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The sacred status of thermodynamics:

Einstein’s view
“[Thermodynamics is] the only physical theory of universal content concerning
which I am convinced that, within the framework of the applicability of its basic
concepts, it will never be overthrown.”

Eddington
“The law that entropy always increases holds, I think, the supreme position
among the laws of nature. If someone points out to you that your pet theory of
the universe is in disagreement with Maxwell’s equations-then so much the worse
for Maxwell’s equations. If it is found to be contradicted by observation-well,
these experimentalists do bungle things sometimes. But if your theory is found to
be against the second law of thermodynamics I can give you no hope; there is
nothing for it but to collapse in deepest humiliation.”
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Quantum statistical relation and first law

The black hole temperature and Bekenstein-Hawking entropy

T =
ħhκ
2π

, SBH =
kBc3

4Għh
A , (1)

Euclidean path integral [Gibbons and Hawking, 1977]

Quantum statistical relation

W = −T log Z = TSE (2)

1. The Bekenstein-Hawking entropy can be derived in a semiclassical analysis of
the gravitational path integral. This QSR is a standard framework for discussing
the thermodynamics of black holes in textbooks.

2. Extreme black holes have a large zero-temperature entropy, which violates the
Nernst’s third law of thermodynamics. Quantum-corrected near-extremal entropy
[Turiaci, 2023]

S(T )
kB
≈

Aex t

4l2
P

+
4π2T
Tbreak

+
3
2

ln
�

T
Tbreak

�

+ · · · , (3)
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Black hole thermodynamics

Significant applications:

1. Hawking-Page transition [Hawking, Page, 1983]
2. Liquid–gas phase transition [Chamblin, Emparan, Johnson and Myers, 1999;
Kubiznak and Mann, 2012]
3. Important for applying AdS-gravity to strongly coupled QPT
4. Extended black hole thermodynamics

δM = TδS + VδP +ΦδQ+ΩδJ , (4)

M =
d − 2
d − 3

(TS +ΩJ) +ΦQ−
2

d − 3
PV , (5)

The standard thermodynamic first law [Landau, Lifshitz and Pitaevskii, 1995]

δw= −sδT −ρδµ−MBδB ,

δε= Tδs+µδρ −MBδB ,
(6)

where w=W/V and ε= w+ Ts+µρ.
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Dyonic black branes

The Einstein-Maxwell-Chern-Simons theory [D’Hoker and Kraus, 2012]

S =
1

16πG

∫

d5 x
p

−g
�

R+
12
L2
−

1
4

Fab F ab −
k

24
εabcdeAa Fbc Fde

�

, (7)

A∧ F ∧ F : dual to boundary QPT with chiral anomalous ∂µJµ∝ κE ·B.

Top-down model: k = ksus y =
2p
3
, a consistent truncation of Type IIB supergravity

or M-theory [Buchel and Liu 2007; Gauntlett, Colgain and Varela 2007].

The background ansatz

ds2 =
1
r2

�

−
�

f e−χ − h2p2
�

d t2 + 2ph2d tdz + d x2 + d y2 + h2dz2 +
dr2

f

�

, (8)

A= At d t −
B
2

yd x +
B
2

xd y − Az dz , (9)
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IR and UV expansions

At asymptotically AdS5, one has the the following asymptotic expansion as r → 0,

f (r) = 1+ · · ·+ f4r4 + · · · ,
χ(r) = χ0 + · · · ,
h(r) = 1+ · · ·+ h4r4 + · · · ,
p(r) = p4r4 + · · · ,

At(r) = e−χ0/2
�

µ−
ρ

2
r2 + · · ·
�

,

Az(r) = Az2r2 + · · · .

(10)

The temperature and ekenstein-Hawking entropy density are given by

T = −
eχ0/2

4π
f ′e−χ/2
�

�

�

r=rh

, s =
4πh
r3

�

�

�

r=rh

. (11)

Using the quantum statistical relation, the free energy can be obtained from the
on-shell Euclidean action, defined as IE = I + Ibd y .
The expectation values of the boundary stress-energy tensor 〈Tµν〉 and current
〈Jµ〉 can be obtained from holographic renormalization.
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Thermodynamics and first law from QSR

The free energy density w=W/V can be expressed in three equivalent forms

w = ε− Ts−µρ −
kB
3

∫ rh

0

At A′z dr , (12)

= −P⊥ + B

∫ rh

0

�B
r

�

e−
χ
2 h− 1
�

+
2k
3

AtA
′
z

�

dr + B2 ln rh , (13)

= −P∥ +
kB
3

∫ rh

0

A′tAz dr , (14)

Two Smarr-type relations:

