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高自旋理论 Vasiliev 方程解



Fronsdal eqs. (1978) – free higher-spin gauge theory

Gauge sym.:

s = 0 ⇒ Klein-Gordon eq.

s = 1 ⇒ Maxwell eqs.

s = 2 ⇒ Linearized Einstein field eqs.

s = 3, 4, 5, …

• Can be extended to (A)dS background

• Historically difficult to construct a higher-spin gauge theory 

with interactions
（Weinberg (1964), Coleman-Mandula (1967), Weinberg-Witten (1980) … ）



• Vasiliev’s higher-spin gravity (1990) is known as an 
interacting theory of higher-spin gauge fields.

• General relativity has various solutions describing 
drastically different objects e.g. gravitational waves and 
black holes. Likewise, physical implications of Vasiliev's 
equations may be much richer than merely higher spins. 
That's why we are interested in studying its solutions.

• What I will present:
A general method to solve Vasiliev’s equations (in 4D 

with only integer spins), such that at the linearized level 
the solution describes perturbative fields with desirable 
properties on an (A)dS background.
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Vasiliev's equations

• Vasiliev’s equations written in the most compact way: 

• d :  exterior derivative

Φ :  0-form

A :  1-form

J :  2-form

• ⋆ - product :  associative, non-commutative

π :  automorphism

• Gauge symmetry:



Vasiliev's equations

• External Coordinates:

xμ :  3+1 dimensional spacetime

:    4   dimensional symplectic manifold

- are SL(2,ℂ) indices, raised or lowered by

(NW-SE convention)                                              

- Decomposition: 



Vasiliev's equations

• Internal coordinates (auxiliary variables):

another 4 dimensional symplectic manifold.

• Bilinear combinations:

are the generators of (A)dS4 isometry algebra.

• Corresponding components in A are

and                                    

Indices are converted by van der Waerden symbols:

( One identity matrix a = 0, Three Pauli matrices a = 1,2,3 )



Vasiliev's equations

• All powers of              give an infinite set of generators, 

constituting the higher-spin algebra.

• The ⋆ is the product operation between elements that gives 

the right commutation rules.

• A and Φ are “master fields” with infinitely many components, 

whose indices are contracted with            .

• An infinite tower of higher-spin gauge fields and their on-

shell curvature tensors are included in the theory as 

components of A and Φ.

• If we choose the gauge                   , do some field 

redefinitions, and perturbatively expand the equations 

around (A)dS4, we obtain Fronsdal’s equations for all spins.



Vasiliev's equations

Explicit definition of ⋆ and π

•

•

• Klein operators:

satisfy                                                                        ,

and similarly                             .



Vasiliev's equations

• We only consider integer spins:

• We set 

• Reality conditions:

in  AdS

in  dS

- crucial difference between AdS and dS, corresponding 

to different slices of so(5,ℂ) 
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Decomposition of Vasiliev's equations

Using

to rewrite the equations:



(A)dS4 background

The field Uμ is the spacetime component of the gauge field. 

To obtain a pure spacetime-background solution, we set all 

fields to zero, except Uμ.

⇒



(A)dS4 background

One way to produce the (A)dS4 background, is to set

corresponding to the stereographic coordinates of (A)dS

Denote

and

Vierbein Spin-connection

⇒

where X ’s are embedding coordinates:



Reality conditions

From the fact that 

the spin-connection term of Uμ is always imaginary; the 

vierbein term is imaginary in AdS but real in dS. On the other 

hand, the operation π flips the sign of the vierbein term only. 

Therefore we can see the difference in the reality condition:

(By taking the h.c. of Vasiliev’s equations, we can further 

derive the reality conditions on other fields.)

Vierbein Spin-connection



Perturbation around (A)dS4 background

We have set all fields to zero, except Uμ to get the (A)dS4 

background solution. 

Now in order to get solutions that represent perturbations 

around the background, things have to be done the other 

way around…



Perturbation around (A)dS4 background

• Uμ is a pure gauge. We can simply gauge it away, and 

focus on getting a solution for the rest of the fields. After 

that we can restore the (A)dS4 by a gauge transformation. 

• A consequence of gauging away Uμ is that Φ and Vα

become independent of spacetime, which simplifies the 

problem.



