \frac{Q(u + \eta)}{Q(u)}, \tag{4}$$

where

$$a(u) = (u + \eta)^L = d(u + \eta), \quad Q(u) = \prod_{j=1}^{M} (u - \lambda_j + \frac{\eta}{2}),$$

the parameters $\{\lambda_i\}$ should satisfy Bethe ansatz equations (BAEs),

$$\prod_{k\neq j}^{M} \frac{\lambda_j - \lambda_k + \eta}{\lambda_j - \lambda_k - \eta} = \frac{(\lambda_j + \frac{\eta}{2})^L}{(\lambda_j - \frac{\eta}{2})^L}, \qquad j = 1, \dots, M.$$
 (5)

Ground state

For the ground state the corresponding Bethe roots to the BAEs (5) (with $M=\frac{L}{2}$) are all real with $\lambda_{j+1}-\lambda_{j}\sim(1/L)$, which allows to define the density $\rho_{\rm g}(\lambda)$ of the distribution of Bethe roots. The density satisfy the linear integral equation

$$\rho_{g}(\lambda) = a_{1}(\lambda) - \int_{-\infty}^{\infty} a_{2}(\lambda - u)\rho_{g}(u) du, \quad a_{n}(\lambda) = \frac{1}{2\pi} \frac{n}{\lambda^{2} + \frac{n^{2}}{4}}, \text{ for } n > 0.$$
 (6)

The solution to the above equation is

$$\rho_{g}(\lambda) = \frac{1}{2\cosh(\pi\lambda)}. (7)$$

Then the energy density of the ground state is give

$$e_g = -2\pi \int_{-\infty}^{\infty} 2a_1(\lambda)\rho_g(\lambda) d\lambda + 1 = 1 - 4\ln 2.$$
 (8)

 e_g is also the energy density of the Heisenberg chain at T=0.

Thermodynamics of the Heisenberg Spin Chain

Thermodynamic Bethe ansatz solution

Besides of the real solution of the BAEs (5), there exist many complex solution which form some *n*-strings

$$\lambda_{j,\alpha}^{(n)} = \lambda_{\alpha}^{(n)} - \frac{i}{2}(n+1-2j) + O(e^{-\delta L}), \quad j = 1, 2, \dots, n; \quad n = 1, 2 \dots,$$
 (9)

where $\lambda_{\alpha}^{(n)}$ is real, which corresponds to the *n*-string position.

- At zero temperature, the system stays at the ground state. There are only 1-strings whose density is e_g .
- At a finite temperature T, the system stays at all the states with a possibility. This means that all n-strings are excited with a density $(\rho_n(\lambda), \rho^{(h)}(\lambda))$.

Thermodynamic Bethe ansatz solution

At the thermodynamics equilibrium state with a finite temperature T, the resulting functions $\{\eta_n(\lambda)=\frac{\rho^{(h)}(\lambda)}{\rho(\lambda)}|n=1,2,\cdots\}$ satisfy the associated thermodynamic Bethe ansatz (TBA) equations:

$$\ln\{1+\eta_n(\lambda)\} = -2\pi\beta a_n(\lambda) + \sum_{m=1}^{\infty} \int_{-\infty}^{\infty} A_{m,n}(\lambda-u) \ln\{1+\eta_m^{-1}(u)\} du, \ n=1,2,\cdots, \quad (10)$$

with an asymptotical behavior $\lim_{n\to\infty}\frac{\ln\eta_n(\lambda)}{n}=0$. The free energy per site is then given by

$$f(\beta) = e_g - \beta \int_{-\infty}^{\infty} \rho_g(\lambda) \ln \{1 + \eta_1(\lambda)\} d\lambda.$$

