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Zeno’s Paradox

Zeno's "Arrow Paradox" is one of his famous paradoxes that 
challenge our understanding of motion. The paradox goes as 
follows:
1. Instantaneous Position: At any given instant in time, an arrow 

in flight occupies a specific position in space.
2. Motion and Time: If the arrow is at a specific position at a 

particular instant, it is not moving during that instant. 
Motion requires change in position over time.

3. Sum of Instants: Since time is composed of an infinite number 
of instants, and the arrow is not moving in any of these 
instants, it follows that the arrow is never in motion.

Resolution: Introduce the concepts of limit and instantaneous velocity. The 
instantaneous velocity is defined in “velocity space” and does not exist in the 
physical space where the moving object resides. It leads to Newtonian (classical) 
mechanics.



The flying arrow is motionless, 
so does the flying person

Event horizon
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Black Hole Information Loss Paradox

The black hole information paradox originates from the Hawking radiation [1]. The particle spectra exhibit a Planck 
distribution with a (Hawking) temperature ��:

                                                                                       in �out in = 1

�
ℏ�

����−1
,       

where the Hakwing temperature (Schwarzschild black holes as the example after here):

                                                                                                  �� = ℏ
8����

.            (2)

A black hole gradually evaporate via Hawking radiation until it vanish completely. If a black hole formed by the pure state, 
then it will eventually transform into fully thermal (a mixed state) Hawking radiation at the end of evaporation. Namely, the 
evolution of a pure state into a mixed state violates the unitary principle of QM, which leads to the Information Loss [2].

1. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199 (1975) [Erratum: Commun. Math. Phys. 46, 206 (1976)].
2. S. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14, 2460-2473 (1976).



Resolution: Page Curve

Page Theorem [3]:  For a bipartite system ℋ�� = ℋ�⨂ℋ� , if the dimensionality of the 
subsystem � is much smaller than the dimensionality of the subsystem B,  � 

 � ≪ 1. Then the 
smaller subsystem approximates a thermal state.
Consider a  Schwarzschild  black hole: ℋ�� = ℋ�⨂ℋ�, where � represents the  remaining   black hole; � represents 
the radiation. We first evaluate the time-dependent evolution of its mass � and the thermal entropy �BH:

         Stefan-Boltzmann Law:                        ��
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4 .                                    3 
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The numerical calculation shows that  4 :
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where �0 is a dimensionless constant.  Then:
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3 − � 

1
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�life
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Here �life is denoted as the life time of black holes.

3. D. Page, “Average entropy of a subsystem,” Phys. Rev. Lett. 77, 1291-1294 (1993).
4. D. N. Page, “Particle Emission Rates from a Black Hole: Massless Partiles from an Unchanged, Nonrotating Hole,” Phys. Rev. D 13, 198 
(1976)



Apply this theorem to the whole process of black hole evaproation:
• At early times (� ≪ �Page) : The black holes had just formed and started emitting Hawking 

radiation.  So the radition is small,  � ≪  � . According to the Page theorem, the smaller 
subsystem � is a thermal state. The entanglement entropy has the following relaiton:

              �� ≈log  � ≡ ��
coarse ~���.                                                              7a   

                                                                                  ��
coarse ≪ ��

coarse ≡ �BH = �
��

.                                                    (7b)

Here “coarse” represents the “coarse-grained entropy”(thermal entropy). For a black hole, its coarse-grained entropy is the 
Bekenstein-Hawking entropy, which is proportional to the area and  and decreases with the evaporation. (7a) derives from the 
fact that Hawking radiation is approximated as the two-dimensional photon gas whose thermal entropy is proportional to its 
temperature.

• At Page time (� = �Page): On the one hand, �� increase linearly with time; On the other hand, �BH 
decreases with time. They both reach the same value at some point.  This time is called the Page time.

• After Page time  � > �Page : Hawking radiation � dominates, while the black hole system � is small. 
Their identities are interchanged. We apply the Page theorem once again and obtain the contrary 
conclusion:

                                                                                  �� ≡ �� ≈ ��
coarse ≡ �BH = �

��
.              (8)

*In the first identity, we use the complementarity of von Neumann (entanglement) entropy: For a bipartite system, if the total 
system is a pure state, then the entanglement entropy of the two subsystems is always the same: �� ≡ ��.



Page Curve

In conclusion, the entanglement entropy of radiation is given by substituting (5) and (6):

    �� =  
���,                               � < �Page

 1 − �
�life

 
1
3,                 � > �Page

                                       (9)

which is plotted a Page curve.

