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» Based on my recent papers on Partial Entanglement entropy

* Fine structure in holographic entanglement and entanglement contour

* QW, PRD, 1803.05552;

 Entanglement contour and modular flow from subset entanglement entropies,

* QW, JHEP, 1902.06905;

 Entanglement entropies from entanglement contour: annuli and spherical shells,
e M. Han and QW, 1905.05522;

 Formulas for Partial Entanglement Entropy,
* QW, Phys.Rev.Research, 1910.10978.

 And

* Remarks on the entanglement entropy for disconnected regions,
 Casini and Huerta, JHEP, 0812.1773.
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Outline

* Concept of the entanglement contour and partial entanglement
entropy (PEE) ;

* Physical requirements for PEE;

* Approaches to PEE or entanglement contour;

* Future directions



The concept of Contour

The entanglement contour gives the contribution to the
entanglement entropy of A from each pointin A
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* In general entanglement entropies obey certain inequalities.

(a) Subadditivity: S(A) + S(B) = S(AB),

(b) Araki-Lieb: S(AB) = |S(A) — S(B)|,

(c) Strong subadditivity 1: S(AB)+ S(BC)=S(ABC)+
S(B)7

(d) Strong subadditivity 2: S(AB)+S(BC)=S(A)+

S(C). Lieb and Ruskai, 1973"

* Entanglement entropy is non-local

* The contour function is a functional of the region thus recover non-locality
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Definition following a physical meaning

Entanglement contour as the density founction of the entanglement
in a given region

S.A — / fA (X)dax - 5232.2'2?1“&"
A
Partial Entanglement Entropy

s a(A) :L.fA(x)dax:I(fl, A)
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Motivation

* The local properties of entanglement entropy.

* Area law obeyed by the ground state of gapped systems
 Volume law obeyed by more generic states

* Massive deformation from CFT_2
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* Degrees of freedom at different position contribute differently.
* The entanglement contour?
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Chen and Vidal
J. Stat. 14’

WQ, PRResearch 19’

No definition so far, only Physical Requirements

. Additivity: by definition we should have

sA(A) = sA(AD) +sa4(AY), AUA=A;, ANA =0 (1.4)

. Invariance under local unitary transformations: s4(.A;) is invariant under any

local unitary transformations act only inside 4; and A.

. Symmetry: For any symmetry transformation 7 under which 74 = A" and T A, =

AL, we have s4(A;) = s (AL).

. Normalization: Sq = s4(A;)|4,54-
. Positivity: s4(A;) > 0.

. Upper bound: s4(A;) <S4, .

. Symmetry under the permutation: Z(A, A;) = Z(A;, A), which implies s 4(A;) =

s1,(A).

RERF LRI



Motivation

* Gives a finer description for the entanglement structure.

* Discriminate between gapped systems and gapless systems with a finite
number of zero modes in d = 3;

* Characterizing the evolution of the entanglement structure;
* Generating the local modular flow;

* Useful probe of slowly scrambling and non-thermalizing dynamics for
some interacting many-body systems;

* Finer correspondence between quantum entanglement and bulk
geometry.

Vidal etc., Tonni, Sierra etc., Ryu etc. and QW



 An explicit example of entanglement contour

* Rindler transformation, which is a symmetry

Entanglement wedge ﬁ “Rindler space”
Entanglement entropy ﬁ Thermal entropy

Entanglement contour ﬁ Entropy density (flat contour)
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Contour for an interval in CFT2

0.4
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Contour for the thermal state in Rindler space
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Approaches to PEE or entanglement contour

e 1: Gaussian formula Chen and Vidal, 14’; Tonni etc. 16’,17°,19’; Ryu etc. 19°,20’;
* 2: Geometric construction in holography WQ, PRD18’
* 3: PEE proposal WQ, PRD18’,JHEP19’

* 4: Solving all the requirements in Poincare invariant theories.