Quantum Transfer Matrix Method

The partition function $Z(\beta)$ of the Heisenberg chain at a temperature T is given by

$$Z(\beta) = \lim_{L \to \infty} tr_{1, \dots, L} \left\{ e^{-\beta H} \right\} = \lim_{L \to \infty} tr_{1, \dots, L} \left\{ e^{-\beta (H+L-L)} \right\}$$

$$= e^{\beta L} \lim_{L \to \infty} tr_{1, \dots, L} \left\{ e^{-\beta (H+L)} \right\}$$

$$= e^{\beta L} \lim_{L \to \infty} tr_{1, \dots, L} \left\{ \lim_{N \to \infty} \left\{ 1 - \frac{2\beta}{N} (H+L) + O(\frac{1}{N^{2}}) \right\}^{\frac{N}{2}} \right\}$$

$$= e^{\beta L} \lim_{L \to \infty} \lim_{N \to \infty} tr_{1, \dots, N} \left\{ \left\{ t^{(Q)}(0) \right\}^{L} \right\}$$

$$= e^{\beta L} \lim_{L \to \infty} \lim_{N \to \infty} \left\{ \Lambda^{(Q)}(0)_{max} \right\}^{L}$$

$$= e^{\beta L} \lim_{L \to \infty} \lim_{N \to \infty} \left\{ \Lambda^{(Q)}(0)_{max} \right\}^{L}, \qquad (11)$$

where N is a large even integer.

The corresponding quantum transfer matrix $t^{(Q)}(u)$ of the Heisenberg chain at a temperature $\mathcal T$ is given by a inhomogeneous quantum chain

$$t^{(Q)}(u) = tr_0 \left\{ \left(R_0 N \left(u - \frac{2\eta \beta}{N} \right) R_0 N_{-1} \left(u + \frac{2\eta \beta}{N} - \eta \right) \right) \dots \right.$$

$$\times \left(R_0 2 \left(u - \frac{2\eta \beta}{N} \right) R_0 1 \left(u + \frac{2\eta \beta}{N} - \eta \right) \right) \right\}. \tag{12}$$

The quantum transfer matrix $t^{(Q)}(u)$ can be obtained by the algebraic Bethe Ansatz method, where $\Lambda^{(Q)}(u)$ is given in terms of a homogeneous $\mathcal{T}-Q$ relation, namely,

$$\Lambda^{(Q)}(u) = a^{(Q)}(u) \frac{Q(u-\eta)}{Q(u)} + d^{(Q)}(u) \frac{Q(u+\eta)}{Q(u)},$$
 (13)

$$a^{(Q)}(u) = \left\{ u - \frac{2\eta\beta}{N} + \eta \right\}^{\frac{N}{2}} \left\{ u + \frac{2\eta\beta}{N} \right\}^{\frac{N}{2}} = d^{(Q)}(u + \eta), \tag{14}$$

$$Q(u) = \prod_{j=1}^{M} (u - \lambda_j), \quad M = 0, \dots, N.$$

Thermodynamics of the Heisenberg Spin Chain

Quantum Transfer Matrix Method

The Bethe roots (i.e., roots of Q(u)) satisfy the Bethe ansatz equations:

$$\frac{d^{(Q)}(\lambda_j)}{a^{(Q)}(\lambda_j)} = -\frac{Q(\lambda_j - \eta)}{Q(\lambda_j + \eta)}, \quad j = 1, \dots, M; \quad M = 0, \dots, N.$$
 (15)

It was shown that the largest eigenvalue $|\Lambda^{(Q)}(0)|_{max}$ belongs to the sector of $M=\frac{N}{2}$ with all the Bethe roots being real, and that it has a finite gap different from the other eigenvalues in the limit $N\to\infty$.

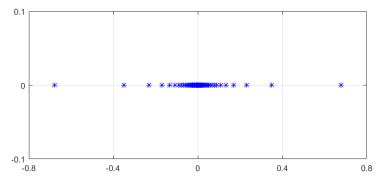


Figure 1: Bethe roots

Then the free energy per site $f(\beta)$ is given in terms of $\bar{\Lambda}^{(Q)}(u)$ by

$$f(\beta) = -\frac{1}{\beta} \lim_{L \to \infty} \lim_{N \to \infty} \frac{1}{L} (\ln Z(\beta))$$

$$= -1 - \frac{1}{\beta} \lim_{L \to \infty} \lim_{N \to \infty} \left\{ \ln \Lambda^{(Q)}(0)_{max} \right\}.$$
 (16)

Basing on the distribution of the Bethe roots for the state corresponding to $\Lambda_{max}^{(Q)}(0)$ (see Fig.1), Klumper et al developed a method which needs to introduce two auxiliary functions to be satisfy two nonlinear integral equations.

