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Entanglement entropy, entanglement contour

The quantum entanglement is of great importance in characterizing
the correlation between different dof in quantum many-body

systems, and plays an important role in understanding gravity.
Calabrese and Cardy, hep-th/0405152
Amico, Fazio, Osterloh and Vedral, quant-ph/0703044

For a pure state with density matrix p, divide the system into A+B,
the entanglement entropy can be calculated by the von Neumann
entropy (EE)
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There are more general quantity to characterize the entanglement,
such as the Rényi entropy

St = Lln tr p’;
l—n

which can be interpreted as a n-replica of the EE, and contains more
complete information about the entanglement spectrum. As n goes
to 1, Rényi entropy reproduces EE.

For a 2d field theory at critical point (zero T), the EE is
Sa = (¢/3)log((L/ma)sin(wl/L)) 4+ ¢; ~ (¢/3)log(l/a),
At finite T, the EEis Sy = (¢/3) log ((F/ma) sinh(wl/3)) + ¢ .

For higher dimensional QFT, the EE is proportional to the area of
the boundary—area law+sub-leading corrections.



Entanglement and gravity--since EE also describes the lack of
information for observer in A to B, it has been used to explain the

origin of the black hole Bekenstein-Hawking entropy

Bombelli etc, PRD34, 373 (1986);
Jacobson, gr-qc/9404039

SEE — 9 oC SBH - Black hole

Especially, for the braneworld black hole, the entanglement entropy

exactly matches with the black hole area entropy
Emparan, JHEP 06, 012 (2006)




EE is also essential to solve the black hole information loss paradox

--Island prescription of Hawking radiation
Penington, 1905.08255; Almheiri, Engelhardt, Marolf, and Maxfield, 1905.08762;
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Faulkner, Lewkowycz and Maldacena, 2013; Engelhardt and Wall, 2015



Entanglement contour
Chen, Vidal, 1406.1471

Entanglement contour (EC): a local function s, (X) trying to
describe the fine structure the entanglement entropy in real space

A SAszA(x)dx
A

Explicit examples of EC: Gaussian states, CFT, partial entanglement
entropy (PEE), e.g., s ,(4.) of some subsystem of A4

s,(4,)= I s, ()



However, the bove requirements are not sufficient to uniquely
determine the PEE in general.

PEE proposal a Wen, 1902.06905, 1803.05552; Kudler-Flam, MacCormack, Ryu,

1902.04654
sA (A2) = 3 (S12 + Sa3 — S1 — Ss)
Holographically, PEE can be described by combination of extremal
surfaces the bit threads 4
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Q Wen, 1803.05552
Y-y Lin, JRS, J Zhang, 2105.09176



Rényi contour, hyperfine structure
L H Mo, Y Zhou, JRS, P Ye, 2311.01997

A natural question is to ask what is the entanglement contour for
the Rényi entropy?

We introduced a hyperfine structure for entanglement by exactly
decomposing the Rényi contour into the contributions from
particle-number cumulants in free fermion system.

S(A) —  s(7) — hi.k (1)
Tn=1 Tn=1 Tn=1
Sn(A)(Sn(A) = sn(0)(52(1) == hnise(2)(hnik (7))
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B.(n)= —= 1. (zm)kC(—k, n—l) is nonzero for even k,



Ck(j) is the density of cumulant on site j, it is a 2k-point function

k—1 <eXP(i)\Nfl)ﬁj>
(exp(iAN4)) [a=0

ﬁ. is particle number operator on site j, and NA is the particle
number operator of A. 4 is a real number.

Cr(j) = (—i0\)

)

The first nonzero term is

Ca(j) = D_i(Rifiy) — (Ri)(Ry)
Properties:
+ additivity St 1)+ 8,0 () = 5, (U )
* normalization S,k = B,(k)C,
* exchange symmetry s , (i)— S k(j)
* invariance under local unitary transformation
* post-measurement state entanglement



Entanglement spectrum reconstruction from RC

The n-th power of reduced density matrix is

T = tr(p}) = !5,

Defining a D corss D matrix as

| 1 0

a polynomial can be constructed

1) :
Pla) = Z =Y (det U,)2zP~" = det(zI — pa).

n!



Application in lattice fermion model

We consider a Chern insulator model called Qi-Wu-Zhang model
I = Zk ELH(k)éka
H(k) = (m + cosk, +cosky)o, + A(sin kyo, + sin ko)

The energy gap closes at m = £2, forming Dirac point at
ke = ky = 0and k;; = ky = 7.
The energy gap closesat m = 0, forming Dirac point at

kr = Qky =mand k, =m,ky =

The topological properties of the electronic band structure are
characterized by the Chern number.
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Distributions of RC and hyperfine RC for different energy spectrum:
k=2: dominant contribution; k>2

(trivial)gapped: ‘bowl’ shape; critical: corner vs hinge sites
Fermi surface: oscillation; topological: same as critical
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The emergence of scaling law within topological gap regions

m € (—2,0) U (0,2), strongly suggest the existence of critical
edge states and a fundamental 1/2 mode in the entanglement
spectrum, which is the most entangled and correlated mode
--boundary EPR pair.

The distribution properties of hyperfine RC highlight the different
features of a mass gap, a critical Dirac cone, and a Fermi surface,
and they reveal an universal scaling behavior in the presence of
topological edge states.



Holographic dual of Rényi contour

The AdS/CFT correspondence and the more general holographic
duality provide a novel connection between different theories, one
is a higher dimensional gravitational theory, another is a quantum
field theory without gravity on the boundary.

