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TTbar deformation and new integrable models
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1 Abstract

TThar and other solvable irrelevant deformations have received considerable attention in
the past few years. In this lecture, I will first explain the importance of TTbar deformation
for the understanding of several fundamental issues in quantum field theories. These include
the S-matrix bootstrap program and UV completeness of quantum field theories. After that,
the main features of T'Tbar deformation will be discussed. Finally I will show how these
deformations can be defined in a much broader family of integrable models including lattice
models such as integrable spin chains and cold atom systems. The physical properties of

the deformed models will also be discussed.



2 Motivations

What is a QFT ?

1. Lagrangian/Hamiltonian description (perturbative)
2. Axiomatic QFT

(a) Wightman axioms (Lorentzian)
(b) Osterwalder-Schrader axioms (Euclidean)

(¢) Rigorous, but hard to do computations

3. Bootstrap: conformal bootstrap (for CFT), S-matrix bootstrap.

S-matrix bootstrap

e Proposed by W. Heisenberg in 1950’s to replace QFT;

e A dominating theory in 50s’-70s’ (Mandelstam, Chew) to understand strong interac-

tion;

Construct S-matrix by self-consistency relations;

Leads to some interesting results such as Regge theory, Veneziano amplitude, etc;
e Becomes extremely complicated. Replaced by QCD;

e A revival in recent years (inspired by conformal bootstrap)

2D and integrability

e Simpler kinematics.

e Higher conserved charges Q;

e In d > 2, S-matrix is trivial (Coleman-Mandula theorem);
e In d = 2 (Coleman-Mandula does not apply), but

1. S-matrix factorizes into 2 to 2 S-matrices;

2. Purely elastic;



Bootstrap axioms

Kinematics in 2d
E?* — p* =m?, E(0) =mcosh, p(f)=msinh6.
The S-matrix satisfies the following axioms (Zamolodchikov-Zamolodchikov 1979)
e Unitarity
SH(By — 02)Sy (02 — 01) = 7.
e Crossing symmetry
SE () = SiF (i — 0)

¢ Yang-Baxter equation

Sy (01— 92)521(01 — 03) 57" (02 — 03) = S%.(02 — 63).55" (01 — 63)55?(91 —6,).

e Can be solved in a number of important cases;

The CDD factors

e Functions satisfy axioms
O(0)P(—0) =1, O(im — 0) = O(0).
Castillejo-Dalitz-Dyson (CDD) factors (1956)

e A family of functions
d(0) = exp (iZOzS sinh(s@)) , s is odd

e Another family
N -
B, —isinh 6
P0)=|| L——-
B, + isinh 6
p
where B, are real negative, or conjugate pairs with real negative part.

Physics Question

e Multiply Sf/(#) by a CDD factor ®(6)

1. Integrability preserved — Integrable deformation;

2. IR physics not changed — Irrelevant deformation;

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

e What does it do at the Lagrangian level 7 What is the property of the new theory ?

e TThar and higher deformations !



3 Review of TTbar deformation

Definitions

e Lagrangian formalism

3>\£>\ = TT, TT = det ﬂj = T11T22 — T12T21

o S-matrix formalism

551(91, 92) —> efi)‘(PlEQ*pQEl)Szkjl(el, 92)
e Hamiltonian formalism (more detail later)

O\H = /TT(:c)da:

Classical aspects

e Free massless boson
_ 1 = 1
Ly = 0009, 0= 5(890 —10,), 0= 5(&6 +1i0,).
Deformed Lagrangian

1 / — 1
£0H£A:ﬁ< 4)\8¢8¢—l—1—1) :_ﬁ"i_ﬁNG

where

1
ﬁNG:ﬁ\/det(aO‘X'aﬁX)? X'=z, X’=y, X’=VA/2,

Some comments

1. Relation to string theory (non-locality);
2. Quantization (effective QCD string);

e Relation to 2D gravity

1. TT deformation of a QFT « Couple the QFT to 2D gravity

(3.2)

(3.3)

(3.4)



2. Deformed action
So — Sx = Serav|Guv] + Solgw, @]
where Sy[g,w, @] is action on metric g,,. First order formalism
Guw = Sap€ioel,

and
1

Sulon) = 55 [ dreren(s; - ) - )

We have
Z)\[¢] ~ /De 6% fd2xaHVaab(§Z—eZ)(5g—e?,)ZO[62; ¢]

Integrate out ej, at classical level, we obtain S[¢].