• Ansatz:

- The primed fields are independent of spacetime coord.

- directly solves the first three equations

Perturbation around (A)dS4 background



• In the next step, we only need to solve the last three 

equations for the primed fields. 

• Ansatz:

- The last two equations are directly solved;

- The only equation left becomes…

Perturbation around (A)dS4 background



• We can first solve the following equation instead:

then expand the solution for        in power series of  υ to 

obtain the solution for         . 

• The solution for       is given by…

Perturbation around (A)dS4 background



with

where u+ and u– are a set of spinor basis vectors obeying

and               is free to choose.

Result from Iazeolla & Sundell arXiv:1107.1217  ,

based on Prokushkin & Vasiliev arXiv:hep-th/9806236 .

Perturbation around (A)dS4 background



•

• Φ’ (or Ψ) is the like the initial data. Once we have an 

explicit expression of Φ’ or Ψ, everything will be 

automatically decided.

Perturbation around (A)dS4 background
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An example in dS

The first example has some motivation from cosmology. 

We construct a set of solutions to Vasiliev’s equations, such 

that at the linearized level they represent:

- the dS background

- the fields that are homogeneous and isotropic in space

Steps:

1. identify the symmetry algebra

2. obtain the initial data subject to the symmetry

3. do a gauge transformation to turn on the dS background

4. show e.g. the scalar field configuration over spacetime



Step1: identify the symmetry algebra

• The (A)dS4 isometry algebra contains 

10 generators  =  6 Lorentz + 4 transvections

• In the “star-product language”:

- Transvections

- Lorentz

• Star-product commutators:

- simply the commutators of the                                algebra

explicitly realized by             and their star-product. 



Step1: identify the symmetry algebra

• On the other hand, isotropy and homogeneity of space 

contain only 6 generators. The symmetry of the 

perturbative fields is a 6-dimensional subalgebra of the 10-

dimensional background isometry algebra.

• Embedding (r,s,t,u… are spatial indices):

- Rotations:         Mrs (spatial components of Lorentz)

- “New” transvections:   Tr = α Mr0 + β Pr ,    α,β ∈ ℝ
(combination of boosts and the “old” transvections)

• Commutators of the subalgebra:



Step2: obtain the initial data 

• We explicitly have

• Impose the FRW symmetry conditions on the initial data

,

• Solve the above equations for Φ’:

⇒

(ii)(i)

For (ii),

(i)



Step2: obtain the initial data 

• closed space so(4), k > 0   (set β > α = 0) : 

• flat space iso(3),  k = 0 (set α = |λ|β > 0) :

• open space so(1,3),  k < 0 (set α > |λ|β > 0) :

The integration constants should be such chosen that Φ’ 

satisfies the reality condition.



Step3: turn on the dS background

• Let us take the flat space iso(3) for example. (set λ = i for simplicity)

• We would like a coordinate system with the FRW metric:

• Two equivalent ways:

(1) Choose the gauge for the stereographic coordinates

then do a coordinate transformation

(2) Find another gauge function that directly produces FRW



Step4: scalar field

• We have the initial data

and we have the gauge function for dS background (FRW)

• Now we do a gauge transformation:

• A fact of Vasiliev’s equations is that the scalar field and the 

generalized spin-s Weyl tensor are components of Φ:

,

- This statement is made in the                  gauge;

- In the L-gauge, it is true at the linearized order.



Step4: scalar field

• Then let’s have a look at the linearized scalar field:

• Obviously the scalar field is homogeneous and isotropic.

• It satisfies the Klein-Gordon equation 

as expected from the Vasiliev’s equations.

• Summary for this example: 

We have shown that the Vasiliev’s equations contain a 

solution that represents spatially homogeneous and 

isotropic fields on dS background.
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B(H)TZ black hole

• The spacetime of 3D BTZ BH is locally the same as AdS3.

Starting from the embedding coordinates of AdS3:

The BTZ metric can be achieved simply by a coordinate 

transformation  (for simplicity, only outside the horizon) :

• For AdS, the coordinate ϕ runs from  –∞  to +∞ .

For BTZ, 0 ≤ ϕ < 2π . The identification is imposed by hand.

