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Outline

• A review of WCCC in Gedankenexperiments

– Wald’s original proposal for WCCC

– Counter proposals against WCCC

– Resolutions of contradictions

• New approach

– Different proposals in new language

– General formulae

• WCCC will not be violated by Gedankenexperiments.
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Cosmic Censorship Conjecture

The Cosmic Censorship Conjecture (CCC) was proposed by Roger
Penrose in 1969.

• Proc. Roy. Soc. Lond. A 314, 529-548 (1970)

Also, see the following paper by Penrose:

• General Relativity and Gravitation, Vol. 34, No. 7 (2002)

If a spacetime contains a singularity that is not hidden behind an
event horizon, i.e., far-away observers can receive signals from it,
the singularity is said to be “naked.”

Since initial conditions cannot be specified at a singularity–meaning
anything can come out of the singularity–a naked singularity
would prevent predictability in spacetime.
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Weak Cosmic Censorship Conjecture

Two versions of CCC:

• Weak CCC: In a geodesically complete and asymptotically
flat spacetime, the evolution of matter fields satisfying the
null energy condition cannot lead to a naked singularity.

• Strong CCC: The inner Cauchy horizon is unstable for an
infalling test particle or field.

–The Cosmic Censorship Conjecture plays a crucial role in main-
taining the deterministic nature of general relativity. We focus
on the Weak CCC (WCCC) in this talk.
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Wald’s Gedankenexperiment on WCCC

Proving the WCCC in general is challenging. One approach
involves perturbing a black hole (M , Qi) with a test particle
(E > δM , qi = δQi) to see if it leads to a visible singularity.

Wald focused on the Kerr-Newmann (KN) black hole of mass M ,
charge Q and angular momentum J = Ma, with the remaining
thermodynamic quantities

Ω =
a

r2
+ + a2

, Φ =
r+Q

r2
+ + a2

, T =
r+ −M

2π(r2
+ + a2)

, S = π(r2
++a2).

[Wald, 1974]
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Future pointed geodesic motion

For an infalling particle with conserved energy E, angular mo-
mentum L, and charge q, the future-pointed velocity ṫ ≥ 0 of the
geodesic motion implies

E ≥
aL+ qQr+

a2 + r2
+

.

If the particle crosses through the outer horizon, then the mass,
charge, and angular momentum of the BH change, namely

δM = E, δJ = L, δQ = q ,

which leads to

δM ≥
aδJ +Qr+δQ

a2 + r2
+

= ΩδJ + ΦδQ.

This inequality, derived from the geodesic motion, resembles part
of the first law.
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Second law and NEC

The inequality can also be derived from two seemingly different
principles:

• The first and second laws: δS ≥ 0→ δM −ΦiδQi = TδS ≥ 0:

δM ≥ ΩδJ + ΦδQ =
aδJ +Qr+δQ

a2 + r2
+

.

• Null energy condition (NEC). Specifically, a test body with
energy momentum tensor Tµν crossing the horizon satisfies
the condition [E. Poisson, lecture notes, (2002); Chirco,Liberati, Sotiriou,1006.3655]

δM −ΩδJ =
∫
Tabχ

adΣb ≥ 0 ,

where χ = ∂t + Ω∂φ is the degenerate Killing vector on the
horizon.
– The NEC needs only to be imposed on the horizon here.

– The NEC is required for the test body, not black hole
itself.
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Horizon condition

When a charged particle of (δM, δQ, δJ) enters the horizon of KN,
would it destroy its horizon and reveals its singularity?

Intuitively, the most vulnerable situation is the extremal limit,
with

Mext(Q, J) = rext(Q, J) =

√
1

2
(Q2 +

√
4J2 +Q4).

For the KN solution of (M,Q, J), we have two situations

• It contains a naked singularity if M < Mext(Q, J).

• It describes a black hole if M ≥ Mext(Q, J). (For the KN,

it can be equivalently expressed as M2 ≥ Q2 + J2

M2, typically

adopted in literature, e.g. [Wald; ...])

When the test body enters the horizon of the extremal KN, we
have the (Mext + δM,Q+ δQ, J + δJ). We can define a quantity

X = Mext(Q, J) + δM −Mext(Q+ δQ, J + δJ) = δM − δMext .

• X ≥ 0: WCCC is protected;

• X < 0: WCCC is violated.



WCCC is protected in the Wald’s Gedankenexperiment

From various arguments, including the NEC condition, we saw
that

δM ≥ ΩδJ + ΦδQ = δMext .

It follows that
X = δM − δMext ≥ 0 .

In other words, WCCC of the extremal KN is protected.

In this Gedankenexperiment, two independent inequalities are
used

• Energy Condition, (or equivalently the first and second laws)
are given respectively by

δM ≥ φiδQi (first law, imposing δS > 0)

This also coincides with the ṫ ≥ 0 condition of ingoing parti-
cles.

