Holographic Kibble-Zurek Mechanism with Discrete Symmetry Breaking

Zhi-Hong Li, Han-Qing Shi, HQZ, PRD 108,106015(2023) [arXiv: <u>2207.10995]</u>

- 张海青 北航
- Tian-Chi Ma, Han-Qing Shi, HQZ, Adolfo del Campo, accepted by PRR [arXiv:2406.05167]
 - "2024 引力与宇宙学" 专题研讨会 **USTC**, Hefei
 - 15.11.2024

Contents

Brief review of Kibble-Zurek mechanism and motivations

- Holographic kinks in 1+1-dim
- Holographic domain walls 2+1-dim
- Summary

History of KZM

- KZM was first proposed in cosmology by Kibble in 1976.
- Cooling of the early universe will finally result in topological defects, such as cosmic string, monopoles, vortices, domain walls ...
- •However, not found to date.

Tom W.B. Kibble (1932-2016)

Wojciech H. Zurek

• Zurek extended this idea into superfluid in 1985.

 Phase transition from normal fluid helium to superfluid helium will induce vortices or vortex lines.

•Confirmed by various experiments.

Superfluid vortices

Dislocation in crystal

Defect lines in nematic liquid crystal

Defects in the vibration modes in glasses

Kibble-Zurek mechanism (KZM): Topological defects will turn out, when a system with higher symmetry quenched across the critical point to a system with lower symmetry.

Vortices as topological defects in superfluid

disordered

linear quench

across critical point

ordered

KZM requires continuous phase transition

 $\xi \propto |\epsilon|^{-\nu}, \quad \tau \propto |\epsilon|^{-2}$

coherence relaxation length

time

of topological defects and the quench rate τ_0

 $n \propto \left(\tau_{g}\right)$

D: dimension of space d: dimension of defects

$$e^{z\nu}$$
. $\epsilon = 1 - T/T_c = t/\tau_Q$

KZM predicts a power law relation between the number density

$$\tau_Q \Big)^{\frac{-(D-d)\nu}{1+z\nu}}$$

Confirmed by various experiments

- et.al., Science 263 (1994) 943; Digal, et.al., PRL 83 (1999) 5030
- al., Nature 382 (1996) 334
- PRL 104, 247002 (2010).
- •Quantum optics: Xu, et.al., PRL,112, 035701(2014)

Liquid crystals: Chuang, et.al., Science 251 (1991) 1336; Bowick,

•He-3 superfluids: Baeuerle, et.al., Nature 382 (1996) 332; Ruutu et

Thin-film superconductors: Maniv,et.al., PRL 91 (2003) 197001;

Holographic KZM with U(1) symmetry breaking

- Campo and Zurek, 1406.2329
- and Liu, 1407.1862
- Xia, HQZ, 1912.08332

• Winding numbers in 1+1 dim holographic superfluid: Sonner, del

• Vortices in 2+1 dim holographic superfluid: Chesler, Garcia-Garcia

Magnetic vortices in 2+1 dim holographic superconductors: Zeng,

To realize discrete symmetry breaking in holography?

i.e., kink hairs (domain wall hairs) near the horizon

Simulate the kinks (1+1 dim) or domain wall (2+1 dim) in spin chain with strong couplings

• Need to have real scalar hairs with Z_2 symmetry breaking in the bulk;

Holographic Kinks in 1+1-dim

Zhi-Hong Li, Han-Qing Shi, HQZ, 2207.10995

•Simulate a holographic spin chain

Start with complex scalar fields + U(1) gauge fields

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$D_{\mu} = \nabla_{\mu} - iA_{\mu}$$

Gauge-like transformation $\tilde{\Psi} = \Psi e^{i\lambda},$

• EoMs of real functions

 Z_2 symmetry: $+\Psi \leftrightarrow -\Psi$

$$-|D_{\mu}\tilde{\Psi}|^2 - m^2|\tilde{\Psi}|^2$$

$$A_{\mu} = M_{\mu} + \partial_{\mu}\lambda,$$

 $(\nabla_{\mu} - iM_{\mu}) (\nabla^{\mu} - iM^{\mu}) \Psi - m^2 \Psi = 0, \qquad \nabla_{\mu} F^{\mu\nu} = 2M^{\nu} \Psi^2.$

Eddington-Finkelstein coordinates

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} - 2dtdz + dx^{2} + dy^{2} \right] \qquad f(z) = 1 - (z/z_{h})^{3}$$