Comment: the Page curve constituted a milestone. It is worthy of emphasis that it is 
derived from the spacetime supposition that the black hole evaporation satisfies the 
unitary.



Relationship between Two Paradoxes

If universe as a holographic screen, in order to perceive the structure of the universe, it 
is necessary to be aware that the distinct pixels on the holographic screen at a given 
time constitute a distinct and high-quality image of the universe. The clearer the image, 
the less conspicuous the motion or change.

If there is merely one finite-sized black hole in the initial time of the universe. 
Spacetime outside the black hole is the vacuum. This is the precise vacuum solution to 
Einstein's equation. For the information paradox, Due to the presence of Hawking 
radiation, it exhibits a blackbody spectrum. We have no knowledge of the initial 
information that gives rise to a black hole, nor do we know the state of matter formed 
by Hawking radiation, resulting in an increasingly blurred picture of the universe.  It is 
contrary to Zeno's statement that “objects in motion do not move.”. 

Therefore, to solve the issue of information loss, we also need to take the “limit”, 
which corresponds mathematically to the “replica trick”.



Island Rule
Recently, there is a breakthrough in Page curve [5-8] : Employing the QES (quantum extremal surfaces) 
prescription [9], Almheiri and Penington et al. obtained the unitary Page curve in the semi-classical gravity 
and summarized the island rule/formula for computing the entropy of Hawking raditiaon:    

                                               �Rad = min ext �gen  = min  ext  Area �� 
4��

 + �bulk � ∪ �  ,            10 

where “min” and “ext” stands for “minimization” and “extemization” respectively; �gen is denoted the 
generalized entropy; � and � is the region of radiation and island, �� is denoted as the boundary of 
island.

The key of this formula is that the entanglement entropy of the quantum field �bulk , we take into 
account not only the contribution of the radiation region � but also that of the  island region � inside 
the black hole.
In addition, there are two “radiations” in the island formula. On the left is the complete entropy of 
Hawking radiation , i.e.  completely accurate entropy of radiation for the quantum state; but the one on 
the right is just the semi-classical description of the state of radiation.  

5. A. Almheiri et al, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” JHEP 12, 063 
(2019). 
6. A. Almheiri et al, “The Page curve of Hawking ridiation from semiclassical geometry,” JHEP 03, 149 (2020).
7. G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP 09 002 (2020).
8. A. Almheiri et al, “The entropy of Hawking radi_x0002_ation,” Rev. Mod. Phys. 93, 35002 (2021).
9. N. Engelhardt and A. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” 
JHEP 01, 073 (2015).



Island Rule for the Whole Process of Evaporation 

• Before Page time  � < �Page  : The extremizaiton (ext) of generalized entropy indicates that QES is a trivial 
surface — “the vanishing surface”,  � = ∅, namely, the island is absent at early times.

                                                                                  �Rad = �bulk � ~���,             11 
which lead to the information paradox at late times: �Rad > �BH  Benekstein bound is violated  10  

[10] J. D. Bekenstein, “A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems,” Phys. Rev. D 23, 287 
(1981).

FIG1: The Penrose diagram for an evaporating black hole at early times. 
� is the region of raidaiton. The orange curve represents the cut-off 
surface, where the radiation is emitted (not strictly from the event horizon 
when considering the back-reaction). The QES is contracted to a radius of 
� = 0. It is a vanishing surface, which  leads to the entropy of radiation 
keeps growing. 



• After Page time  � > �Page  : There ia another candidate.  The extremizaiton (ext) of generalized entropy 
indicates that QES is an non-trivial surface — “non-vanishing surface”, � ≈ horizon, then

                                                              �Rad = Area �� 
4��

+ �bulk � ∪ � ≈ Area horizon 
4��

= �BH,             12 

which lead to a desceasing curve.

                 

[10] J. D. Bekenstein, “A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems,” Phys. Rev. D 23, 287 
(1981).
[11] G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP 09 002 (2020).
[12] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys. 61, 781-811.

FIG2: The Penrose diagram for an evaporating black hole at late times. � 
is the region of island. Its boundary is denoted as ��, which is the non-
vanishing QES, also called “quantum extremal island” (QEI). At this time, 
the Cauchy is devided to  two disconnected intervals. The interior of 
black holes (the region �)  is entangled with the exterior radiation �.