• Horizon Condition: Ensures M ≥Mext before and after the
perturbation to protect the WCCC.
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Alternative proposals that violate WCCC

After Wald’s demonstration of WCCC for KN in 74, counter
arguments emerged

• Hubeny [9808043] suggested that the WCCC could be vi-
olated for the near-extremal RN black hole; also for KN
[Saa,Santarelli,1105.3950] (Missing type)

• Gao and Zhang [1211.2631] proposed WCCC violation for an
extremal KN black hole by expanding the horizon condition to
the second order in δM and δQi, while the energy conditions
remained first order (Mixed type).
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Resolving contradictions

- To resolve the contradictions in Hubeny’s missing type, Sorce
and Wald (SW) identified that their analysis was insufficient at
the linear order of δQi and δM . The near-extremal case requires
a second-order expansion. [Sorce,Wald,1707.05862]

– SW examined WCCC for near-extremal KN black holes up to
the second-order variation and showed there was no violation
of WCCC for KN.

– Regarding the mixed type, we shall point out that mixing dif-
ferent orders in the analysis led to confusion.
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SW Analysis

SW introduced an order parameter λ to express the horizon con-
dition for KN as (equivalent to our earlier M −Mext(Q, J) > 0)

f(λ) = M(λ)2 −Q(λ)2 −
J(λ)2

M(λ)2
≥ 0 ,

which, using Taylor expansion, contains all orders of perturbation.
SW proposed, based on argument of NEC of perturbating matter,
a new inequality at the second order

δ2M −ΩHδ
2J −ΦHδ

2Q ≥ −
κ

8π
δ2AKN .

With this input, SW demonstrated that the above horizon con-
dition is satisfied at the second order

f(λ) ≥
(
−

(M4 − J2)QδQ+ 2JM2δJ

M(M4 + J2)
λ+Mε

)2

+O(λ3, λ2ε, . . .),

where ε =
r+
M − 1 ≥ 0 is a dimensionless parameter, and M is the

extremal value.

[Sorce,Wald,1707.05862]
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Our approach

We shall follow largely the SW proposal, but apply for a more
general class of black holes in diverse dimensions

• that are specified by conserved quantities, such as mass M
and charges Qi, including the electric and magnetic charges of
a single or multiple Maxwell fields, and/or angular momenta,

• that have extremal limit (T = 0), with M(T = 0) = Mext(Qi).

We consider general perturbations

M → M + ∆M = M + λδM +
1

2
λ2δ2M + · · · ,

Qi → Qi + ∆Qi = Qi + λδQi +
1

2
λ2δ2Qi + · · · ,

and examine the horizon condition Xε ≥ 0, where

Xε ≡ M(Tε, Qi) + ∆M −Mext(Qi + ∆Qi)

=
(
M(Tε, Qi)−Mext(Qi)

)
+ ∆M −∆Mext.

In the extremal case, the first bracket vanishes.
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SW underlying condition

The underlying condition of SW for the KN, based on NEC, was

δ2M −ΩHδ
2J −ΦHδ

2Q ≥ −
κ

8π
δ2AKN .

However, it is rather difficult to follow the logic behind this
second-order inequality, at least to us, since, according to Eqn
(113) of SW paper,

• δ2A here is the Hessian of A(M,Q, J), which we denote as
DA.

Thus δ2 means different things in different terms in the SW in-
equality.

Note that DA = 4DS = −4DMT , thus SW inequality also means

δ2M −ΩHδ
2J −ΦHδ

2Q ≥ DM .

We shall come to this inequality later through a different under-
lying principle.
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Our underlying condition

We adopt a simpler-looking argument, based on the second law

∆S = λδS +
1

2
λ2δ2S + · · · ≥ 0 .

• δS > 0, then we can absorb the higher-order ones to the lead-
ing one, in which case, the WCCC has already been proven.

• δS = 0, then δ2S ≥ 0.

This second-order condition was independently proposed earlier
in [2405. 07728, Lin, Ning] for studying the WCCC of charged KN-dS
black holes.

It can be proven for KN, the above two seemingly different pro-
posal leads to the same outcome. In fact, we shall see presently
that

(δS = 0 , δ2S ≥ 0) → δ2M −ΩHδ
2J −ΦHδ

2Q ≥ −
k

8π
δ2AKN .
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WCCC types in the new language

With this setup, we can reexamine the previous WCCC types for
general class of black holes, instead of specific examples typically
done in literature.

We introduce the quantity W of extremal black holes, defined by

W = lim
T→0

(
∂S

∂T

)
Qi
≡
(
∂S

∂T

)
Qi;T=0

= lim
T→0

CQ

T
,

Its sign, namely

W > 0 ,

plays a determining role in our discussion.
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The missing type

Hubeny’s test of WCCC involves replacing ∆ in Xε with δ:

XH =
(
M(Tε, Qi)−Mext(Qi)

)
+ δM − δMext.

