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Understanding the Universe
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Our understanding of the nature of such a universe is very limited!
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Fundamental particles and interactions

‘ » The known four basic interactions: Strong+Weak+EM+Gravity

The Standard Model

Generation I  Generation II  Generation 111

6x2

‘ Leptons

6x3x2

All 61 fundamental particles in the SM are found after the confirmation
of Higgs in 2012, while the most “familiar” gravity is still nebulous




» Up to now, the General Relativity, a classical theory, is still
the best one for gravity, raised by Einstein one century ago

» The establishment of GR stands on
the belief that the laws of physics
stay the same inside any given
frame of reference

The precession of Mercury’s perihelion, Ggravitational
redshift, Gravitational lensing, etc. are all triumphs of
the theory of GR.



The theory of General Relativity

Mass tells space-
time how to curve
and the curvature of
spacetime tells
mass how to
accelerate (move)

More than one
hundred years after
the advent of GR, we
still don’t know any
solid theory superior
to it




Gravitational Wave

» The gravitational wave was first
predicted by Einstein in 1916,
though he himself believe it will
never be observed. Nevertheless,
with the progress of technology,
to detect GW is an everlasting
dream for scientist.

» The leading order GW emission is
Quadrupole emission, which is
proportional to G/c>, travelling in
light speed. And hence widely
believed that the GW can not be
generated and detected artificially

Roughly estimation tells that spacetime strain induced by
the most horrible hydrogen bomb is about 10-%’
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The six possible polarization modes
of various gravitational wave
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Breathing Longitudinal
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Feb. 2016, the LIGO Collaboration TS /
announced that it had made the |y '\Q ” e

first ever direct detection of ‘.\\\l\@ "W 0 g
5 ; ) A \ Y - ’ '

gravitational waves. A one
hundred-year-expected event, | — =
which marked the start of

gravitational wave astronomy

The highly successful third observing
~ run of the gravitational-wave detectors

» ended in spring 2020, bringing the
.~ number of known gravitational-wave
detections to 90, with biggest black
hole 300 times heavier than sun, which

is beyond our normal expectations
https://dcc.ligo.org/LIGO-P2000077/public
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Types of gravitational waves

There are four categories of gravitational waves, they are:

1. Continuous Gravitational Waves
Produced by a single spinning massive object, like the extremely
dense neutron star.

2. Compact Binary Inspiral Gravitational Waves

Produced by orbiting pairs of massive and dense (hence
"compact") objects like white dwarf stars, black holes, and
neutron stars.

3. Stochastic Gravitational Waves

4. Burst Gravitational Waves



Gravitational waves are larger than their sources,
with wave lengths starting at a few kilometers and
ranging up to the size of the Universe, frequencies
of 10-18Hz to10%Hz. LIGO detects merely 10Hz more
GW, a broadband of GW is waiting for exploring,
beyond the capacity of LIGO experiment.

The space GW detection missions, a counterpart of LIGO,
have attracted more and more attention. The space-borne
GW antennae are more sensitive to 0.1 mHz to 1 Hz GW

in frequency




Gravitational Wave Detection
Years After the Big Bang
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CHINA’'S CHOICES 150 | NATURE | VOL 531 | 10 MARCH 2016 NEWS |NFUCUS

Chinese researchers have proposed several ways to detect gravitational waves in space.

TALJI

The most ambitious proposal uses
three spacecraft in a triangle that
orbits the Sun and detects
gravitational waves from a range

of objects, like Europe’s eLISA
proposal. The spacecraft are farther
apart than in eLISA, giving Taiji
access to different frequencies.

eLISA spacecraft
~2 million km apart

Sun

‘ Taiji/LISA at ISGW2017, expecting two observatories may

cooperate and compensate in future GW observation

TianQin spacecraft
ﬁ}) ~150,000 km apart TIANQIN

Earthi iy A cheaper proposal puts three
/4 _-B‘ craft in orbit around Earth, and
Q’, = much closer to each other than

gravitational waves emitted
by HM Cancri, a pair of white

/ in Taiji. This would target the
\ E dwarf stars.
Nh 'S orblt
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ISGW2017
International Symposium on Gravitationat Waues

