A brief review of loop quantum black hole models

Cong Zhang

Friedrich-Alexander-Universität Erlangen-Nürnberg

In collaboration with Muxin Han, Jerzy Lewandowski, Yongge Ma,
Dongxue Qu, Shupeng Song, Jinsong Yang, Xiangdong Zhang
Based on: PRD 109, 064012; PRD 108, 104004; EPJC 83, 619; PRL 130, 101501;
PRD 105, 024069; PRD 104, 126003; PRD 102, 041502(R), and ArXiv: 2404.02796;

Motivation and background

The black holes of nature are the most perfect macroscopic objects there are in the Universe
-Subrahmanyan Chandrasekhar

- Black holes have been observed by gravitational wave and EHT; It sets the stage to probe quantum gravity;
- Spherically symmetric BH is a good candidate for QG research; It is neither as simple as cosmology nor very complicated.
- In Loop quantum gravity, our answer on quantum BH haven't form a unique picture; There are, e.g., AshtekarBojowald paradigm [Ashtekar \& Bojowald 05'], the SF qBH model [Rovelli, Harggard, Christodoulou, Speziale, Vilensky etc. 15', 16', Han, Qu, Cz $\left.{ }^{24}{ }^{\prime}\right]$ and other models by the people in the community [Ashtekar, Bojowald, Bodendorfer, Boehmer, Chiou, Giesel, Gambini, Han, Liu, Modesto, Ma, Mehdi, Olmedo, Pullin, Singh, Vandersloot, Yang, Zhang and so on]

Classical theories

Region I is a spacetime in its own right. The homogenous Cauchy slice has topology $\mathbb{R} \times \mathrm{S}^{2}$:

- Standard Schwarzschild interior \square EOM + general metric: $\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\frac{p_{b}^{2}}{\left|p_{c}\right| L_{0}^{2}} \mathrm{~d} x^{2}+\left|p_{c}\right| \mathrm{d} \Omega^{2}$
[Ashtekar, Olmedo \& Singh 19', Zhang \&CZ, 19']

This fact motives us to do (polymer) quantization on the surface $\mathbb{R} \times S^{2}$ with symmetry $\mathbb{T} \times \mathrm{SO}(3)$

- Leads to a system with finite D.O.F,
- However, the exterior need further assumption.

Classical theories

In the entire spacetime, the Cauchy surface have only the $\mathrm{SO}(3)$ symmetry

- Schwarzschild solution \Longleftarrow E.O.M + general metric

$$
\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\frac{\left(E^{b}\right)^{2}}{E^{c}}\left(\mathrm{~d} x+N^{x} \mathrm{~d} t\right)^{2}+E^{c} \mathrm{~d} \Omega^{2}
$$

[Gambini, Olmedo \& Pullin, 2015]

We are motived to do (polymer) quantization on the surface
$\mathbb{R} \times S^{2}$ with symmetry $\mathrm{SO}(3)$

- The entire spacetime is obtained,
- However, it leads to a system with infinity D.O.F.

Classical theories

In the entire spacetime, the Cauchy surface have only the $\mathrm{SO}(3)$ symmetry

- Schwarzschild solution \Longleftarrow E.O.M + general metric

$$
\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\frac{\left(E^{b}\right)^{2}}{E^{c}}\left(\mathrm{~d} x+N^{x} \mathrm{~d} t\right)^{2}+E^{c} \mathrm{~d} \Omega^{2}
$$

[Gambini, Olmedo \& Pullin, 2015]

We are motived to do (polymer) quantization on the surface
$\mathbb{R} \times S^{2}$ with symmetry $\mathrm{SO}(3)$

- The entire spacetime is obtained,
- However, it leads to a system with infinity D.O.F.

It isn't guaranteed that the two quantum theories are the same even though their classical correspondences do so.

