On Partial Entanglement Entropy

第一届全国"场论与弦论"学术研讨会 中国科学技术大学 2020/11/28

文强

东南大学丘成桐中心

Based on my recent papers on Partial Entanglement entropy

- Fine structure in holographic entanglement and entanglement contour
- QW, PRD, 1803.05552;
- Entanglement contour and modular flow from subset entanglement entropies,
- QW, JHEP, 1902.06905;
- Entanglement entropies from entanglement contour: annuli and spherical shells,
- M. Han and QW, 1905.05522;
- Formulas for Partial Entanglement Entropy,
- QW, Phys.Rev.Research, 1910.10978.

And

- Remarks on the entanglement entropy for disconnected regions,
- Casini and Huerta, JHEP, 0812.1773.

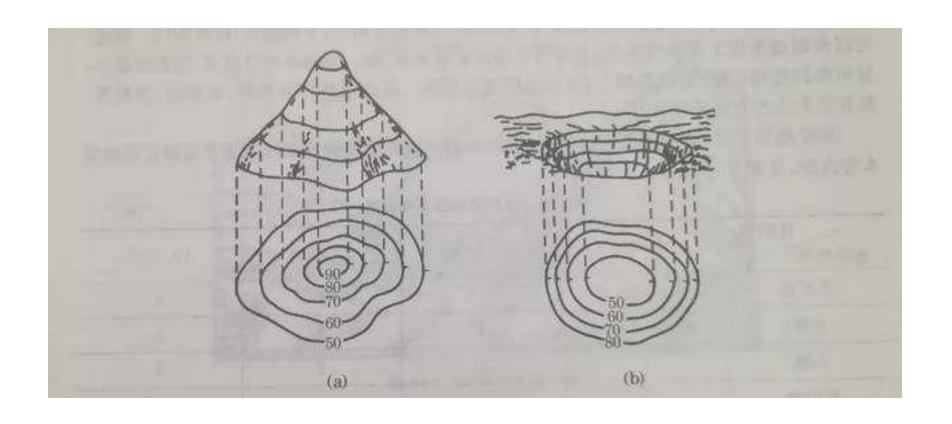
Outline

 Concept of the entanglement contour and partial entanglement entropy (PEE);

Physical requirements for PEE;

Approaches to PEE or entanglement contour;

Future directions



The concept of Contour

The entanglement contour gives the contribution to the entanglement entropy of A from each point in A

• In general entanglement entropies obey certain inequalities.

- (a) Subadditivity: $S(A) + S(B) \ge S(AB)$,
- (b) Araki-Lieb: $S(AB) \ge |S(A) S(B)|$,
- (c) Strong subadditivity 1: $S(AB) + S(BC) \ge S(ABC) + S(B)$,
- (d) Strong subadditivity 2: $S(AB) + S(BC) \ge S(A) + S(C)$.

Lieb and Ruskai, 1973'

- Entanglement entropy is non-local
- The contour function is a functional of the region thus recover non-locality

Definition following a physical meaning

Entanglement contour as the density founction of the entanglement in a given region

$$S_{\mathcal{A}} = \int_{\mathcal{A}} f_{\mathcal{A}}(\mathbf{x}) d\sigma_{\mathbf{x}} \,.$$

Chen and Vidal 1406.1471

Partial Entanglement Entropy

$$s_{\mathcal{A}}(\mathcal{A}_i) = \int_{\mathcal{A}_i} f_{\mathcal{A}}(\mathbf{x}) d\sigma_{\mathbf{x}} = \mathcal{I}(\bar{\mathcal{A}}, \mathcal{A}_i)$$

Motivation

- The local properties of entanglement entropy.
- Area law obeyed by the ground state of gapped systems
- Volume law obeyed by more generic states
- Massive deformation from CFT_2

$$S = \frac{c}{3} \log \frac{l}{a} \qquad \Longrightarrow \qquad \qquad S = \frac{c}{3} \log \frac{\xi}{a}$$

- Degrees of freedom at different position contribute differently.
- The entanglement contour?

