

Black hole interiors and phase transitions

Yan Liu (刘 焱) "2024 引力与宇宙学" 专题研讨会

Based on works with 高凌龙、吕宏达、Avinash Raju

Background and motivation

 "black hole formation is a robust prediction of the general theory of gravity"

Black hole interiors

* black hole interior: mysterious, classically unobservable

horizon: causally disconnect

Black hole interiors

• black hole interior: mysterious, classically unobservable

- horizon: causally disconnect [Penrose, 1970s]
- * appearance of singularity [Penrose, 1970s]
- description of singularity [Belinsky, Khalatnikov, Lifshitz et al., 1970s]

- BKL singularity: a generic class of spacelike singularities in GR (coupled to matter) [Belinsky, Khalatnikov, Lifshitz, 1970s]
- Kasner singularity (homogeneous system) [Kasner, 1921]

$$ds^{2} = -d\tau^{2} + \tau^{2p_{1}}dx^{2} + \tau^{2p_{2}}dy^{2} + \tau^{2p_{3}}dz^{2}$$

 $p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^2 = 1$

- BKL singularity: a generic class of spacelike singularities in GR (coupled to matter) [Belinsky, Khalatnikov, Lifshitz, 1970s]
- Kasner singularity (homogeneous system)

$$ds^{2} = -d\tau^{2} + \tau^{2p_{1}}dx^{2} + \tau^{2p_{2}}dy^{2} + \tau^{2p_{3}}dz^{2}$$

 $p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^2 = 1$

quasi-Kasner spacetime (asymptotic metric)

$$ds^{2} = -d\tau^{2} + \left(\tau^{2p_{l}(\tau)}l_{i}l_{j} + \tau^{2p_{m}(\tau)}m_{i}m_{j} + \tau^{2p_{n}(\tau)}n_{i}n_{j}\right)dx^{i}dx^{j}$$

- BKL singularity: a generic class of spacelike singularities in GR (coupled to matter) [Belinsky, Khalatnik]
- Kasner singularity (homogeneous sys⁻

$$ds^{2} = -d\tau^{2} + \tau^{2p_{1}}dx^{2} + \tau^{2p_{2}}dy^{2} + \tau^{2p_{3}}dz^{2}$$

 $p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^2 = 1$

- quasi-Kasner spacetime (asymptotic metric
 - $ds^{2} = -d\tau^{2} + \left(\tau^{2p_{l}(\tau)}l_{i}l_{j} + \tau^{2p_{m}(\tau)}m_{i}m_{j} + \tau^{2p_{n}(\tau)}n_{i}n_{j}\right)dx^{i}dx^{j}$
- the billiard description: a ball in (a portion of) hyperbolic space

Motivation (1)

 For specific black holes, what are the black hole internal structures?

- Any possible connection between the physics inside and outside the horizon?
 - What happens to the singularities during the black hole phase transitions?

Recent studies: static black holes

Schwarzschild black hole

Alla,

Recent studies: static black holes

- Schwarzschild black hole
- static hairy black holes (asymptotic AdS)
- holographic superconductors
- helical black holes

1

stationary black holes

Rotating black hole

stationary black holes

- Rotating black hole
- 3D hairy rotating black holes

$$S = \int d^3x \sqrt{-g} \left(R + 2 - \partial_a \varphi \partial^a \varphi^* - m^2 \varphi \varphi^* \right)$$

$$\begin{split} ds^2 &= \frac{1}{z^2} \left(-f e^{-\chi} dt^2 + \frac{dz^2}{f} + (Ndt + dx)^2 \right) \,, \\ \varphi &= \phi(z) e^{-i\omega t + inx} \,. \end{split}$$

- BTZ black hole
- black hole solution vs star solution
- **Case 1:** real φ $n = 0, \omega = 0$
- **Case 2:** complex φ $n \neq 0$

a periodic source

less symmetry, rich interior

[Gao, YL, Lyu, 2024]

No inner horizon

- * consider $m^2 < 0$, asymptotic AdS₃
 - Real scalar

Assuming more than
one horizon
$$0 = \int_{z_h}^{z_i} \left(\frac{fe^{-\chi/2}\phi\phi'}{z}\right)' dz = \int_{z_h}^{z_i} \frac{e^{-\chi/2}}{z^3} \left(z^2 f \phi'^2 + m^2 \phi^2\right) dz$$

Complex scalar (probe limit)

$$\phi \sim \phi_h \frac{\pi \csc(c\pi)}{\Gamma(a)\Gamma(b)\Gamma(2-c)} \cos\left(\frac{\omega - n\Omega_i}{2\kappa_i}\log(\tilde{z})\right) \qquad \qquad T_{VV} \sim \frac{1}{V^2}$$