It can be proven that the transfer matrix t(u) satisfies the relations:

$$t^{(Q)}(u) t^{(Q)}(u - \eta) = a^{(Q)}(u) d^{(Q)}(u - \eta) \times id + d^{(Q)}(u) \mathbb{W}(u),$$
 (17)

$$\mathbf{t}^{(Q)}(u) = 2 u^{N} \times \mathrm{id} + \cdots, \quad u \to \infty, \tag{18}$$

where $\mathbb{W}(u)$, as a function of u, is a operator-valued polynomial of degree N, which actually is some fused transfer matrix of the fundamental one. The transfer matrices $t^{(Q)}(u)$ and $\mathbb{W}(u)$ commute with each other, namely,

$$[t^{(Q)}(u), t^{(Q)}(v)] = [\mathbb{W}(u), \mathbb{W}(v)] = [t(u), \mathbb{W}(v)] = 0.$$

Let $|\Psi\rangle$ be a common eigenstate of the transfer matrices with the eigenvalues $\Lambda^{(Q)}(u)$ and W(u), namely,

$$t^{(Q)}(u) |\Psi\rangle = \Lambda^{(Q)}(u) |\Psi\rangle, \quad \mathbb{W}(u) |\Psi\rangle = W(u) |\Psi\rangle.$$

The relation (17) gives rise to that the corresponding eigenvalues satisfy the t-W relation

$$\Lambda^{(Q)}(u)\,\Lambda^{(Q)}(u-\eta) = a^{(Q)}(u)\,d^{(Q)}(u-\eta) + d^{(Q)}(u)\,W(u). \tag{19}$$

The polynomials $\Lambda^{(Q)}(u)$ and W(u) have the decompositions

$$\Lambda^{(Q)}(u) = 2 \prod_{j=1}^{N} (u - z_j), \tag{20}$$

$$W(u) = 3 \prod_{j=1}^{N} (u - w_j).$$
 (21)

Taking u at the 2N points $\{z_j|j=1,\cdots,N\}$ and $\{w_j|j=1,\cdots,N\}$ gives rise to the Bethe-Ansatz-Like equations (BAEs)

$$a^{(Q)}(z_j) d^{(Q)}(z_j - \eta) = -d^{(Q)}(z_j) W(z_j), \quad j = 1, \dots, N,$$
(22)

$$a^{(Q)}(w_j) d^{(Q)}(w_j - \eta) = \Lambda^{(Q)}(w_j) \Lambda(w_j - \eta), \quad j = 1, \dots, N.$$
 (23)

Thermodynamics of the Heisenberg Spin Chain

T-W relation

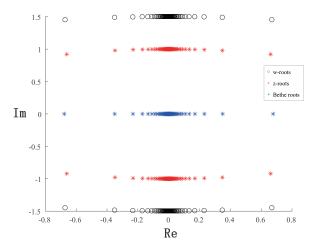


Figure 2: Various roots of the state with $|\Lambda_{max}^{(Q)}(0)|$

Numerical study with some N (up to 100) shows that the roots of $\Lambda^{(Q)}(u)$ for the state with the maximus $\Lambda^{(Q)}(0)$ has the special distribution as Fig. 2 (or for W(u)). For a convenience, let us introduce a normalized eigenvalue $\bar{\Lambda}^{(Q)}(u)$

$$\bar{\Lambda}^{(Q)}(u) = \frac{\Lambda^{(Q)}(u)}{(u - \eta \tau + \eta)^{M}(u + \eta \tau - \eta)^{M}}$$

$$= 2 \frac{\prod_{j=1}^{M} (u - u_{j}^{(+)} - \eta) (u - u_{j}^{(-)} + \eta)}{(u + \eta \tau - \eta)^{M} (u - \eta \tau + \eta)^{M}}, \qquad (24)$$

where $\tau = \frac{\beta}{M} = \frac{1}{MT} = \frac{2\beta}{N}$. Meanwhile, the corresponding W(u) has decomposition

$$W(u) = 3 \prod_{j=1}^{M} (u - w_j^{(+)} - 2\eta)(u - w_j^{(-)} + \eta).$$
 (25)

Here $\mathrm{Im}(u_j^{(\pm)}) \sim 0$ and $\mathrm{Im}(w_j^{(\pm)}) \sim 0$ for a large N.