May 25-29, 2017, University of Chinese Academy of
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Frontiers of Science and Technology in Gravitational Wave Detection

International Collaboration in Gravitational Wave Detection

International Advisory Committee (IAC)

Chun-Li Bai (CAS), Peter Bender (CU-Boulder), Karsten Danzmann (AEl), Wen-Réi Hu (IMECH),

Takaaki Kajita (Univ. Tokyo), Misao Sasaki (Univ. Kyoto), Li-Bin Xiang (CAS),
Wei Yang (NSFC), He-Jun Yin (MOST), Wen-Long Zhan (CAS)

Invited Speakers

Masaki Ando (University of Tokyo)

David Blair (Australian International Gravitational Research Centre)
Rong-Gen Cai (Institute of Theoretical Physics, CAS)
Yanbei Chen (California Institute of Technology)

Stefan Danilishin (Institut for Theoretische Physik)

Karsten Danzmann (Aibert-Einstein-institut)

Jinn-Ouk Gong (Asia Pacific Centar for Theoretical Physics)
Gerhard Heinzel (Albent-Einstein-Institut)

Gang Jin (Institute of Mechanics, CAS)

Shane L Larson (Northwestern University)

Tionnie G_ F. LI (The Chiness University of Hong Kong)

Run-Qiu Liu (Institute of Applied Maths, CAS)

Misao Sasaki (Kyoto University)

Bangalore Sathyaprakash (Penn State University)

Bernard F. Schutz {Cardiff University)

Daniel Shaddock (The Australian National University)

Gary Shiu (University of Wisconsin / HKUST)

Shinji Tsujikawa (Tokyo Univeristy of Science)

Stefanc Vitale (Universita di Trento)]

Suwen Wang (Stanford University)

Yue-Liang Wu (UCAS / Institute of Theoretical Physics, CAS)
William Joseph Weber (Universita di Trento)

Bing Zhang (University of Nevada / Peking University)

2017.5.25-29 ERXZ5 | 7K ERRATT

RSN BEAS "Xtk 8
F ﬂ%§ﬂjtgﬂ1‘§f/ta':é%§|ﬁ:t FE
RlZREOFEM RRLT, EEZEERE
SR FRET<Karsten Danzmann#iSfN=E
ER TR Z KFENE R YIEZFZK Peter
Bender#{#%.




Wy GO Detection Wattens

» GW is a astronomical messenger, a kind of new probe to
the exploration of the Universe, aside from the EM signal.
It is a key experiment to testing the standing gravity

theory

» The high tech developed in the gravitational wave

detection will for sure have a broad influence to society.

» In the past decade, there are four Nobel Prize in physics
were awarded to the achievements relative to cosmology

and astrophysics
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Wy QU Detection M atters

» The direct observation of GW by LIGO marked the start of

gravitational-wave astronomy and cosmology

> In the future, with more GW detection technique developed,
like space gravitational observatory, our views on gravity and

cosmology will definitely be improved

» The NRC of the States once mentioned in a report in 2007:

The finot dinect detection of low- frequency gravitational waves witl be
a momentond discoveny, of the bind that wine Hobel Prizes—NRC



Vancous GO Dettections

— . Deirnect detection

v’ Resonant bar

v’ Laser Interferometer
— Ground based
— Space borne

v’ Light clock

. Indirect meaurements (BIPULSAR. NANOGrav. FAST.
BICEP. AliCPT...)
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Indirect detection-NANOGrav
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NANOGrav stands for North American Nanohertz Observatory for
Gravitational Waves. NANOGrav members are drawn from across the
United States and Canada and the goal is to study the Universe using
gravitational waves. NANOGrav uses the Galaxy itself to detect
gravitational waves with the help of objects called pulsars—exotic,
dead stars that send out pulses of radio waves with extraordinary
regularity. This is known as a Pulsar Timing Array, or PTA