⇒

Banados, Henneaux, Teitelboim, Zanelli

arXiv:gr-qc/9302012



4D BTZ generalization

•

• The 4D generalization of BTZ is done by rotating between 

the last two spatial directions of the embedding coordinates:

⇒

Aminneborg, Bengtsson, Holst, Peldan

arXiv:gr-qc/9604005,gr-qc/9705067



Vasiliev’s equations on (4D) BTZ background

• Q: Can we find such solutions to Vasiliev’s equations that 

at the linearized level they represent perturbative fields on 

the (4D) BTZ background?

• A: Yes.

- The background is trivial (locally AdS).

- Fields must be periodic, i.e. identified at ϕ and ϕ + 2π.

(quantized angular momentum along the ϕ-direction)

• In 3D it was done in 
arXiv:hep-th/0612161 Didenko, Matveev, Vasiliev.

• We were doing it in 4D…

- Before showing how we find the solutions, I first need to 

introduce the earlier work (Iazeolla & Sundell arXiv:1107.1217) to 

formulate in the star-product language a quantized system 

in AdS4.



Isometry generators

• The AdS4 isometry algebra has 4 types of generators: 

• The underlined indices are contracted with the indices of 

and are raised or lowered by 

E = −Γ0

P = − Γ1

J = − Γ12

B = − Γ03



Ladder operators and eigenstates

• To construct a quantum system, we need two Cartan

generators, e.g.  (E, J)

• In this case we can define two pairs of ladder operators:

• For each pair we have a number operator:

which are the difference and the sum of E and J .



Ladder operators and eigenstates

• The ground state (four eigenvalues all =½)

left & right-eigenvalues of w1 & w2

• The excited states are obtained by doing a+ ⋆ from the 

left and ⋆ a− from the right, e.g.

(If the left and right eigenvalues are the same, the excited states 

are always the ground state multiplied by polynomials of the 

number operators.)



Ladder operators and eigenstates

• We would like to construct this kind of system on the (4D) 

BTZ background.

• On such a background, instead of the compact generators 

E and J, it is actually the non-compact generators B and P 

(boost and spatial transvection of AdS) that function as the 

generators of the time transvection and the spatial rotation 

of (4D) BTZ.



Ladder operators and eigenstates

• (B, P) are non-compact generators. To construct a similar 

quantum system as (E, J), we use (iB, iP) instead.

• In this case we can define two pairs of ladder operators:

• For each pair we have a number operator:

which are the difference and the sum of iB and iP .



Ladder operators and eigenstates

• The ground state (four eigenvalues all =½)

left & right-eigenvalues of w1 & w2

• The excited states are obtained by doing a+ ⋆ from the left 

and ⋆ a− from the right, e.g.

(The construction is more-or-less the same by replacing everywhere 

E with iB and J with iP.)

• All eigenvalues here are real, but for 4D BTZ we must 

generalize them to complex values. Reasons:

- quasinormal mode, i.e. BH absorbs (weakens) the fields;

- it is the imaginary part of the eigenvalues of w1 – w2 that 

matters for the periodicity in ϕ (sym. gen. P).



Eigenfunctions

• To obtain eigenfunctions with complex eigenvalues of 

(iB, iP), we first solve the prototype equations with only 

one pair of ladder operators:

• We assume that the eigenfunction only depends on the 

ladder operators. After a straightforward calculation of the 

star-products, these equations can be converted into two 

partial differential equations: 



Eigenfunctions

• The simplest solution is 

• We need to rewrite it for convenience of further star-

product calculation:

- Prescription of analytic continuation is needed;

- Here only λL is generalized to complex values, we have to assume 

λR is a positive half-integer to make the contour integral well-defined.

“generalized Laguerre function”



Eigenfunctions

• Remember that we have two pairs of ladder operators, so 

we make a copy of the eigenfunction for each:

• Then we take a (star-)product of the two copies:

• This eigenfunction will be used in the initial data for the 

Vasiliev’s equations. By definition it satisfies



Finite transformation  

• Q: What is the consequence of imposing the periodicity 

condition that identifies ϕ → ϕ + 2π ?