Casini and Huerta, JHEPOS’;
WQ), PRResearch19’;

For cases with more than one approaches working
we find consistent results!
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2: Geometric construction in holography

Modular slice

The orbit of the boundary modular flow line under the bulk modular flow

fa(r)
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vacuum
CFT_d

BTZ
Warped AdS
3d Flat space
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sA(A;)

PEE =) Geodesic chords
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3:The partial entanglement entropy proposal

1

sa(Az2) = 5 (Saiud; +Sauas —Sa; — Sas)

QW, 1803.05552 PRD
QW, 1902.06905 JHEP
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Additivity for partial entanglement entropy

Consider a partition Ay = A% U A

W + SA04, — SAlmg)
(SA1UA2 F 5 A, — DAL~ SAS)

sA(A3) =

N = DN

sA(Ap) =

-

sa(Ay) = sa(Ag)+sa(A})
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Positivity: The strong subadditivity S4,04, + 54,045 — 54, —Sa, = 0 for any three
regions indicates s4(Az) > 0= fa(z1,---x4-1) >0

Normalization: s4(As)|4,4 = Sa

Invariance under local transformations: All the subset entanglement entropies
are invariant under local transformations that only act on Az, so s4(A2) is also

invariant.
Upper bound: subadditivity S4, +54, > S4,u4, and S, +54, > Sa,04, indicates

sA(A2) < Sa,.

Symmetry: Since 7 is a symmetry, the subsets A; and A} should play the equivalent
role, in other words we have 5S4, = 5S4/, S4,u4; = Sarua- This means
7 i 7

SAuAy + Sas04; — Say — Sas = Saua, +Sauay, — Sa—Sa,
=s54(A2) = sa(A) .
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* Invariance under permutation

I(.Zl, A2) = s4(A2)

1
= 5 (Sava; +Sa0a, — S — Sa)

= SﬁQ(A) =T7(As,A),

* The PEE proposal is a solution to all the requirements!

RERF LRI
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4:PEE from solving the requirements

Additivity

Symmetry under
permutation

N

T(A, A;) = f o f doy J(x, y)
A A,

IA Ay =) > Jy

Casini and Huerta 0812.1773
Derivation for extensive mutual information

icA jJeA;
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Requirement 2, or causality

(A", B') = I(A, B).

A’ and B’ are any space-like regions that share boundary
with A and B. Then we can write:

I(A,B):[daxu[dayv uv(xa y)a
A B
With

3, J"(x,y) =0
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Poincare invariant theories

* Invariance under Poincare symmetry:

v

(x = y)*x=¥)" oy g"

JP (%, ar) = (x — y)2 (0) (x — y)2(d-1)

F(1)

I and G are two dimensionless functions of l.

2F (1) — G(1)

* Conservation: - G(l) - F()]'=—(d—-1) Z
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ox'oy’Ju(x,y) >0

* Positivity — mmm)

for any time-like vectors ox and oy

* Furthermore implies: 2F(l) > G(l) > 0

 [tis convenient to define C(I) = G(l) — F(l),thus C'(1) <0

* Which implies C(1) deceases under the RG flow, it is a c-function.

RERF LRI
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e Then we have

ry= - yon, o=

Then it is convenient to define another function H(l) by
C(l) = (d—1)*3H'(1) .
Thus
Juw(l) = —0,0,H(l) + 9u,0,0"H (1) .

At last, after we applied the Stokes’ theorem we arrive at the following formula for PEE

I(A,B) = /(M /83 difx - dijy H([x = yl), General Formula!

where 7jx and 7}y are the infinitesimal subsets on the boundaries A and 0B with an outward
pointing direction in the system and normal to 0A and 0B.
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PEE in conformal field theories

Things become much more determined in the case of conformal field theories. Since
C'(1) is a c-function, it should be a constant in CFTs. Let us define C(1) = 2Cy(d—1)(d—2),
then we have
Cy

H(‘X_y‘):_lx_y‘gd_4a

d>2, (4.16)

Cd is a constant that depend on the theory and dimension

When d=2, H(I)=#Log 1/a, is just the entanglement entropy for a single interval
with length L.
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Consistency check

=Caq—282q_3 / do

For d=2,3,4

Z

2

d
dnjx - di
/aA /83 B o |X }’|2d -

2972 (sin 0)%=3 cos 0

0 (1+22—2zcos0)*

sa(Az) ~ T(A Az) ~ {

1—22’(32—1)2 2

23+ 2 1t _1( 22 ) z4(z2—3)
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Compare with numerical results from the Gaussian formula
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Coser , Nobili and Tonni, J.Stat. Mech. 2018
“Entanglement Hamiltonian and entanglement contour in inhomogeneous 1D critical
systems”
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Future Problems

* PEE as an intrinsic measurement?
* Quantum correction to holographic entanglement contour

* PEE, minimal cross section and new way to evaluate entanglement
of purification?

* Potential in condensed matter and quantum information?



Thanks
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