ε+P∥ = Ts+µρ , (15)

P∥ = P⊥ −
�

∫ rh

0

�

B
r

�

e−
χ
2 h− 1
�

+ kAtA
′
z

�

dr + B ln rh

�

B . (16)

The free energy w in (12) includes a nontrivial bulk integration term, signaling a
violation of the standard law of thermodynamics (6).
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Hydrodynamics with background field and anomalous

The hydrodynamic equations for Tµν and Jµ are [1701.05565]

∇µTµν = FνλJλ , ∇µJµ =
k
8

EµBµ , (17)

where Eµ = Fµνuν and Bµ = 1
2ε
µναβuνFαβ are the electric and magnetic fields.

The stress-energy tensor Tµν and Jµ can be expressed though constitutive
relations in terms of hydrodynamic variables T (x), µ(x) and uµ(x).
To leading order in the derivative expansion:

〈TµνEF T 〉= ε0uµuν + P0∆
µν + 2q(µuν) +Mµαgαβ Fβν + uµuα

�

Mαβ Fβν − FαβMβν
�

+ · · · ,

〈JµEF T 〉= n0uµ + ξBBµ + · · · ,

where qµ = ξV Bµ and Mµν = χBBε
µναβBαuβ .

In thermal equilibrium, we can choose uµ = (1, 0,0, 0), Bµ∝ z⃗ and then obtain the
constitutive relations for Tµν, Jµ. By comparing with the holographic results, the
magnetic susceptibility reads

χ
H ydro
B =

1
B2

�

〈T zz
EF T 〉 − 〈T

x x
EF T 〉
�

=
1
4
+

8h4

B2
, (18)
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Violation of thermodynamics first law

A direct calculation of the entropy and magnetic susceptibility χB ≡ MB/B from the
free energy shows

−
�

∂ w
∂ T

�

B,µ
̸= s, −

1
B

�

∂ w
∂ B

�

T,µ
̸= χhydro

B , (19)
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Test of first law for dyonic black holes obtained by the QSR (Left B = 0.33, Right
T = 0.005; All plots are for minimal supergravity with k = ksusy =

2p
3

and µ= 1)
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Euclidean action

The Euclidean action is given by

IE = I + Ibd y , (20)

where I = −iS = −iSe f f and Ibd y . The effective action of the system

Se f f =

∫

d5 x
e−χ/2h

r3

§

− f ′′ −
2 f h′′

h
+ f χ ′′ + f ′
�

8
r
−

2h′

h
+

3χ ′

2

�

+
�

h′

rh
−
χ ′

2r

�

�

8 f + r f χ ′
�

+
1
2

eχ
�

h2p′2 + r2(A′t + pA′z)
2
�

+
12− 20 f

r2
−

r2

2

�

B2 +
f A′2z
h2

�

ª

+

∫

d5 x
kB
3

�

A′tAz − AtA
′
z

�

.

(21)

Consequently, the variation of the total on-shell Euclidean action can be
separated into two parts:

δIE = δI +δIbd y , (22)
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Variation of Euclidean action

In Euclidean signature, the black hole horizon is smooth when the Euclidean time
τ= i t is periodic, with a period given by ∆τ= 4π/( f ′e−χ/2)|r=rh

. Consequently,
the only remaining boundary is the AdS boundary.

The variation of the total on-shell Euclidean action is given by

δIE =∆τV
§

e−
χ0
2

�

−ρδµ− (eχ0ε−µρ)
δχ0

2

�

− kδQcs − e−χ0/2MBδB
ª

, (23)

The quantity Qcs, arising from the Chern-Simons term of (7), is given by

Qcs =
B
6

∫ rh

0

(A′zAt − AzA
′
t)dr , (24)

and MB is defined as

MB = −
�∫ rh

0

�

B
r

�

e−χ/2h− 1
�

+
k
2
(A′zAt − AzA

′
t)
�

dr + B ln rh

�

. (25)
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On-shell variation

Note that T = eχ0/2

∆τ , thus the variation of χ0 gives δχ0 = 2 δT
T with ∆τ held fixed

[Donos and Gauntlett 2013]. Using QSR, we obtain

δw= −
�

s+ e
χ0
2

kQcs

T

�

δT −ρδµ− e
χ0
2 kδQcs −MBδB . (26)

This indicates the deviation from the standard form of the first law is attributed
to the bulk integration Qcs.
However, after the Legendre transformation w̃= w+ eχ0/2kQcs, we arrive at the
thermodynamic ensemble that gives the standard thermodynamic relation

w̃ = ε− Ts−µ〈J t〉 , (27)
δw = −sδT −ρδµ−MBδB , (28)

where MB is the magnetization of the system.