No definition so far, only Physical Requirements

WQ, PRResearch 19'

1. **Additivity**: by definition we should have

$$s_{\mathcal{A}}(\mathcal{A}_i) = s_{\mathcal{A}}(\mathcal{A}_i^a) + s_{\mathcal{A}}(\mathcal{A}_i^b), \quad \mathcal{A}_i^a \cup \mathcal{A}_i^b = \mathcal{A}_i, \quad \mathcal{A}_i^a \cap \mathcal{A}_i^b = \varnothing.$$
 (1.4)

- 2. Invariance under local unitary transformations: $s_{\mathcal{A}}(\mathcal{A}_i)$ is invariant under any local unitary transformations act only inside \mathcal{A}_i and $\bar{\mathcal{A}}$.
- 3. **Symmetry**: For any symmetry transformation \mathcal{T} under which $\mathcal{T}\mathcal{A} = \mathcal{A}'$ and $\mathcal{T}\mathcal{A}_i = \mathcal{A}'_i$, we have $s_{\mathcal{A}}(\mathcal{A}_i) = s_{\mathcal{A}'}(\mathcal{A}'_i)$.
- 4. Normalization: $S_{\mathcal{A}} = s_{\mathcal{A}}(\mathcal{A}_i)|_{\mathcal{A}_i \to \mathcal{A}}$.
- 5. Positivity: $s_{\mathcal{A}}(\mathcal{A}_i) \geq 0$.
- 6. Upper bound: $s_{\mathcal{A}}(\mathcal{A}_i) \leq S_{\mathcal{A}_i}$.
- 7. Symmetry under the permutation: $\mathcal{I}(\bar{\mathcal{A}}, \mathcal{A}_i) = \mathcal{I}(\mathcal{A}_i, \bar{\mathcal{A}})$, which implies $s_{\mathcal{A}}(\mathcal{A}_i) = s_{\bar{\mathcal{A}}_i}(\bar{\mathcal{A}})$.

Motivation

- Gives a finer description for the entanglement structure.
- Discriminate between gapped systems and gapless systems with a finite number of zero modes in d = 3;
- Characterizing the evolution of the entanglement structure;
- Generating the local modular flow;
- Useful probe of slowly scrambling and non-thermalizing dynamics for some interacting many-body systems;
- Finer correspondence between quantum entanglement and bulk geometry.

Vidal etc., Tonni, Sierra etc., Ryu etc. and QW

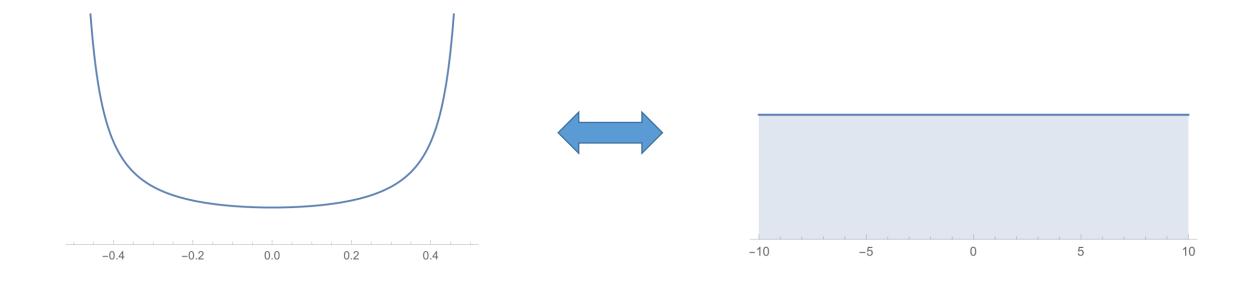
An explicit example of entanglement contour

• Rindler transformation, which is a symmetry

Entanglement wedge "Rindler space"

Entanglement entropy Thermal entropy

Entanglement contour Entropy density (flat contour)



Contour for an interval in CFT2

Contour for the thermal state in Rindler space

Approaches to PEE or entanglement contour

• 1: Gaussian formula Chen and Vidal, 14'; Tonni etc. 16',17',19'; Ryu etc. 19',20';

• 2: Geometric construction in holography wq, prd18'

• 3: PEE proposal WQ, PRD18', JHEP19'

• 4: Solving all the requirements in Poincare invariant theories.

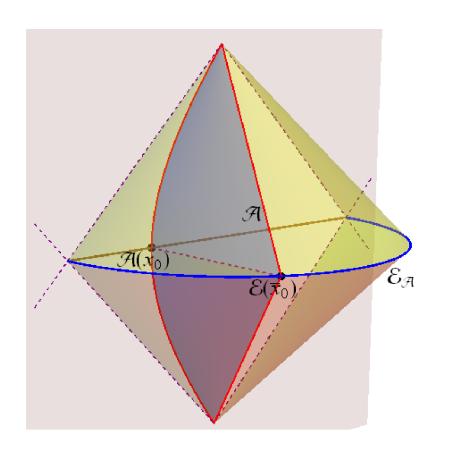
```
Casini and Huerta, JHEP08'; WQ, PRResearch19';
```

For cases with more than one approaches working we find consistent results!