Finite volume spectrum

e Factorization formula (Zamolodchikov 2004)
(n|TT|n) = (1| Tuul) (nl Ty 1) — (0] Ty ) | Tyl
Proof based on

1. Translational invariance;

2. Conservation law 9, T" = 0.
e Expectation value of stress tensor
En(R,A) = =R(n|Tyyln),  Or€n(R,A) = —(n|Te|n)
and (for relativistic QFT)
P, = —iR(n|Tyy,n) = —iR(n|T,|n).

e Flow equation

From definition of 7T deformation
NE(R,\) = —R(n|TT|n).
We obtain flow equation

DEn(RA) = &0 (R N OnEn(RA) + %Pﬁ

For P, = 0, inviscid Burgers’ equation

En(RN) =E(R+ XE,,0)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



e Undeformed CFT spectrum
E7H(R,0) = Ey(R) =

Deformed spectrum

Comments

1. Different signs of \;

2. For other cases, solve PDE numerically.

Torus partition function

e CFT torus partition function

Z(T, 7—_) — § 627T’LRT1RP77,727TT2RE”’ T=7+ iTQ, 7= T — iTQ.

n

The TT deformed partition function

ZTT(T 7—_‘)\) _ Z eQﬂiRTlRPy;,*QﬂTQRSH(A)
)

n

o Modular invariance

Z(a7+b aT +b

=Z(7,7T byc,d € Z d—bc=1.
CT—{—d’CT—{—d) (7_77_)7 a, 0, ¢, € ) a C

Under TT deformation, not conformal invariant. However,

) (a7+b aT +b

T c7’+d’c7’+d‘/\) :ZTT(T7T|/\)

e Uniqueness.

Consider trivially solvable deformation
H — H(H, P,\), Pw— P
) is dimensionless parameter. Trivially diagonalized

H(H, P,\)|n) = H(Ey, Py, \)|n), P|n) = P,|n).

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



Define
En(N) =H(H, P\ (3.25)
and

Zdef(7'7 7—_|5\) _ Z e2m’RnRPn727r7-2R€n(5\). (326)

n

Require modular invariance

ar+b at+b A ~
Zae ,— = Zaet (1, T|A 3.27
df(c¢+d cT+d |C7’+d|2> T 71 (327)
We can fix H(H, P, 5\) uniquely to be
. 1 = =
Ea(\) = —— (\/ 1+ 27ARE, + \2m2R2P2 — 1) (3.28)
MR

where A = 2\/(7R?).

e Density of states

)= | [P (12 2]
1. In the IR limit Pt < R,
pir(E) = Ng E=3/* exp ( 207T3RE> , Cardy behavior (3.30)
2. In the UV limit Et > R,
puv(E) = Ny E~3/? exp ( %C)\ E) , Hagedorn behavior. (3.31)

Comment

1. 2d local QFT exhibit Cardy behavior
2. Hagedorn behavior is typical for strings.

3. Hagedorn temperature Sy = y/mcA/6. Theoretical temperature upper bound.



4 Higher deformations

Higher conserved currents

Integrable QFT;

e Conserved currents

0:Ts41(2,2) = 0,04 _1(2, 2), 0.Tss1 = 0:0,_1(z, 2) (4.1)
e Irrelevant operators
Xi(2,2) = (sz)lirg,’?) (Ts+1(z, NTe1(2, 7)) — 0,.1(2,2)0(7, 2’)) + derivative terms
(4.2)
where s = 1,3,---. Here s = 1 is the T'T operator.
e Deformation
%S,\ = /Xs(z,z) d*z. (4.3)
e Factorization/solvability
(n|Xs[n) = (n|T1[n)(n|Tsra|n) — (n]Os-1|n)(n|Os—1n) (4.4)
e CDD factors
O _x, & SH(B) o SH(@)eNINE (4.5)
O\ J j
where A = g, m?%.
5 Hamiltonian formalism
Bilinear deformation
e Two conserved currents
9. J!' =0, 0, J4 = 0. (5.1)
with
\71“ = (@1, J1), ;72“ = @27 J2)- (5‘2)
Conserved charges
Q= /q}(x)dx, Q2 = /(jg(a:)dx. (5.3)



e Bilinear deformation

dH)y

A /OJJ(Q?)de, Ou = —ewIi'T5 -

e Taking two conserved currents
\.71 = ‘77-1 = (H, Jf}.{), jQ = \77? — (’P, J’P)
we have Oy = TT.

Bilocal deformation

e Define

dH,
XX H
d\ X, H)

e Algebra preserving deformation.

d

[Qm Qb] = fabc Qca ﬁ

Easy to prove that
[Qa(/\)v Qb(/\)] = fabc Qc(/\)
e Integrable models : [Q,, Q] =0

[Qa(A), Qu(N)] = 0.

Equivalence of two deformations

e Take X to be bilocal operator

Xy = Z/ @1(%)@2(%2) dzidzs.
r1<T2

Using 0:¢1 = i[H, ¢:] and 0;Ga = i[H, go}, we find

(X, H| = /SR Oy(z)dr — Ji(s1)Q2 + Ja2(sr) Q1.

SL

e Boundary conditions

Qa(A) = [X, Qa(N)].

(5.4)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)



1. Infinite line
[XJJ, H] = / OJJ(I‘)diL‘,

Two deformations are equivalent.

2. Periodic boundary condition
R
[XJJ, H] = / OJJ(QT)dl‘ - J]_(O)QQ + JQ(O)Ql
0

e Flow equation
Take J!' = J}; and J}' = Jp,

(n|H|ny = E,, (n|P|n)=P,, (n|Jy|n)=PF,/R, (n|Jp|n)=—0rE,.

and
(n|[ Xy, H]In) = 0.