Then the t-W relation (19) for the state with the maximus $\Lambda^{(Q)}(0)$ becomes

$$\bar{\Lambda}^{(Q)}(u + \frac{\eta}{2})\bar{\Lambda}^{(Q)}(u - \frac{\eta}{2})$$

$$= 4 \frac{\prod_{j=1}^{M} (u - u_j^{(-)} + \frac{3}{2}\eta)(u - u_j^{(+)} - \frac{\eta}{2})(u - u_j^{(-)} + \frac{\eta}{2})(u - u_j^{(+)} - \frac{3}{2}\eta)}{(u - \eta\tau + \frac{3}{2}\eta)^M (u + \eta\tau - \frac{\eta}{2})^M (u - \eta\tau + \frac{\eta}{2})^M (u + \eta\tau - \frac{3}{2}\eta)^M}$$

$$= \frac{(u + \eta\tau + \frac{\eta}{2})^M (u - \eta\tau - \frac{\eta}{2})^M}{(u - \eta\tau + \frac{\eta}{2})^M (u + \eta\tau - \frac{\eta}{2})^M}$$

$$+ 3 \frac{\prod_{j=1}^{M} (u - w_j^{(+)} - \frac{3}{2}\eta)(u - w_j^{(-)} + \frac{3}{2}\eta)}{(u + \eta\tau - \frac{3}{2}\eta)^M (u - \eta\tau + \frac{3}{2}\eta)^M}$$

$$= e^{\frac{2\beta}{u^2 + \frac{1}{4}}} + 3\bar{w}(u) + O(\frac{1}{N}) \stackrel{\text{def}}{=} q(u) + 3\bar{w}(u) + O(\frac{1}{N}). \tag{26}$$

The functions q(u) and $\bar{w}(u)$ are

$$q(u) = \lim_{M \to \infty} \frac{(u + \eta \tau + \frac{\eta}{2})^M (u - \eta \tau - \frac{\eta}{2})^M}{(u - \eta \tau + \frac{\eta}{2})^M (u + \eta \tau - \frac{\eta}{2})^M} = e^{\frac{2\beta}{u^2 + \frac{1}{4}}},$$
 (27)

$$\bar{w}(u) = \lim_{M \to \infty} \frac{\prod_{j=1}^{M} (u - w_j^{(+)} - \frac{3}{2}\eta)(u - w_j^{(-)} + \frac{3}{2}\eta)}{(u + \eta\tau - \frac{3}{2}\eta)^M(u - \eta\tau + \frac{3}{2}\eta)^M} \stackrel{\text{def}}{=} e^{-\beta \,\bar{\epsilon}(u)}.$$
 (28)

The function $\bar{\epsilon}(u)$ satisfies the analytic and asymptotic properties:

$$\bar{\epsilon}(u)$$
 is analytic except some singularities on the axis $\mathrm{Im}(u)=\pm\frac{3}{2},$ (29)

$$\lim_{u \to \infty} \bar{\epsilon}(u) = 0. \tag{30}$$

The decomposition (24) and the very t-W relation (26) allow us to give an integral representation of $\bar{\Lambda}^{(Q)}(u)$

$$\ln \bar{\Lambda}^{(Q)}(u) = \ln 2 + \frac{1}{2\pi i} \oint_{\mathcal{C}_1} dv \, \frac{\ln \left((q(v) + 3e^{-\beta \bar{\epsilon}(v)})/4 \right)}{u - v - \frac{\eta}{2}} + \frac{1}{2\pi i} \oint_{\mathcal{C}_2} dv \, \frac{\ln \left((q(v) + 3e^{-\beta \bar{\epsilon}(v)})/4 \right)}{u - v + \frac{\eta}{2}}, \tag{31}$$

where the closed integral contour \mathcal{C}_1 is surrounding the axis of $\mathrm{Im}(v)=\frac{1}{2}$, while \mathcal{C}_2 is surrounding the axis of $\mathrm{Im}(v)=-\frac{1}{2}$. This leads to an integral equation of the function $\overline{\epsilon}(u)$

$$\ln(q(u) + 3e^{-\beta\bar{\epsilon}(u)}) = 2\ln 2 + \frac{1}{2\pi i} \oint_{C_1} dv \left(\frac{1}{u - v} + \frac{1}{u - v - \eta}\right) \ln\left((q(v) + 3e^{-\beta\bar{\epsilon}(v)})/4\right)$$
$$+ \frac{1}{2\pi i} \oint_{C_2} dv \left(\frac{1}{u - v + \eta} + \frac{1}{u - v}\right) \ln\left((q(v) + 3e^{-\beta\bar{\epsilon}(v)})/4\right). \tag{32}$$