Near the extremal case (T = Tε ∝ ε → 0,) expanding up to the
first order in λ gives:

XH = TεδS +
1

2
WT2

ε − λ
∂Sext

∂Qi
δQiTε

≥
1

2
WT2

ε − λ (δSext)Tε .

The inequality arises from δS ≥ 0. The first term is of ε2 order,
while the second term is of λε order. In the extremal limit (Tε =
0), XH = 0.

For example, for the Reissner-Nordström (RN) black hole, XH ≥
Mε2

2 − λεδQ.

Conclusion: Hubeny’s method is incomplete, as it lacks the
appropriate λ2 term in the expansion, which becomes important
when XH changes the sign.
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The mixed type

The mixed type approach, initiated by Gao and Zhang for KN,
investigates WCCC by mixing orders in the extremal case (ε = 0).
We find that in general it leads to

Xext,mix = −
1

2
λ2∂

2Mext

∂Qi∂Qj
δQiδQj + · · · .

This result represents the Hessian metric of the extremal mass
Mext(Qi) in terms of charges, providing a general formula for
various examples.

Examples that are counterintuitive:
Mext =

√
P2 +Q2, Xext < 0;

Mext = P +Q, Xext = 0;

Mext = (P
2
3 +Q

2
3)

3
2, Xext > 0.

Expansions up to the second order in λ have been explored, but
with δ2M = δ2Q = 0.

- Conclusion: The mixed type expansion uses different order-
s for ∆M and ∆Mext, making the sign of the above equation
insufficient to conclusively determine WCCC violation.
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SW type, but now with (δS = 0, δ2S ≥ 0)

By expanding:

S[λ]− S[M(λ), Qi(λ)] = 0, M [λ]−M [S(λ), Qi(λ)] = 0,

we obtain, first-order expressions (equivalent to the first law):

δS = −
φi
T
δQi +

1

T
δM, δM = TδS + φiδQi.

and the second-order relations (after using δS = 0)

δ2S =
1

T
δ2M −

φi
T
δ2Qi +DS, δ2M = Tδ2S + φiδ

2Qi +DM,

where DS and DM are the Hessian metrics, satisfying DM =
δTδS + δφiδQi = −TDS. Using the condition δS = 0 and δ2S ≥ 0
leads to the SW inequality. It also implies

δ2M ≥ φiδ2Qi + δφiδQi.

The inequality is saturated for the extremal limit T = 0.

Note that requiring δS = 0 allows us to avoid dealing with δT ,
which we do not know in principle since the end product may not
be a black hole.
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SW type (cont.)

For the near-extremal case, we expand Xε

Xε =
(
M(Tε, Qi)−Mext(Qi)

)
+ ∆M −∆Mext

≥
1

2
WT2

ε − λTεδSext +
1

2
λ2(δφi − δφext,i)δQi.

Further evaluation shows:

(δφi − δφext,i)δQi = W−1(δSext)
2,

resulting an SW-type inequality:

Xε ≥
1

2
W

(
Tε − λ

δSext

W

)2
.

Applying to KN, this general formula reproduces the SW result.

Compared to Hubeny’s type, the positive λ2 term ensures a more
complete test for WCCC.

In the extremal limit where ε = 0 (or equivalently Tε = 0), we
have the equal sign.
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On the possibility of WCCC violation

Based on δS = 0 and δ2S ≥ 0, we find

Xε ≥
1

2
W

(
Tε − λ

δSext

W

)2
,

where

W = lim
T→0

(
∂S

∂T

)
Qi
≡
(
∂S

∂T

)
Qi;T=0

,

The sign of W becomes crucial for the WCCC in these Gedanken
experiments

WCCC is protected if W ≥ 0.

Could W be negative for some specific black holes?
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W > 0 for spherically-symmetric and static black holes

Consider ds2 = −e2χfdt2+ dr2

f +r2dΩ2
2 , where f = f(r,M,Qi) and

χ = χ(r,M,Qi). The horizon radius r+ satisfies f(r+,M,Qi) = 0,
which implies that M = M(r+, Qi). The temperature is then
given by

T =
eχf ′(r,M(r+), Qi)

4π

∣∣∣∣
r=r+

.

A prime denotes a derivative with respect to r. Thus we have(
∂S

∂T

)
Qi

=
8π2r+ e−χ

f ′′+ 2πT (2e−χχ′+ r+∂Mf
′)− 8π2r+T

2∂Me
−χ

∣∣∣∣∣
r+,M(r+)

.

In the extremal limit, we have

T ∼ f ′(r+) = 0 , f ′′(r+) > 0 .