Entanglement wedge reconstruction suggestion [11]:
The interior of black holes belongs to the entanglement wedge (causial 
region) of exterior radiation. It seems to inherit the spirit of “ER=EPR” 
[12].



Page curves from the island rule
In summary, the behavior of entropy of radiation satisfies:

                                                �Rad = min �gen
without island, �gen

with island ≈ min ���, �BH .            (13)

which describes an unitary Page curve.

Emphasis: We may be naive to assume that the whole process merely includes the interior of the black hole in the 
calculation, which is just a “trick”. However, it is not that we “actively” include the interior of a black hole; rather, it is that 
“gravity itself guides us to include the interior” in our calculations. Therefore, gravity informs us that the evaporation of 
black holes is unitary, yet it fails to provide us with the details of the quantum state of the Hawking radiation. In fact, the 
island formula (10) can be strictly derived from the gravitational path integral, as we will see next.



The End of the World (EOW) model
The EOW model is consists of Jackiw-Teitelboim (JT) gravity, the EOW brane at the AdS boundary, and a coupled auxiliary 
system (the flat bath without the gravitational effect) [13,14].   

The total action is [13]: 

                                                                                                                                                                               (14)

Here � is the mass of brane and the integral is along the worldline of the brane. The � internal states living in the EOW brane 
can be used to describe the entanglement partner inside the black hole of early Hawking radiation.

FIG3: The Euclidean geometry for a 
black hole with an EOW brane behind
the horizon.

[13] G. Penington, S. Shenker, D. Stanford and Z. Yang, “Replica wormholes and the black hole interior,” arXiv:1911.11977
[14] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “Replica Wormholes and the Entropy of Hawking 
Radiation,” JHEP 05, 013 (2020).



Gravitational Path Integral

These � states are entangled with the auxiliary system �. We can therefore construct a model of the evaporating black hole �. 
The wave function of the whole system is:

                                                                                      � = 1
�
 �=1

�  �� �  � �,            (15)

where  �� � is the state for black holes, the subscript � represnets the EOW brane at the �-th state.  � � is the state for the 
radiation. Then the (reduced) density matrix can be expressed as:

                                                                                  �� = 1
�
  �=1

�  �  � � ��  �� � ,             (16) 

where each  matrix element is the gravity amplitude:

                                                                                                                          .                                                    (17) 

The arrows here represent the direction of time evolution. At the intersection of the dash line and the solid line, we give an 
EOW brane with an asymptotic boundary. Considering the leading order of the gravitational configuration, the following 
classical order satisfies the boundary conditions:      

                                                                                                                         .                                                     (18)



Why Replica Trick?

If we directly the von Neumann entropy for the radiation, the process is very difficult since the term log �� is involved. A 
very mathematical trick is first to evaluate the corresponding n-th Renyi entropy and take the limit of � → 1 to obtian the von 
Neumann entropy:

�� =
1

1 − �log  Tr ��
�  ,

                                                                              �vN =lim
�→1

1
1−�

log  Tr ��
�  .                                                          (19) 

We  consider the � = 2 case as the example, at this time, our calculation involve the purity:

                                                                               Tr ��
2 = 1

�2  �,�=1
�   �� ��  

2 .            (20)

Different from the von Neumann entropy  � = 1 , we can sum � and � in two ways by connecting dash lines:

• Disconnected Geometry

FIG4: Diagram for the disconnected geometry. It is aslo called the “Hawking saddle” , which is dominates the 
evaporation at early times.



Replica Wormholes Saddle
• Connected Geometry

In order to describe the contribution of these geometries, we denote �� = �� �  as the gravitational path 
integral on the disk, the boundary of which consists of  � physical boundaries (each with the renormalization 
length �) and � EOW branes. Then the purity has the following form:

                                                                           Tr ��
2 = ��1

2+�2�2
 ��1 2 = 1

�
+ �2

�1
2 ≈ �−1 + �−�0 .            (21)

in which the numerator come from the sum of the contributions of connected (�−1) and disconnected  ��0  
geometries. In the final simplification,  we ues the planar approximation ��~��0 , because �� has the disk-like 
topology. Accordingly, when � is small enough (long before the Page time), the disconnected geometry 
dominates, which reproduce the Hawking’s curve;  When � becomes very large, the connected geomety 
dominates, then the entropy is independent of �, and stops increasing. It is the competition between these two 
saddles during the evaporation leads to an unitary Page curve:

                                                                         �� ≈  
log �,           � < �Page
�BH,          � > �Page

            (22)

 

FIG5: Diagram for the connected geometry. It is aslo called the “replica wormholes saddle” , which is dominates 
the evaporation at late times.



