Holographic Kibble-Zurek Mechanism with Discrete Symmetry Breaking

USTC, Hefei 15.11.2024

Zhi-Hong Li, Han-Qing Shi, HQZ, PRD 108,106015(2023) [arXiv: [2207.10995](https://arxiv.org/abs/2207.10995)]

- 张海青 北航
- **Tian-Chi Ma, Han-Qing Shi, HQZ, Adolfo del Campo, accepted by PRR [arXiv:[2406.05167\]](https://arxiv.org/abs/2406.05167)**
	- **"2024 引⼒与宇宙学" 专题研讨会**

Contents

•Brief review of Kibble-Zurek mechanism and motivations

- **•Holographic kinks in 1+1-dim**
- **•Holographic domain walls 2+1-dim**
- **•Summary**

- •KZM was first proposed in cosmology by Kibble in 1976.
- •Cooling of the early universe will finally result in *topological defects*, such as cosmic string, monopoles, vortices, domain walls …
- •However, not found to date.

Tom W.B. Kibble (1932-2016)

History of KZM

•Zurek extended this idea into superfluid in 1985.

•Phase transition from normal fluid helium to superfluid helium will induce vortices or vortex lines.

•Confirmed by various experiments.

Wojciech H. Zurek **Superfluid vortices**

Dislocation in crystal

Defect lines in nematic liquid crystal

Defects in the vibration modes in glasses

disordered ordered

linear quench

across critical point

•Kibble-Zurek mechanism (KZM): Topological defects will turn out, when a system with higher symmetry quenched *across the critical point* **to a system with lower symmetry.**

•Vortices as topological defects in superfluid

ξ ∝ | *ϵ* | −*ν* , *τ* ∝ | *ϵ* |

coherence relaxation time

of topological defects and the *quench rate* τ ^{O}

 $n \propto (\tau)$

$$
-z\nu \qquad \qquad \epsilon = 1 - T/T_c = t/\tau_Q
$$

length

•KZM requires continuous phase transition

$$
\tau_Q\bigg)^{\frac{-(D-d)\nu}{1+z\nu}}
$$

•KZM predicts a power law relation between the *number density*

D: dimension of space d: dimension of defects

•Liquid crystals: Chuang, et.al., Science 251 (1991) 1336; Bowick,

•He-3 superfluids: Baeuerle,et.al.,Nature 382 (1996) 332; Ruutu et

- et.al.,Science 263 (1994) 943; Digal, et.al., PRL 83 (1999) 5030
- al. , Nature 382 (1996) 334
- PRL 104, 247002 (2010).
- •Quantum optics: Xu, et.al., PRL,112, 035701(2014)

•Thin-film superconductors: Maniv,et.al., PRL 91 (2003) 197001;

Confirmed by various experiments

•Vortices in 2+1 dim holographic superfluid: Chesler, Garcia-Garcia

• Magnetic vortices in 2+1 dim holographic superconductors: Zeng,

Holographic KZM with U(1) symmetry breaking

•Winding numbers in 1+1 dim holographic superfluid: Sonner, del

- Campo and Zurek, 1406.2329
- and Liu, 1407.1862
- Xia, HQZ, 1912.08332

…

i.e., kink hairs (domain wall hairs) near the horizon

To realize discrete symmetry breaking in holography?

Simulate the kinks (1+1 dim) or domain wall (2+1 dim) in spin chain with strong couplings

• Need to have *real scalar hairs* with Z_2 symmetry breaking in the bulk;

Holographic Kinks in 1+1-dim

Zhi-Hong Li, Han-Qing Shi, HQZ, 2207.10995

.Simulate a holographic spin chain

•EoMs of real functions

 Z_2 symmetry: $+ \Psi \leftrightarrow - \Psi$

$$
-\,|D_\mu\tilde\Psi|^2-m^2|\tilde\Psi|^2
$$

$$
A_{\mu} = M_{\mu} + \partial_{\mu} \lambda,
$$

 $\left(\nabla_\mu - i M_\mu\right) \left(\nabla^\mu - i M^\mu\right) \Psi - m^2 \Psi = 0, \qquad \nabla_\mu F^{\mu\nu} = 2 M^\nu \Psi^2.$

•Start with complex scalar fields + U(1) gauge fields

$$
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}
$$

$$
D_{\mu} = \nabla_{\mu} - iA_{\mu}
$$

•Gauge-like transformation $\tilde{\Psi} = \Psi e^{i\lambda},$

•Eddington-Finkelstein coordinates

$$
ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} - 2dt dz + dx^{2} + dy^{2} \right] \qquad f(z) = 1 - (z/z_{h})^{3}
$$

•Ansatz of fields (turning off y-direction)

$$
\Psi = \Psi(t, z, x), \ M_t = M_t(t, z, x), \ M_z = M_z(t, z, x), \ M_x = M_x(t, z, x)
$$

Note: must include M_z , 4 independent equations to solve 4 fields

 $\label{eq:conservation} \nabla_\mu\nabla^\mu\Psi-M_\mu M^\mu\Psi-m^2\Psi\;=\;0,$

$$
(\nabla_{\mu}M^{\mu})\,\Psi + 2M^{\mu}\nabla_{\mu}\Psi = 0,
$$

 $\nabla_{\mu}F^{\mu\nu} = 2M^{\nu}$

$$
0 \equiv \nabla_{\nu} (\nabla_{\mu} F^{\mu\nu}) \Rightarrow \nabla_{\nu} (2M^{\nu}\Psi^{2}) =
$$

$$
\Psi^{2}.
$$

$$
\Rightarrow (\nabla_{\nu} M^{\nu}) \Psi + 2M^{\nu} \nabla_{\nu} \Psi = 0.
$$

•Initial condition Static, x-independent: EoMs of gauge fields becomes

In normal state $\Psi = 0$ **,** $M_t = \mu - \mu z$ **,** $M_z = (\mu - \mu z) / f$