• The finite transformation of the sym. gen. P for ϕ → ϕ + φ

- If                           lives in the adjoint representation

then obviously to identify ϕ → ϕ + 2π we shall impose



Initial data

• The initial data can be constructed as

- The sums are done over the λ’s that are subject to the 

periodicity condition and the bosonic condition.

- The conjugate terms are π (·†) of all the terms above, to make 

sure that Φ’ satisfies the reality condition.



Scalar field from particular terms

• To get a bit more intuition, we have examined some 

particular terms in the sums where

• We switch on the gauge function for AdS background, and 

set the Y-coordinates to zero to extract the scalar field:

• Then we do a coordinate transformation for the 4D BTZ:

(The K-G eq is satisfied.)



Further discussion

• Key point of this model: 

The excitation of the (angular) momentum along the 

compactified direction corresponds to adding quantized 

imaginary numbers to the eigenvalues in the initial data.

• Further questions about the initial data:

Q1: Can we set both of the left and right eigenvalues to 

complex numbers?

Q2: With complex eigenvalues, is it possible to relate all 

eigenfunctions by star-multiplying creation and 

annihilation operators? e.g.                                            
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More eigenfunctions

• Remember that our solution for the eigenfunction was:

but be aware that the above set of equations is invariant, 

if we simultaneously exchange

Therefore, we can create a new branch of solutions from 

the old by doing the same exchange…



More eigenfunctions

• The “plus” branch and the “minus” branch:

- The two branches are different, except for                      .

- From the perspective of solving the above differential 

equations, there is no restriction at all for the eigenvalues 

– they can be any complex numbers. 



Complex eigenvalues

• However, the restriction happens when we have to express 

the Laguerre functions in terms of integrals. 

• For example, previously we used the contour integral:

We could not generalized λR , because otherwise there 

would be a branch cut intersecting the contour. 

• Therefore, for generic complex eigenvalues, we have to use 

different integrals.



• Fortunately, to express formulas like

we have alternative integrals (with similar integrands).

• Two options:

- integrate on the real axis:

(Conditions e.g.                                            are needed for 

convergence – but with analytic continuation, we formally 

use the integrals to represent Laguerre functions)

- or equivalently take contour integrals that are compatible 

with branch cuts on the complex s-plane, 

for example:

New integral representations



• Now with the new integral representations, we can do star-

products with generic complex eigenvalues.

• One interesting result:

Take a diagonal

star-multiplied with

we obtain:

i.e.  creation →    plus branch  

annihilation →  minus branch  (left or right doesn’t matter)

• Q: What if both a+ and a− to complex powers are multiplied?

Star-products with creation / annihilation operators



• Q: What if both a+ and a− to complex powers are multiplied,

like                                        ?

• It remains to be an eigenfunction of the number operator.

(Associativity: Important to do all star-products before integrations.)

• However, in general it is a combination of different branches

(may involve the missing branch in the case of degeneracy).

Star-products with creation / annihilation operators

w ⋆ gives λ + λ+ − λ− ⋆ w gives λ



• More problems come when we take the star-product of two 

eigenfunctions.

• For example: 

What we expect:                               (true for half-integer λ)

What we actually get:

,    divergent!

• However, if we replace the real-axis integral by the contour:

(How to interpret?)

Further problems at the non-linear level



Summary

• Vasiliev’s equations have a large variety of solutions that at the 

linearized level resemble simple systems on (A)dS background that we 

are familiar with.

• In my talk, I have shown an example in dS and another in AdS. 

Physically I have not shown anything new. At the linearized level, 

they are just simple well-known models reformulated in a different 

mathematical language – the star-product in Vasiliev’s equations. 

However, new insights are expected to come at higher-orders of the 

perturbation, as we transform the solutions from the “L” gauge to 

Vasiliev’s gauge (future work).

• In the last part of my talk, I have also shown some recent attempt to 

enlarge the solution space by allowing generic complex eigenvalues 

for the eigenfunctions in the initial data. Within certain subsets of the 

eigenfunctions, creation and/or annihilation operators act nicely. 

Much more work has to be done (e.g. normalization, closure of the 

algebra) to organize these eigenfunctions into quantum systems and to 

use them to build solutions to Vasiliev’s equations.



Thank  you !