Replica Metric
The next step is to obtain the replica geometry. We can glue together � copies of spacetime and along a set of branch cut.  
For JT gravity, we consider this in the manifold ��, which can be regarded as an �-fold manifold with the ℤ� symmetry. 
Then we use the uniformization map. At last, we obtain the metric with �-dependence:

                                                           ���
2 =− 4 �� 2

 1−  � 2 2 ,        dilaton: �� = �0 + 2���
�

1+ � 2

1− � 2 ,            (32)

with the uniformization coordinate:
                                                                                                      �� = �.             (33)
Note that this process will introduce the conical singularity on the ��. To determine the dilaton with �-dependence in the 
presence of concial singularities, there exists  two equivalent geometric description as follows:

FIG7: The two equivalent ways to describing the conical singularity for the Euclidean signature. On the left, we 

parameterize the manifold with the coordinate � = �
2�
�

 �+�� , where the Euclidean time are periodic: �~� + � by the 

Wick rotation � → ��, and −∞ < � <− �; On the right, the geometry is uniformized by coordinate � = �
2�
�  � +�� . 

The metric identify with a Ad�� disk with the temperature �
�
�.



Modular Entropy
• Without Island

Set the coordinate for � (the boundary of islands) and � (the boundary of radiation) are (� and � are symmetry points on 
the left wedge):
                        �1 =− �1

− =− �2 =− �2
+ =  −��, � ,           �1 = �1

+ =− �2 = �2
− =  +��, � ,           39a  

                        �1 =− �1
− =− �2 =− �2

+ =  −��, � ,           �1 = �1
+ =− �2 = �2

− =  +��, � ,          39b 
Then the modular entropy without island is [19]:

                                 �� without islnad = �� � = �
6�

log  � �1 −� �2  2

���
2 �’ �1 �’ �2 �bath �1 �bath �2 

≈ 2��
3��

��.                         40 

[19] H. Casini, C.D. Fosco and M. Huerta, “Entanglement and alpha entropies for a massive Dirac field in two dimensions”, J. Stat. Mech. 
0507 (2005) P07007.

FIG8: : The set up in (left) Euclidean (right) Lorenztian signature with two QES in the context of the eternal 
black hole and a radiation region � that covers the left and right bands, as shown. There is a point in the right 
Minkowski bath and one QES as shown ultimately outside the horizon of the right black hole in the Lorentzian 
picture and the mirror image on the left.



Modular Entropy
• With Island

Then the generalized modular entropy with island is:

                                 �gen with islnad = 2�0 + 4�
��

��

Tanh  2��
��  

+ �� � ∪ � =                                                                   = 2�0 +

4�
��

��

Tanh  2��
��  

+ �
3�

log  � �1 −� �1  2

���
2 �’ �1 �’ �1 �bath �1 ��� �1 

                                                                 = 2�0 + 4�
��

��

Tanh  2��
��  

+ �
3�

log �
����

2

Cosh  2�
�  �+�  −Cosh  2�

�  �� − ��  

Sinh  2�
�  

 .                41 

Extremizing the above equation with respect to �� first:   
    

                                                             � �gen with islnad 
���

~Sinh  2�
�

 �� − ��  = 0 →  �� = ��.             42  

                             



Modular Entropy
• With Island
Substituting the relation  �� = �� to the generalized modular entropy and extremize it with respect to �:    

                                  � �gen with islnad 
��

=−
�  ���Coth  2�

� � −���Coth  2�
�

 �+�  +12���Csch2  2�
�� �  

3�2�2 = 0.             43  

                             
The above equation is equivalent to the following condition:

                                                                                           12���
���

= 1
2��

=
Sinh  2�

�
 �−�  Sinh  2�

� � 

Sinh  �
�

 �+�  
.                (44)

In the high temperature limit �~0, we obtain the location of island for the finite � is:
                                                                                             � → ∞,            (45)
which indicates that the island is located at the center of the AdS2 disk. Then the modular entropy with island is:

                                       �gen with islnad = 2�0 + 4�
��

��

Tanh  2�∞
��  

+ �
3�

log  �
����

2 �−2��
�  ≈ 2�BH

� + �  �
��

 .            (46)

Combing the result without island, we find

                                                                            �� Rad = min  2��
3��

�,    2�BH
�  .            (47)