Indirect detection-NANOGrav

NANOGrav was founded in October 2007 and
has since grown to over 100 members at over
40 institutions.

http://nanograv.org



FAST (Five-hundred-meter Aperture Spherical
radio Telescope
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https://baike.baidu.com/item/%E5%A4%A9%E6%96%87%E5%AD%A6%E5%AE%B6/1242040
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AliCPT primordial GW detection
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https://baike.baidu.com/item/%E5%8C%97%E5%8D%8A%E7%90%83

Direct detection of GW
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ravitational wave physics
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Taiji Program in Space VS Others
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ibxiE R, HpeRE: MERA. REEA. AMEER. HFEUESREAEES D™
RIERRRS, FRIANA: BERSIDRFENAENENERMGEE, IS NS ERK

CHINA’S CHOICES
Chin

TianQin spacecraft
~150,000 km apart TIANQIN

A cheaper proposal puts three
craft in orbit around Earth, and
much closer o each other than
\ In Taiji, This would target the
| gravitational waves emited
/by HM Cancri,a pair of white
dwarf stars.
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-Blueprint in space—borne GW detection

v'Key techs in Space-borne GW detection
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Clallenges in Space - borne Gravitational Wave Detection

€® Many of technologies for the aim of GW detection are
above the current technological level

@ |n case one of the satellites is out of order, the whole
observatory will be greatly influence

@ Three-spacecraft plan is almost incapable of testing the
gravitation wave polarizations predicted in theories other
than general relativity

v" One of the solutions: Tetrahedron Constellation of
Gravitational Wave Observatory(TEGO)



Tetrahedron Constellation of
Gravitational Wave Observatory

v Recently, we propose a Tetrahedron }‘
Constellation of Gravitational Wave |
Observatory (TEGO) as a spare
scenario for Taiji Project, which
composed of four identical
spacecrafts (S/Cs). The laser
telescopes and their pointing
structures are mounted on the S/C
platform and are evenly distributed
at three locations 120 degrees apart

Hongbo Jin and QCF, Science China 2024
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Some Merits of TEGO

v' The TEGO structures form automatically a stable mass
center for the platform. The time delay interferometry
(TDI) are used to suppress the frequency noise of GW
detector

v’ The second generation time delay interferometry (TDI)
would be employed to suppress the frequency noise of
Gravitational Wave

v’ More importantly, comparing to the on—going
configurations of LISA, Taiji, and Tianqin, the TEGO
has more combinations of optical paths and hence more
sensitive to GW signals, which implies that more GW
modes beyond the predictions of General Relativity,
the polarizations, might be detected



Some Merits of TEGO

v’ The cost increase not much in comparison with the

three-satellite project, while with rich returns.

v’ The extreme high technique requests may be alleviated a
bit

v' Much more precise in pinpointing the sources of GW

v’ It is even sensitive to the Dark matter and Dark Energy

issues

Cong Feng Qiao Tetrahedron Constellation of Gravitational Wave Observatory



A few technical analyses on TEGO

z(t) = Rcos(a) + %ER(EDS(QCE - fB) — 3cos([3’))

+152R(3 cos(3a — 28) — 10 cos(a) — 5 cos(a — 25))

8
y(t) = Rsin(a) + %eR(sin(Za —fB) — SSin([J’))
—I—éEZR(S sin(3a — 28) — 10sin(a) + 5sin(a — Qﬁ))

2(t) = —v/3eRcos(a — ) + \/gezR(cosz(a - B)
+2sin?(a — ﬁ))

R=1 AU for S/C1, S/C2 and S/C3;
forS/C4,R=(1+0.0163738)
AU ; a. B. yare phases

Cong Feng Qiao Tetrahedron Constellation of Gravitational Wave Observatory 36



A few technical analyses on TEGO

[ Variations of the arm lengths, s
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A few technical analyses on TEGO
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Amplitude of six polarization modes
in TEGO
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