We find that

o Comments

1. First proposed for deforming spin chains;
2. Realized it is related to T'Tbar in 2019;

3. Applied to Bose-gas;

Deformed S-matrix

e An infinite system (QFT, non-relativistic QF'T, spin chain)
e Asymptotic two-particle state
lu, vy = a(u,u)|u < u') + a(u',u)|u’ < u) +local contributions

where the S-matrix is given by

10

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



e Deformed asymptotic state
lu, u')\ = ax(u,u)|u < u') + ax(u,u)|u’ < u)+---
From eigenvalue equation

Hylu,u')y = [h(u) + h(u)] |u, u') 5

e Taking derivatives with respect to A

d d
. H / — ! _ !
= (HyJu,w)) = [(u) + ()] < )y
e We obtain
/ /
Xlu,u'yy = %W <’y + %W < u)
Using
Xoplu < ) = [y (w)hau) + f12(u) + fra(e)]u < o),
X' < u) =[hi(u)ha(u) + f12(0) + fra(w)]|u’ < u),
we obtain
S)\(u, u/) _ 6—i>\[h1(u)hQ(u/)—hl(u/)hQ(u)]S(u’ u/>.
where
N N
1 :Zhl(uj)a Q@2 :Zhg(uj).
j=1 j=1
Comments

1. The CDD factors;

2. Derivation is universal (QFT, spin chain)

6 Deformed cold atom system

Lieb-Liniger model

11

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)



e The Lieb-Liniger model (first quantized form)

N g2 N
=1 ? 1<j
Alternatively as a non-relativistic QFT with Lagrangian (second quantized form)
1
L=3 (01010 — 019") — 0:00,0" — c 99T (6.2)
The Hamiltonian and momentum are given by
1 = [ @ [0,0)0,6'(2) + 6 (0) (0)o(0)0)] (6.3

=3 [ (#'@00l) - 0.6 (w)o(w)).

e Spectrum ( Solved by Bethe ansatz |uy) )

N
TSy u) =1, elw) =w?, plu) =u (6.4)
k#j
and
u—v—ic
S(u,v):u_v_i_ic. (6.5)
We find
N N
Ey =Y e(w),  Qaux)=> ha(u;)luy) (6.6)
j=1 j=1

Bilinear deformation

e Bilinear /bilocal deformation with J* = (g4, Ja), a = 1, 2.

d

D t= 1 [ o) — (o) () (67

e Deformed S-matrix

u—v—1c _;
S — S — = = pmiAm(wha(v)—hi(v)ha(u)] 6.8
(,0) = Sy(u,0) = (69

e Conserved charges

{Qa} ={Q0, Q1,Qa, - } (6.9)

where

Qo = N, Q= P, Q. = H. (6.10)



o [Q1Q,] «» TT, The simplest case [QyQ1] (hard rod deformation)

ho(u) =1, hy(u) = u, ho(u) = u?. (6.11)
phase shift
O(u,v) = —ilog S(u,v), £1_r>% 0(u,v) = —msgn(u — v) (6.12)
Deformed S-matrix
O\ (u,v) = —mwsgn(u —v) + X (u —v). (6.13)
The hard rod model
N N
Hyp = — 2 88_;2 + ;v(xl —xj), v(x) = { ;?’ :z: i Z? (6.14)
This deforms point particles to hard rods of length |A|.
e Deformed spectrum
O\En = NOrEN — Py(un|Jg|un) (6.15)
For Py = 0, we have 0\Eny = NOrFEN.
Comment
1. Different signs of A,
2. Discuss for free boson;
e TT deformation
ONEn = ENOrEN — Py(un|Jg|uy) (6.16)

e Deformed classical Lagrangian can be found

e Interpreted in terms of Newton-Cartan geometry

7 Deformed spin chain

Spin chain current

13



e The spin chain Hamiltonian
H=> hz) (7.1)
The Hamiltonian density /(x) is well-defined. Current density .J,(z) can be found by
0q(z) =i[H, §(x)] = =0, J,(2). (7.2)

e No momentum density operator. P =logU.

e No 7T and hard rod deformation.

Hard rod deformation

e What is a hard rod deformation for spin chain ?
e Constrained XXZ spin chain

1 L

Hy = 9 ZPt (U?Ufﬂ +ajlol, + Aafafﬂ) Py (7.3)

=1

where
Po=TT 50— 00+ 50 +on [[0 - 0t0) (7.4)

is a projection.
e No two down spins have distance smaller than t.

e Folded XXZ spin chain

L
1 z __Z - -
Hy = 4 E :(1 + 0505 5)(0110540 + 07110711) (7.5)
j=1

The S-matrix is given by
S(pr,pa) = —e P17, (7.6)
A spin chain hard rod of length 2.

e Interesting also from thermalization.

14



8 Future directions

e CDD factors and local QFTs;
e Correlation functions (form factors);

e Deformed algebra (Virasoro, Yangian);

15
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