The results (27-28) can be definitively proven by the Iyer-Wald formalism!
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Iyer-Wald formalism

A powerful framework for studying black hole thermodynamics:
1. Extended black hole thermodynamics [Xiao, Tian, and Liu 2024]
2. Thermodynamics of black holes with scalar hair [Li 2021]
The general variation of the Lagrangian n-form L=Lε can be expressed as

δL= E(φ)δφ + dΘ , (29)

where φ = (gab, Aa) is the dynamical field and Θ is the symplectic potential form.
Considering an infinitesimal diffeomorphism variation δξx a = ξa(x), one can
associate to ξa a Noether current (n− 1) form, defined by

J≡Θ(φ,Lξφ)− ξ · L , (30)

Then, we have dJ= −ELξφ. There exists a Noether charge (n− 2) form Q locally
constructed from φ and ξa satisfying J= dQ once E(φ).
The variation of J gives the fundamental identity

ω(δφ,Lξφ) = δJ− d(ξ ·Θ) = d (δQ− ξ ·Θ) = 0, (31)

which holds if E(φ) = 0, Lξφ = 0 and E(δφ) = 0.
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First law from Iyer-Wald formalism

Choose ξa to be the time-like Killing vector ξa = (∂t)a = δa
t and Σ be a

t =constant space-like hypersurface. Thus

∂Σ = Sr=rh
∪ Sr=0 ∪ Sx=L/2 ∪ Sx=−L/2 ∪ Sy=L/2 ∪ Sy=−L/2 ∪ Sz=L/2 ∪ Sz=−L/2

Integrating (31) over the hypersurface Σ gives

δε= Tδs+µδρ −MBδB (32)

where the expression for MB is the same as (25).
In addition to the fundamental identity, we have

dQ= −ξ · L , (33)

when E(φ) and Lξφ = 0. Integrating over the hypersurface Σ, we can obtain

w̃= ε− Ts−µρ = w+ kQcs , (34)

Therefore, combining (34) and (32), we are arriving at

δw̃= −sδT −ρδµ−MBδB , (35)

Exactly the same results from the on-shell variation of the Euclidean action.
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Smarr relation

Under the scale transformation r → λr̂ with λ a positive constant, we have

s = λ3 ŝ , ρ = λ3ρ̂ , B = λ2B̂ , (36)

while the energy density ε acquires an anomalous scaling

ε= λ4ε̂−
B̂2

2
λ4 lnλ . (37)

Thus, when we express ε as a function of s,ρ and B, we have

ε(λ3 ŝ,λ3ρ̂,λ2B̂) = λ4ε̂(ŝ, ρ̂, B̂)−
B̂2

2
λ4 lnλ . (38)

Taking derivative with respect to λ
�

∂ ε

∂ s

�

ρ,B
(3s) +
�

∂ ε

∂ ρ

�

s,B
(3ρ) +
�

∂ ε

∂ B

�

s,ρ
(2B) = 4ε−

B2

2
. (39)

Taking advantage of the first law (32), the (generalized) Smarr relation reads

−4ε+ 3(Ts+µρ)− 2MBB = −
B2

2
. (40)

The right hand side indicates a derivation from the standard Smarr formula due
to the chiral anomaly. According to (34), this Smarr relation effectively expresses
the trace anomaly of 〈Tµν〉 i.e. Tµ

µ
= −B2/2.
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Numerical verification
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Numerical verification of the thermodynamics of dyonic black holes in minimal
supergravity: δw̃= −sδT −ρδµ−MBδB. (Left B = 0.33, Right T = 0.005; All plots are

for minimal supergravity with k = ksusy =
2p
3

and µ= 1)

Thermodynamics of dyonic black holes in minimal supergravity@2024-11-16 17 / 18



Summary and discussion

We have found that the textbook results for the first law of dyonic black hole in
5D EMCS break down when applying the quantum statistical relation.
Using the on-shell variation method and the Iyer-Wald formalism, we have
resolved this issue and established the standard first law of thermodynamics,
which agrees with field theory and hydrodynamics, and has been validated
through numerical tests.
The free energy should be w̃= w+ kQcs, rather than w derived from QSR.

1 A deeper understanding of BH thermodynamics is necessary, especially for B ̸= 0.
Important for studying the magnetocaloric effect and magnetic field driven QPT.

2 The methods employed here are applicable to any geometric theory of gravity.
Similar results may arise in other systems, e.g. [D’Hoker and Kraus 2012]].

3 A microscopic interpretation for our findings from both the supergravity
perspective and the dual boundary QFT?
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