Thus we have

W =
(
∂S

∂T

)
Qi;T=0

=
8π2r+e

−χ(r+)

f ′′(r+)
> 0 .
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W > 0 is related to the no-hair theorem

It is easy to see that

M(Tε, Qi)−Mext(Qi) =
1

2
W T2

ε > 0 , ↔ W > 0 .

Therefore, W > 0 is closely related to the black hole no-hair
theorem

We should have M > Mext; otherwise, two black holes with the
same mass and charges could have different temperatures. This
is because, for fixed charges, the mass is a function of tempera-
ture with M(T = 0) = Mext.

If M(T ) < Mext as T → 0, there should be a minimum mass
Mmin < Mext at certain non-zero temperature, since it is reason-
able to assume that black hole mass is unbound above.

In this scenario, there would then exist at least two black holes
of the same mass slightly above the minimum mass Mmin, but
with different temperatures, violating the uniqueness property of
black holes.

However, our spherically-symmetric and static proof does not rely
on the no-hair theorem. This leads us to expect that W > 0 for
general black holes, independent of the no-hair theorem, but we
cannot prove it.



What if W < 0

No-hair theorem is weak and we cannot prove W > 0 in general,
we therefore have to consider the possibility of W < 0, although
there is hitherto no such a known example.

W < 0 implies that the mass of the extremal black hole for fixed
charges is a local maximum. In this case, the WCCC is protected
provided that Xε < 0. In other words, the horizon condition
switches the sign.

From δS = 0 and δ2S ≥ 0, we had

Tε = 0 : Xext =
1

2
λ2W−1(δSext)

2,

Tε > 0 : Xε ≥
1

2
W

(
Tε − λ

δSext

W

)2
.

Thus for W < 0, WCCC is still protected for extremal black holes,
but could be violated for near extremal ones.

In other words, the condition δS = 0 and δ2S ≥ 0 cannot protect
the WCCC for near-extremal black holes with W < 0.
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Asymptotic (A)dS black holes

The conclusion is largely the same for (A)dS black holes, since
our analysis does not dependent the details of the black hole
geometry.

but for dS black holes, there can be a subtlety, since it has also
the cosmic horizon. For KN-dS black holes, there can be inner,
outer and cosmic horizons (r−, r+, rc). We shall not consider the
case with r+ ∼ rc, where a perturbation can destroy the “world”.
Instead, consider r− ∼ r+ � rc.

The new subtlety is that we now have an option to consider
“total entropy” [2405.07728, Lin, Ning]

S̃ = S+ + Sc ,

and impose the condition

δS̃ = 0 , δ2S̃ ≥ 0 .
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dS black holes are safe

To make sense of S̃ as being the entropy, the thermodynamic
quantities should be modified, given by

T̃ =
T+Tc

T+ + Tc
, Φ̃i =

Tc

T+ + Tc
Φ+,i +

T+

T+ + Tc
Φc,i.

The first law is satisfied: dM = T̃ dS̃ + Φ̃idQi. (The conserve
quantities remain the same.)

Thus the drivation is the same for Xε, but with tilded variables.

Conclusion: WCCC is not violated if W̃ > 0. We verified that
in the extremal limit that

• T̃ = T+ = 0.

• W̃ = W+ > 0. (We verified this for the RN-dS and KN-dS
cases)

Thus our main conclusion does not change, regardless of the
entropy definition used.
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Summary and Results

• Innovated a new approach to examine the WCCC using Gedanken-
experiments, providing general formulae for near-extremal and
extremal black holes.

• This approach allowed us to systematically address contra-
dictions found in numerous studies and categorize well-known
types of WCCC.

• Key Findings: General testing of WCCC depends on the
sign of W

– W > 0: WCCC is protected for both near-extremal and
extremal cases.

– W < 0: Indicates potential violation in near-extremal cases
but does not affect extremal black holes.

• The condition W > 0 is an intrinsic property of extremal black
holes and is linked to M(Tε, Qi) > Mext(Qi). This is closely
related to the black hole no-hair theorem.

• We provided an independent proof that W > 0 for spherically
symmetric and static extremal black holes. This leads to our
belief that W > 0 irregardless of the no-hair theorem.

• We thus state that WCCC cannot be violated by the Gedanken
experiments at least at the second order. (Higher-order?)



A further comment

The Gedankenexperiments are perturbative analysis of extremal
and near extremal black holes; the conclusion may be overthrown
by the nonlinear numerical analysis.

In [PKLT, 1702.01755], authors used the numerical approach
to show that some unstable points of the single-rotating Myers-
Perry black hole in six dimensions led to the violation of WCCC.

However, since single-rotating black hole in D = 6 do not have
the extremal limit, this does not provide a direct contradiction
to the Gedankenexperiment analysis.

Nevertheless, the possibility should be kept in mind, since Einstein
gravity is highly nonlinear.
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Thank you for your attention!