The key equation in the AdS/CFT correspondence is

L rds [¢0 (3?)] = ZLcpr [¢0 ()?)] = <exp _[ d4X0(3?) 0 (x)>

Important properties:

field/operator duality, strong/weak duality.

From the bulk to boundary--studying the strongly coupled systems

From the boundary to the bulk--an emergent picture of gravity



Holographic entanglement entropy

Ryu and Takayanagi 2006
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A, , is the d dimensional static minimal surface in AdS
with boundary 04 .To calculate entanglement entropy of CFT

from the bulk dual gravity. /(
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Bulk reconstruction in AdS/CFT

bulk matter fields:

using the boundary operators to construct the bulk matter fields.
Banks, Douglas, Horowitz, Martinec, th/9808016;
Hamilton, Kabat, Lifschytz, and Lowe, th/0606141.

b = [ K@l Dby
bulk local field <= boundary nonlocal operators

Entanglement wedge reconstruction

Headrick, Hubeny, Lawrence, Rangamani, 2014;
Dong, Harlow, Wall, 2016

-
_

WelA] := D[R 4].

subregion-subregion duality.

It’s more difficult to construct the bulk geometry and the
gravitational dynamics from the boundary CFT.



Emergence of AdS geometry from MERA tensor networks
Swingle, 0905.1317; 1209.3304;

Qi, 1309.6282;

Almheiri, Dong, Harlow, 1411.7041;

Pastawski, Yoshida, Harlow, Preskill, 1503.06237;

Hayden, Nezami, Qi, Thomas, Walter, Yang, 1601.01694;

Bhattacharyya, Gao, Hung, Liu, 1606.00621;

Gan and Shu, 1705.05750;

Ling, Xiao and Wu, 1907.01215




Holographic realization of RC

Consider the boundary CFT is a d+1 dim Fermi gas,

S, 1+ n "’

n

C, 6

+o0(1)

then the hyperfine RC can be simplified as

Sn ()
hn;2 (.r)

=1+ o(1),

where

Ao (@) = Bi(n) / (@) ~ (a(a) ()l

I(Ap, Ay) =2 (S(Al) —/x hl;g(m)dx>,



for Dirac fermion
(n(z)n(y)) — (A(z))(7(y))

— — Wh(@) R (Wh©)Yr@)) — W] @) () W] )b )
1 1

“2m2 (z—y)?

the dominant hyperfine structure is expressed as

1 +n Y2 B 1 1
bala) = 2T [ sy
—R+e

6 T (z —y)?
C (1+nh, 1 1
N 12 (R—$+R+$)
R—e

which gives the central charge c=1.



To find the holographic duality of the hyperfine RC, it’s convenient
to use the refined Rényi entropy

S snzan((n_l)snj

n
which is dual to the cosmic brane in AdS spacetime, and the tension

of the braneis T, =(n—1)/(4nG)
Dong, 1601.06788

Interesting, the refined Rényi entropy is equivalent to the von
Neumann entropy of a new density matrix p, = p/ /tr p/,

A 1
Sn ()OA) — _nzan(a log tr pA)

~T

= logtr p’y —no, logtr p'’s

= —1r p‘f log( p‘f} )
tr p's tr p'}
:5(9_A>
&'ﬂ




Then we obtain the refined Rényi contour

5, (x) =n2@n((”‘l)sn<x>j

n

Furthermore, using the entanglement Hamiltonian, the refined Rényi
contour can be expressed from the particle number fluctuation

pa=) alPh)(Wh| = e K4
p
Entanglement Hamiltonian: Ky = Z —In CLE)W«’?)WZ\
p
2n — KB
~(n) ai P P __ € 2
Pa = Z - ‘¢A>< A‘ ~ T 7(n)

p

Entanglement Hamiltonian: ]{';”) — nk 4 With T:l .

n



Then we obtain

)8 B )= / Ayl () — @A)

Now using the HEE, the holographic duality for Rényi entropy is just
the bulk extremal surface (RT surface) for the refined Rényi entropy.

For AdS_3 case, using the Rindler method to map the extremal
surface of subregion A to the horizon area entropy

dr?
ds® = 2rdudv + —.
S ’T’U’U—I—4T2

ds® = du*? + r**du*dv* + dv*? +

—2n2

By p=
T 12(n2 — 2) + 4n2uv + 20, 1/12(1 — n2) — 4n2uv + n4(u +v)?)

—2n?
N o
- 12(n? — 2) + 4n2uv + 21,1 /12(1 — n?) — 4nuv + n*(u + v)?)



As n increases,
c(n) decreases.

For n>1, c(n) are
outside the
entanglement
wedge of the
n=1 extremal
surface (EE),
which means
the Rényi
entanglement
wedge can
probe more
information of
the bulk
spacetime.



Conclusions and Discussions

*We derive the hyperfine structure of Rényi contour from particle
number cumulants for free fermions;

*The hyperfine Rényi contour shows many interesting features:
such as can be used to characterized the topological edge states;

*The holographic duality of the hyperfine Rényi contour, the
Rényi entanglement wedge give new tool to study the bulk
reconstruction and more refined description for subregion-
subregion duality.

*We also proposed an experiment to probe the hyperfine Rényi
contour.

*Future works: application in quantum information, more general
systems, higher dimensional holographic duality...



A main motivation of study entanglement contour is to explore the
fine structure of entanglement.

Recently we proposed a new surface growth approach for bulk
reconstruction, which also aims to probe the fine structure of
entanglement in subregions, it may connect with the entanglement
contour description.