Then, the Page time is given by:

                                                                           �Page = 3���BH
�

��
= 3��

��
�0 + 3��

���
.            (48)



Modular Page Curve and Entanglement Capacity
Then the entanglement capacity is given  by taking the derivative of the modular entropy with respect to �:

                                                             �� =− � � �� Rad 
��

=  

2��
3��

�,                                    � > �Page

��
thermal = ���

2����
,           � < �Page 

                                (49)

Finally, we plot the time-depend of the entropy and the capacity through (47) and (49):

1.The modular entropy is a curve and saturated at late times, which implies that modular entropy is conserved during 
evaporation. 
2. The entanglement capacity presents a discontinuity at Page time. This seems to indicate that there is a second-order phase 
transition at the Page time.
3. Both modular entropy and entanglement capacity are identied to the thermal entropy and heat capacity of black holes at 
late times, which strong indicates the relation between the modular quantity and statistical physics.
4. In addition, in the limit of � → 1, all our results are consistent with the previous work [19].

[19] A. Almheiri, R. Mahajan and J. Maldacena, “Islands outside the horizon,” arXiv:1910.11077.

FIG9: Left: The Page curve for the modular entropy; Middle: The capacity as the function of �; Right: The 
zoomed plots for the middle subfigure. 



Go Beyond the Page Curve

Motivation:
We contemplate the Page cuve at a more profound level: Consider the directivity from the 
Hawking saddle to the replica wormholes saddle (The reversibility problem). 

Gap:
 All previous work has shown that the evolution from the Hawking saddle to the replica 
wormholes saddle is unitary microscopically, and therefore invertible between the two 
microstates. However, leads to a new paradox — Why do the Hawking saddle dominates in the 
early stage of evaporation rather than the replica wormholes saddle ? Vice versa.

Another closely related issue is related to the quantum non-cloning theorem. When we use the 
“replica trick”, we need to make � copies of the state �. But the quantum non-cloning theorem 
forbids cloning of an unknown quantum state. We need to prepare � known quantum states in 
advance. Then taking the limit � → 1 yields a finite von Neumann entropy. Therefore, from the 
point of view of information, there should exists the directivity.  Therefore, information after the 
evolution of the black hole can only be obtained if there is information of � quantum states first. 
Then  the quantum non-cloning theorem can be satisfied.



Second Law of Relative Entropy
Based on previous result (FIG9), we find that the behavior of modular entropy is closer to the thermal entropy than Renyi 
entropy. Here we consider the relative entropy and its second law [20]. For two density matrices � and �, the relative entropy 
is defined by:
                                                                    � �  � = Tr �log � − Tr �log � .            (50)
Two properties: Positive definiteness and Monotonicity
Consider � as a reference state and introduce the modular Hamiltonian �� =−log σ and the replica free energy � � =
Tr ��� − � � , where � �  is the von Neumann entropy for the state �. Then:

                            � �  � =  Tr �log � − Tr �log �  +  Tr �log � − Tr �log �  = � � − � � .               (51)

For the evaporating black hole, we assume that the state of  the Hawking saddle is �, while the state of  the replica wormholes 
saddle is �� = �−��. Accordingly,
                                                                   � �  �� = Tr �log � − Tr �log �� ≥ 0.            (52)
We obtain the second law of relative entropy:
                                                                                         � � � − � � ≥ 0.            (53)
Therefore, there is a directivity between the Hawking saddle and the replica wormhole saddle, which is given by the second 
law of relative entropy.  At the same time, the replica parameter � does play the role of inverse temperature.

[20] H. Casini, “Relative entropy and the Bekenstein bound,” Class. Quant. Grav. 25, 205021 (2008).



Discussion and conclusion
In conclusion, we can summarize the form of modular entropy by analogy with the second 
law of thermodynamics in the modular space:

1. There is a directivity between the Hawking saddle and the replica wormhole saddle, 
which is given by the second law of the relative entropy, and � does play the role of inverse 
temperature.

2. More specifically, similar to two equivalent statements of the second law of 
thermodynamics:

The modular entropy cannot flow spontaneously from the replica wormhole saddle to the 
Hawking saddle without causing other changes. Or equivalently, a quantum state cannot 
spontaneously transition from one copy to multiple copies without causing other changes.

There might exist more than mere analogies between the physical quantities related to 
modular and statistical mechanics, and there might a dulaity. This is also the focus of our 
future work.



Thank  you !