2: Geometric construction in holography

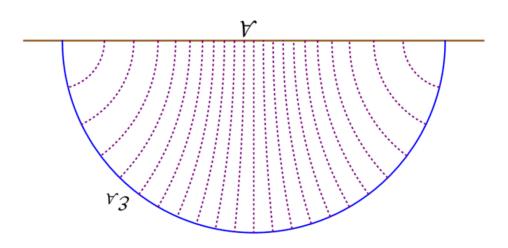
Modular slice

The orbit of the boundary modular flow line under the bulk modular flow

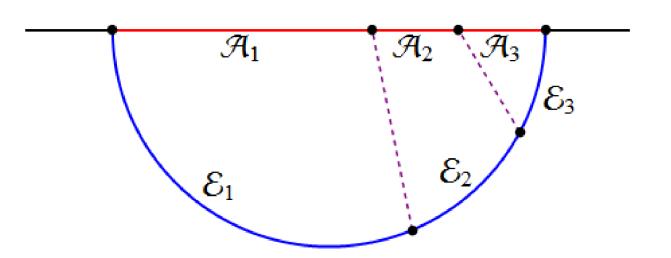


$$f_{\mathcal{A}}(r) = \frac{c}{6} \left(\frac{2R}{R^2 - r^2} \right)^{d-1}$$

Spheres in vacuum CFT_d

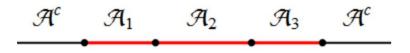


BTZ Warped AdS 3d Flat space



$$s_{\mathcal{A}}(\mathcal{A}_i) = \frac{Length\left(\mathcal{E}_i\right)}{4G}$$

3:The partial entanglement entropy proposal



$$s_{\mathcal{A}}(\mathcal{A}_2) = \frac{1}{2} \left(S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_2 \cup \mathcal{A}_3} - S_{\mathcal{A}_1} - S_{\mathcal{A}_3} \right)$$

QW, 1803.05552 PRD QW, 1902.06905 JHEP

Additivity for partial entanglement entropy

Consider a partition $\mathcal{A}_2 = \mathcal{A}_2^a \cup \mathcal{A}_2^b$

$$s_{\mathcal{A}}(\mathcal{A}_2^a) = \frac{1}{2} \left(S_{\mathcal{A}_1 \cup \mathcal{A}_2^a} + S_{\mathcal{A}_2 \cup \mathcal{A}_3} - S_{\mathcal{A}_1} - S_{\mathcal{A}_2^b \cup \mathcal{A}_3} \right)$$

$$s_{\mathcal{A}}(\mathcal{A}_2^b) = \frac{1}{2} \left(S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_2^b \cup \mathcal{A}_3} - S_{\mathcal{A}_1 \cup \mathcal{A}_2^a} - S_{\mathcal{A}_3} \right)$$

$$s_{\mathcal{A}}(\mathcal{A}_2) = s_{\mathcal{A}}(\mathcal{A}_2^a) + s_{\mathcal{A}}(\mathcal{A}_2^b)$$

- **Positivity**: The strong subadditivity $S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_2 \cup \mathcal{A}_3} S_{\mathcal{A}_1} S_{\mathcal{A}_3} \ge 0$ for any three regions indicates $s_{\mathcal{A}}(\mathcal{A}_2) \ge 0 \Rightarrow f_{\mathcal{A}}(x_1, \dots, x_{d-1}) \ge 0$
- Normalization: $s_{\mathcal{A}}(\mathcal{A}_2)|_{\mathcal{A}_2 \to \mathcal{A}} = S_{\mathcal{A}}$
- Invariance under local transformations: All the subset entanglement entropies are invariant under local transformations that only act on A_2 , so $s_A(A_2)$ is also invariant.
- Upper bound: subadditivity $S_{\mathcal{A}_1} + S_{\mathcal{A}_2} \ge S_{\mathcal{A}_1 \cup \mathcal{A}_2}$ and $S_{\mathcal{A}_2} + S_{\mathcal{A}_3} \ge S_{\mathcal{A}_2 \cup \mathcal{A}_3}$ indicates $s_{\mathcal{A}}(\mathcal{A}_2) \le S_{\mathcal{A}_2}$.
- Symmetry: Since \mathcal{T} is a symmetry, the subsets \mathcal{A}_i and \mathcal{A}'_i should play the equivalent role, in other words we have $S_{\mathcal{A}_i} = S_{\mathcal{A}'_i}, S_{\mathcal{A}_i \cup \mathcal{A}_j} = S_{\mathcal{A}'_i \cup \mathcal{A}'_j}$. This means

$$S_{\mathcal{A}_1 \cup \mathcal{A}_2} + S_{\mathcal{A}_2 \cup \mathcal{A}_3} - S_{\mathcal{A}_1} - S_{\mathcal{A}_3} = S_{\mathcal{A}'_1 \cup \mathcal{A}'_2} + S_{\mathcal{A}'_2 \cup \mathcal{A}'_3} - S_{\mathcal{A}'_1} - S_{\mathcal{A}'_3}$$
$$\Rightarrow s_{\mathcal{A}}(\mathcal{A}_2) = s_{\mathcal{A}}(\mathcal{A}'_2).$$