•Boundary conditions (set $m^2 = -2/L$)

$$
\Psi \sim \Psi_1(t, x)z + \Psi_2(t, x)z^2 + \mathcal{O}(z^3)
$$

\n
$$
Z \to 0
$$

\n
$$
M_t \sim \mu(t, x) - \rho(t, x)z + \mathcal{O}(z^3),
$$

\n
$$
M_z \sim a_z(t, x) + b_z(t, x)z + \mathcal{O}(z^3),
$$

\n
$$
M_x \sim a_x(t, x) + b_x(t, x)z + \mathcal{O}(z^3)
$$

$z \rightarrow z_h \equiv 1$: $M_t = 0$

Other fields are finite

-
- $\mathcal{O}(z^3)$, $\Psi_1 \equiv 0$; $\Psi_2 = \langle O \rangle$
	- **: chemical potential** *μ* **: charge density** *ρ*
	- $a_z = \mu$ $a_{\mathrm{x}} = 0$: velocity of gauge field b_x : current of gauge field

•Quench chemical potential = quench temperature

$$
T(t)/T_c = 1 - t/\tau_Q
$$

$$
\mu(t) = \mu_c/(1 - t/\tau_Q)
$$

$\mu_{c} \approx 4.06$ is the critical chemical potential in static case

•Small fluctuations of scalar field at initial time

Gaussian white noise $\zeta(x_i, t)$:

$$
\langle \zeta(x_i,t) \rangle = 0
$$

 $\langle \zeta(x_i,t)\zeta(x_j,t')\rangle = h\delta(t-t')\delta(x_i-x_j)$

$h = 0.001$

. Kink hairs in the bulk

18

•Time evolution of kinks

GL model **AdS** boundary

•Average kink number vs. quench rate (KZ scaling relation)

 $\langle n \rangle \propto \tau_O^{-(D-d)\nu/(1+z\nu)}$ *Q*

 $(D = 1, d = 0, \nu = 1/2, z = 2)$ $\langle n \rangle = \kappa_1 \propto \tau_Q^{-1/4}$

•Beyond KZ scaling relation del Campo, 1806.10646

One dimensional transverse-field quantum Ising model

*Poisson binomial distribution function***: N-independent**

$$
\kappa_2 = \langle n^2 \rangle - \langle n \rangle^2 = \frac{2 - \sqrt{2}}{2} \kappa_1 \approx
$$

$$
\kappa_3 = \langle (n - \langle n \rangle)^3 \rangle = (1 - 3\sqrt{2} +
$$

-
-
- Bernouilli trials, at each point kink has a possibility p to form a kink, and a possibility $1-p$ not to form a kink
	- \times 0.29 κ_1
	- $+ 2/\sqrt{3}$ *k*₁ ≈ 0.033 *k*₁

.Beyond KZ scaling relation, cumulants vs. quench rate

GL model

 $\kappa_2/\kappa_1 \approx 0.312$

$\kappa_3/\kappa_1 \approx 0.023$

AdS/CFT

•Gaussian distribution in large trial number

In the limit of large trial number with fixed average probability, distribution becomes Gaussian (Central limit theorem)

$$
P(n) \approx \frac{1}{\sqrt{2\pi\kappa_2}} \exp\left[-\frac{(n-\langle n\rangle)^2}{2\kappa_2}\right]
$$

•Adiabaticity limit: P(n=0)

Holographic Domain Walls in 2+1 dim

Tian-Chi Ma, Han-Qing Shi, HQZ, Adolfo del Campo, [2406.05167](https://arxiv.org/abs/2406.05167)

- **•Actions, metric, EoMs, ansats of fields, quench profile are similar to holographic kinks;**
- **•Only difference is adding** y-direction and M_{y} gauge **field;**
- **• Numerically complicated**

•Time evolution of domain walls

•Domain wall length vs. quench rate

$$
L \propto \tau_Q^{-(D-d)\nu/(1+z\nu)},
$$
 $(D = 2,d = 1,l)$

 $\n *u* = 1/2, *z* = 2\n *u*$

•Domain wall length vs. quench rate

$$
L \propto \tau_Q^{-(D-d)\nu/(1+z\nu)},
$$
 $(D = 2,d = 1,l)$

•Domain wall length vs. quench rate

$$
L \propto \tau_Q^{-(D-d)\nu/(1+z\nu)},
$$
 $(D = 2,d = 1,l)$

• Coarsening domain wall length vs. time A.J. Bray (1994), Advances in Physics, 43:3, 357-459 the length scale *l* ∼ *t* 1/2

L ∝ *t* $-1/2$

Area *A*

- $n = A/\pi l^2$ **Number of domains:**
- **Length of domain walls:** $L \approx n \cdot 2\pi l = 2A/l$

Condensate vs time

GL model

Condensate vs time

30

Condensate vs time

Q

Summary

• We have realized the kink hairs in the bulk, whose holographic dual can be interpreted as a one-dimensional spin chain. They

However, due to the coarsening dynamics, the KZ scalings are only satisfied nearby the critical point; away from the critical

- are consistent with KZM;
- We have realized the domain wall structures holographically; point, this relation would be destroyed, and satisfy another power-law

Thank you very much!