Due to the fact the roots and the poles of $\bar{\Lambda}^{(Q)}(u)$ locate nearly on the two lines with imaginary parts close to $\pm \eta$ (see the decomposition (24)), we can use the Fourier transformation to obtain another integral representation of $\bar{\Lambda}^{(Q)}(u)$

$$\ln \bar{\Lambda}^{(Q)}(u) = \int_{-\infty}^{+\infty} \frac{dv}{2 \cosh \pi (u - v)} \left\{ \ln \bar{\Lambda}^{(Q)}(v + \frac{\eta}{2}) + \ln \bar{\Lambda}^{(Q)}(v - \frac{\eta}{2}) \right\}$$
$$= \int_{-\infty}^{+\infty} \frac{dv}{2 \cosh \pi (u - v)} \left\{ \frac{2\beta}{v^2 + \frac{1}{4}} + \ln(1 + 3q^{-1}(v)\bar{w}(v)) \right\}.$$

Let us introduce the dressing energy function $\epsilon(u)$

$$\epsilon(u) = -\frac{1}{\beta} \ln \left(q^{-1}(u) \bar{w}(u) \right) = \frac{2}{u^2 + \frac{1}{4}} + \bar{\epsilon}(u), \quad \lim_{u \to \infty} \epsilon(u) = 0. \tag{33}$$

Finally we can obtain the free energy of the Heisenberg chain

$$f(\beta) = 1 - \frac{1}{\beta} \ln \bar{\Lambda}^{(Q)}(0)$$

$$= 1 - \int_{-\infty}^{+\infty} \frac{dv}{\cosh \pi v} \frac{1}{v^2 + \frac{1}{4}} - \frac{1}{\beta} \int_{-\infty}^{+\infty} \frac{dv}{2 \cosh \pi v} \ln \left(1 + 3e^{-\beta \epsilon(v)} \right)$$

$$= e_g - \frac{1}{\beta} \int_{-\infty}^{+\infty} \frac{dv}{2 \cosh \pi v} \ln \left(1 + 3e^{-\beta \epsilon(v)} \right), \tag{34}$$

where e_g is the energy density (8) of the ground state for the Heisenberg chain at T=0.

The method can also apply to the Heisenberg chain with a uniform field described by the Hamiltonian

$$H = \sum_{n=1}^{L} (\sigma_n^{\mathsf{x}} \sigma_{n+1}^{\mathsf{x}} + \sigma_n^{\mathsf{y}} \sigma_{n+1}^{\mathsf{y}} + \sigma_n^{\mathsf{z}} \sigma_{n+1}^{\mathsf{z}}) + \frac{h}{2} \sum_{j=1}^{L} \sigma_j^{\mathsf{z}}.$$
 (35)

The corresponding quantum transfer matrix becomes

$$t^{(Q)}(u) = tr_0 \left\{ e^{\frac{h\beta}{2}\sigma_0^z} (R_{0N}(u - \frac{2\eta\beta}{N}) R_{0N-1}(u + \frac{2\eta\beta}{N} - \eta)) \dots \right.$$

$$\times \left(R_{02}(u - \frac{2\eta\beta}{N}) R_{01}(u + \frac{2\eta\beta}{N} - \eta) \right) \right\}. \tag{36}$$

Thermodynamics of the Heisenberg Spin Chain

Non-linear integral equation

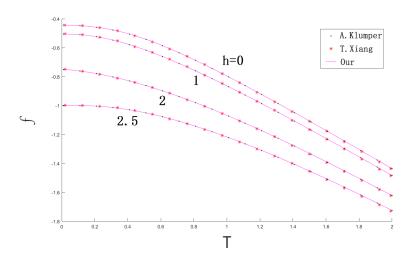


Figure 3: Free energy with different methods

Conclusion and comments

So far, we have developed a method to derive non-linear integral equation of the partition function for a quantum integrable model:

- The Heisenberg chain and its anisotropic generalizations (such as the XXZ and XYZ chains).
- The multi-components generalizations (such as su(n), so(n) and sp(2n)).
- The supersymmetric t-J model.
- The Hubbard model.

Acknowledgements

Thank for your attentions