Invariance under permutation

$$\mathcal{I}(\bar{\mathcal{A}}, \mathcal{A}_2) = s_{\mathcal{A}}(\mathcal{A}_2)$$

$$= \frac{1}{2} \left(S_{\bar{\mathcal{A}} \cup \mathcal{A}_3} + S_{\bar{\mathcal{A}} \cup \mathcal{A}_1} - S_{\mathcal{A}_1} - S_{\mathcal{A}_3} \right)$$

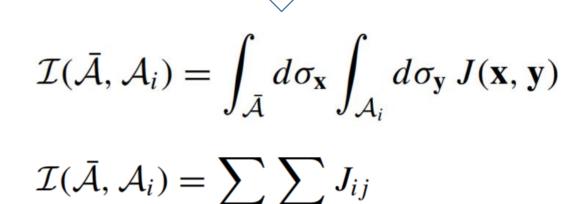
$$= S_{\bar{\mathcal{A}}_2}(\bar{\mathcal{A}}) = \mathcal{I}(\mathcal{A}_2, \bar{\mathcal{A}}),$$

The PEE proposal is a solution to all the requirements!

4:PEE from solving the requirements

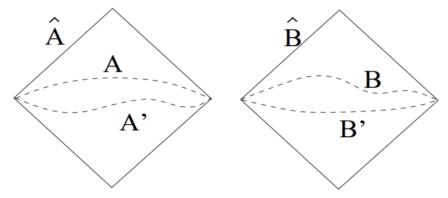
Additivity

Symmetry under permutation



 $i \in \bar{\mathcal{A}} \ i \in \mathcal{A}_i$

Requirement 2, or causality



$$\mathcal{I}(A', B') = \mathcal{I}(A, B).$$

A' and B' are any space-like regions that share boundary with A and B. Then we can write:

$$\mathcal{I}(A, B) = \int_A d\sigma_{\mathbf{x}}^{\ \mu} \int_B d\sigma_{\mathbf{y}}^{\ \nu} J_{\mu\nu}(\mathbf{x}, \mathbf{y}),$$

With

$$\partial_{\mu}J^{\mu\nu}(\mathbf{x},\mathbf{y})=0$$

Poincare invariant theories

• Invariance under Poincare symmetry:

$$J^{\mu\nu}(\mathbf{x}, \mathbf{y}) = \frac{(\mathbf{x} - \mathbf{y})^{\mu}(\mathbf{x} - \mathbf{y})^{\nu}}{(\mathbf{x} - \mathbf{y})^{2d}} G(l) - \frac{g^{\mu\nu}}{(\mathbf{x} - \mathbf{y})^{2(d-1)}} F(l)$$

F and G are two dimensionless functions of l.

• Conservation:
$$[G(l) - F(l)]' = -(d-1)\frac{2F(l) - G(l)}{l}$$

$$\sigma_{\mathbf{x}}^{\ \mu}\sigma_{\mathbf{y}}^{\ \nu}J_{\mu\nu}(\mathbf{x},\mathbf{y})\geq 0$$

for any time-like vectors $\vec{\sigma}_{\mathbf{x}}$ and $\vec{\sigma}_{\mathbf{y}}$

• Furthermore implies:

$$2F(l) \ge G(l) \ge 0$$

• It is convenient to define C(l) = G(l) - F(l), thus $C'(l) \le 0$

• Which implies C(l) deceases under the RG flow, it is a c-function.

Then we have

$$F(l) = -\frac{lC'(l)}{d-1} + C(l), \qquad G(l) = -\frac{lC'(l)}{d-1} + 2C(l)$$

Then it is convenient to define another function H(l) by

$$C(l) = (d-1)l^{2d-3}H'(l)$$
.