For relevant deformations, inner horizon never form

ER bridge collapse

Singularity: Kasner transition

Only for complex scalar

at most one transition

 $p_t \to p_x , \quad p_x \to p_t , \quad p_\phi \to p_\phi$

Relation of N

$$ds^{2} = \frac{1}{z^{2}} \left(-fe^{-\chi}dt^{2} + \frac{dz^{2}}{f} + (Ndt + dx)^{2} \right)$$

real & complex φ : **No transition**

complex: one transition

valid for general mass

not obvious in 5D

Comment (1)

• The low temperature solution: at any value of ϕ_0/\sqrt{J} , $M/J \rightarrow 1$

Boson star solution at zero temperature

[Stotyn, Chanona, Mann, 2014]

Dynamical formation?

Comment (2)

- More general scalar potential
- (1) effects of rotation

(2) Kasner transitions vs inversion

$$V(\varphi) = -m^2 \varphi^* \varphi + \lambda (\varphi^* \varphi)^2 + a_n e^{(\varphi^* \varphi)^n}$$

[Gao, Liu, Zhao, in progress]

Motivation (2)

 For specific black holes, what are the black hole internal structures?

- Any possible connection between the physics inside and outside the horizon?
 - What happens to the singularities during the black hole phase transitions?

Holographic 2nd order phase transition

Einstein-scalar gravity + double trace deformation (mixed bnd)

[YL, Lyu, Raju, 2021]

Holographic 2nd order phase transition

Holographic 1st order phase transition

Einstein-scalar gravity + double trace deformation (mixed bnd)

[YL, Lyu, Raju, 2021]

Holographic 1st order phase transition first order phase transition

Topological phase transitions

Holographic topological phase transition

In holographic WSM, at low temperature, the Kasner exponent is constant

oscillation of the scalar field in the top phase inside the horizon at low temperature

[Gao, YL, Lyu, 2023]

Holographic topological phase transition

In holographic NLSM, at low temperature, the Kasner exponent is (almost) constant

Probes of singularity by timelike geodesics

• the proper time au_s from the event horizon to singularity

 $\langle O \rangle \sim (\text{powers of } m) \times \exp\left[-im\tau_{\rm s} - m\ell_{\rm hor}\right] , \quad \text{for} \quad \operatorname{Im}(m) < 0 ,$

Probes of singularity by timelike geodesics

during 2nd&1st order phase transition

Order parameter: VEV of the scalar operator

Probes of singularity by timelike geodesics

during topological phase transition

Order parameter: AHE (for WSM), …

Summary

 The internal structure of 3D hairy rotating black holes: no inner horizon, ER bridge collapse (oscillation), Kasner inversion

Summary

- The internal structure of 3D hairy rotating black holes: no inner horizon, ER bridge collapse (oscillation), Kasner inversion
- The physics inside the black hole horizon is linked to the physics outside (via Euclidian gravity)
- During the 2nd order phase transition, the Kasner exponents are continuous while their derivatives w.r.t T are discontinuous
- During the 1st order phase transition, the Kasner exponents are discontinuous
- During the topological phase transition, the Kasner exponents are (almost) constant

Future work

- "relation of N" in other hairy rotating black holes?
- The black hole interiors during the black hole dynamical formation?
- evaporating black holes?
- Are the properties of singularities during the phase transition universal?
- dynamical phase transitions?
- Other probes of singularities

4

Thank you!

Thank you!

Universality

the inside of a holographic superconductor

Any connection between fields inside and outside the horizon? Any connection to thermalization?

[Hartnoll, Horowitz, Kruthoff, Santos, 2021]

Probes of singularity (I)

 For large dimension of the operator in field theory, the two point correlator is dominated by spacelike geodesics

$$G(\omega) \equiv \int_{-\infty}^{+\infty} dt e^{i\omega t} \left\langle \mathcal{O}\left(-i\frac{\beta}{2}\right) \mathcal{O}(t) \right\rangle \qquad \omega = iE$$

- Radial conserved quantity of the geodesic: E,
- In large E limit, the geodesic can approach the singularity

$$L = 2\log\frac{2}{E} + \frac{l_1}{E} + \frac{\alpha^2}{2}\frac{1}{E^2} + \frac{l_3}{E^3} + \frac{1}{2}\left(2m_T - 4\alpha\beta + 2\alpha^3\lambda_3 - 2\alpha^3\lambda_3\log 2\right)\frac{\log E}{E^3} - \frac{1}{2}\alpha^3\lambda_3\frac{\log^2 E}{E^3} + l'E^{\frac{1}{p_t}},$$

[Fidkowski, Hubeny, Kleban, Shender, 2003; Festuccia, H. Liu, 2005]