Ansatz of fields (turning off y-direction)

$$\Psi = \Psi(t, z, x), M_t = M_t(t, z, x), M_z = M_z(t, z, x), M_x = M_x(t, z, x)$$

e: must include M_z , 4 independent equations to solve 4 fields

Note

 $\nabla_{\mu}\nabla^{\mu}\Psi - M_{\mu}M^{\mu}\Psi - m^{2}\Psi = 0,$

$$\left(\nabla_{\mu}M^{\mu}\right)\Psi + 2M^{\mu}\nabla_{\mu}\Psi = 0,$$

 $\nabla_{\mu}F^{\mu\nu} = 2M^{\nu}$

Initial condition Static, x-independent: EoMs of gauge fields becomes

In normal state $\Psi = 0$, $M_t = \mu - \mu z$, $M_7 = (\mu - \mu z)/f$

•Boundary conditions (set $m^2 = -2/L$)

$$z \rightarrow 0 \begin{cases} \Psi \sim \Psi_1(t, x)z + \Psi_2(t, x)z^2 + \mathcal{O}(z^3) \\ M_t \sim \mu(t, x) - \rho(t, x)z + \mathcal{O}(z^3), \\ M_z \sim a_z(t, x) + b_z(t, x)z + \mathcal{O}(z^3), \\ M_x \sim a_x(t, x) + b_x(t, x)z + \mathcal{O}(z^3) \end{cases}$$

$z \rightarrow z_h \equiv 1$: $M_t = 0$

Other fields are finite

- $\mathcal{O}(z^3), \quad \Psi_1 \equiv 0; \ \Psi_2 = \langle O \rangle$
 - μ : chemical potential ρ : charge density
- $(z^3), \qquad a_7 = \mu$ $a_r = 0$: velocity of gauge field b_{r} : current of gauge field

Quench chemical potential = quench temperature

$\mu_c \approx 4.06$ is the critical chemical potential in static case

Small fluctuations of scalar field at initial time

Gaussian white noise $\zeta(x_i, t)$:

$$\langle \zeta(x_i,t) \rangle = 0$$

 $\langle \zeta(x_i, t) \zeta(x_j, t') \rangle = h \delta(t - t') \delta(x_i - x_j)$

h = 0.001

•Kink hairs in the bulk

18

Time evolution of kinks

GL model

AdS boundary

Average kink number vs. quench rate (KZ scaling relation)

 $\langle n \rangle \propto \tau_Q^{-(D-d)\nu/(1+z\nu)}$ $(D = 1, d = 0, \nu = 1/2, z = 2)$ $\langle n \rangle = \kappa_1 \propto \tau_Q^{-1/4}$

Beyond KZ scaling relation

One dimensional transverse-field quantum Ising model

Poisson binomial distribution function: N-independent Bernouilli trials, at each point kink has a possibility p to form a kink, and a possibility 1 - p not to form a kink

$$\kappa_2 = \langle n^2 \rangle - \langle n \rangle^2 = \frac{2 - \sqrt{2}}{2} \kappa_1 \approx$$
$$\kappa_3 = \langle (n - \langle n \rangle)^3 \rangle = (1 - 3\sqrt{2} + 1)^3 = (1 - 3\sqrt{2}$$

del Campo, 1806.10646

- $\approx 0.29\kappa_1$
- $(2 + 2/\sqrt{3})\kappa_1 \approx 0.033\kappa_1$

Beyond KZ scaling relation, cumulants vs. quench rate

GL model

AdS/CFT

Gaussian distribution in large trial number

In the limit of large trial number with fixed average probability, distribution becomes Gaussian (Central limit theorem)

$$P(n) \approx \frac{1}{\sqrt{2\pi\kappa_2}} \exp\left[-\frac{(n-\langle n \rangle)^2}{2\kappa_2}\right]$$

AdS/CFT

Adiabaticity limit: P(n=0)

GL model

Tian-Chi Ma, Han-Qing Shi, HQZ, Adolfo del Campo, <u>2406.05167</u>

Holographic Domain Walls in 2+1 dim

- Actions, metric, EoMs, ansats of fields, quench profile are similar to holographic kinks;
- Only difference is adding y-direction and M_y gauge field;
- Numerically complicated

Time evolution of domain walls

•Domain wall length vs. quench rate

$$L \propto \tau_Q^{-(D-d)\nu/(1+z\nu)}, \qquad (D=2, d=1, d)$$

 $\nu = 1/2, z = 2$

•Domain wall length vs. quench rate

$$L \propto \tau_Q^{-(D-d)\nu/(1+z\nu)}, \qquad (D=2, d=1, d)$$

•Domain wall length vs. quench rate

$$L \propto \tau_Q^{-(D-d)\nu/(1+z\nu)}, \qquad (D=2, d=1, d)$$

Coarsening domain wall length vs. time A.J. Bray (1994), Advances in Physics, 43:3, 357-459 the length scale $l \sim t^{1/2}$

Area A

- $n = A/\pi l^2$ Number of domains:
- **Length of domain walls:** $L \approx n \cdot 2\pi l = 2A/l$

 $L \propto t^{-1/2}$

Condensate vs time

GL model

1

Condensate vs time

30

Condensate vs time

Summary

- are consistent with KZM;
- We have realized the domain wall structures holographically; only satisfied nearby the critical point; away from the critical point, this relation would be destroyed, and satisfy another power-law

• We have realized the kink hairs in the bulk, whose holographic dual can be interpreted as a one-dimensional spin chain. They

However, due to the coarsening dynamics, the KZ scalings are

Thank you very much!