Thus

$$J_{\mu\nu}(l) = -\partial_{\mu}\partial_{\nu}H(l) + g_{\mu\nu}\partial_{\alpha}\partial^{\alpha}H(l).$$

At last, after we applied the Stokes' theorem we arrive at the following formula for PEE

$$\mathcal{I}(A,B) = \int_{\partial A} \int_{\partial B} d\vec{\eta}_{\mathbf{x}} \cdot d\vec{\eta}_{\mathbf{y}} \, H(|\mathbf{x} - \mathbf{y}|) \,,$$
 General Formula!

where $\vec{\eta}_{\mathbf{x}}$ and $\vec{\eta}_{\mathbf{y}}$ are the infinitesimal subsets on the boundaries ∂A and ∂B with an outward pointing direction in the system and normal to ∂A and ∂B .

PEE in conformal field theories

Things become much more determined in the case of conformal field theories. Since C(l) is a c-function, it should be a constant in CFTs. Let us define $C(l) = 2C_d(d-1)(d-2)$, then we have

$$H(|\mathbf{x} - \mathbf{y}|) = -\frac{C_d}{|\mathbf{x} - \mathbf{y}|^{2d-4}}, \qquad d > 2,$$
(4.16)

Cd is a constant that depend on the theory and dimension

When d=2, $H(l)=\#Log\ l/a$, is just the entanglement entropy for a single interval with length l.

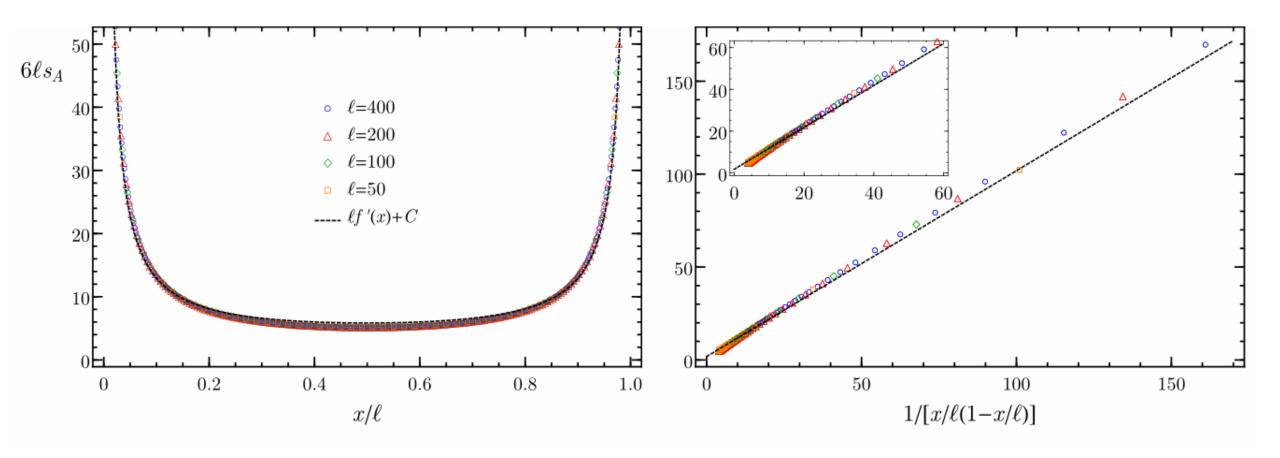
Consistency check

$$\mathcal{I}(\bar{\mathcal{A}}, \mathcal{A}_2) = -\int_{\partial A} \int_{\partial B} d\vec{\eta}_{\mathbf{x}} \cdot d\vec{\eta}_{\mathbf{y}} \frac{C_d}{|\mathbf{x} - \mathbf{y}|^{2d - 4}}$$
$$= C_d \Omega_{d-2} \Omega_{d-3} \int_0^{\pi} d\theta \frac{z^{d-2} (\sin \theta)^{d-3} \cos \theta}{(1 + z^2 - 2z \cos \theta)^{d-2}}.$$

For d = 2,3,4

$$s_{\mathcal{A}}(\mathcal{A}_2) \sim \mathcal{I}(\bar{\mathcal{A}}, \mathcal{A}_2) \sim \left\{ \frac{z^2}{1-z^2}, \frac{z^3+z}{(z^2-1)^2} - \frac{1}{2} \tanh^{-1} \left(\frac{2z}{z^2+1} \right), \frac{z^4(z^2-3)}{(z^2-1)^3} \right\}.$$

Compare with numerical results from the Gaussian formula



Coser, Nobili and Tonni, J.Stat.Mech. 2018

"Entanglement Hamiltonian and entanglement contour in inhomogeneous 1D critical systems"

Future Problems

- PEE as an intrinsic measurement?
- Quantum correction to holographic entanglement contour
- PEE, minimal cross section and new way to evaluate entanglement of purification?
- Potential in condensed matter and quantum information?

•

Thanks