Quantum theories

	$\mathbb{R} \times \mathrm{S}^{2}$ with symmetry $\mathbb{T} \times \mathrm{SO}(3):$	$\mathbb{R} \times \mathrm{S}^{2}$ with symmetry $\operatorname{SO}(3):$
Graph:	a vertex v	1-D lattice
Hilbert space basis:	$\left\|p_{b}, p_{c}\right\rangle$	\cdots
Classical correspondence:	$E_{i}^{a} \tau \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{2} \sin \theta \partial_{\theta}-\frac{p_{b}}{L_{0}} \tau_{1} \partial_{\phi}$	$E_{i j}$

Quantum theories

	$\mathbb{R} \times S^{2}$ with symmetry $\mathbb{T} \times \mathrm{SO}(3)$:	$\mathbb{R} \times S^{2}$ with symmetry $\mathrm{SO}(3)$:
Graph:	a vertex v	1-D lattice
Hilbert space basis:	$\left\|p_{b}, p_{c}\right\rangle$	$\left\|E^{b}\left(v_{1}\right), E^{c}\left(v_{1}\right)\right\rangle \otimes\left\|E^{b}\left(v_{2}\right), E^{v}\left(v_{2}\right)\right\rangle \otimes \cdots \otimes\left\|E^{b}\left(v_{n}\right), E^{c}\left(v_{n}\right)\right\rangle$
Classical correspondence:	$E_{i}^{a} \tau^{i} \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{2} \sin \theta \partial_{\theta}-\frac{p_{b}}{L_{0}} \tau_{1} \partial_{\phi}$	$E_{j}^{a} \tau^{j} \frac{\partial}{\partial \sigma^{a}}=E^{c}(x) \sin (\theta) \tau_{1} \partial_{x}+E^{b}(x) \tau_{2} \sin (\theta) \partial_{\theta}+E^{b}(x) \tau_{3} \partial_{\varphi}$
"Holonomy" operator	$\widehat{e^{i \lambda b}}\left\|p_{b}, p_{c}\right\rangle=\left\|p_{b}+\lambda, p_{c}\right\rangle, \widehat{e^{i \lambda c}}\left\|p_{b}, p_{c}\right\rangle=\left\|p_{b}, p_{c}+\lambda\right\rangle$	$\begin{aligned} & \widehat{i(v) K_{b}(v)}\left\|E^{b}(v), E^{c}(v)\right\rangle \\ & e^{i \lambda(v) K_{c}(v)}\left\|E^{b}(v), E^{c}(v)+\lambda(v)\right\rangle \\ &=\left\|E^{b}(v), E^{c}(v)+\lambda(v)\right\rangle, \end{aligned}$

In contract to the Schordinger quantization, we have no differential operators like $\hat{b}, \hat{c}, \hat{K}_{b}(v), \hat{K}_{c}(v)$. However, the Hamiltonian involves the variables $b, c, K_{b}(v), K_{c}(v)$. We thus have to regularize them to be operators.

- Regularization leads to difference operator as the Hamiltonian, key to singularity resolution;

$$
-i \frac{\partial}{\partial t} \psi=\hat{H} \psi, \quad \hat{H}=\sqrt{p} \hat{x} \sqrt{\hat{p}}
$$

Quantum theories

	$\mathbb{R} \times \mathrm{S}^{2}$ with symmetry $\mathbb{T} \times \mathrm{SO}(3)$:	$\mathbb{R} \times S^{2}$ with symmetry $\mathrm{SO}(3)$:
Graph:	a vertex v	1-D lattice
Hilbert space basis:	$\left\|p_{b}, p_{c}\right\rangle$	
Classical correspondence:	$E_{i}^{a} \tau^{i} \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{2} \sin \theta \partial_{\theta}-\frac{p_{b}}{L_{0}} \tau_{1} \partial_{\phi}$	$E_{j}^{a} \tau^{j} \frac{\partial}{\partial \sigma^{a}}=E^{c}(x) \sin (\theta) \tau_{1} \partial_{x}+E^{b}(x) \tau_{2} \sin (\theta) \partial_{\theta}+E^{b}(x) \tau_{3} \partial_{\varphi}$
"Holonomy" operator	$\widehat{e^{i \lambda b}}\left\|p_{b}, p_{c}\right\rangle=\left\|p_{b}+\lambda, p_{c}\right\rangle, \widehat{e^{i \lambda c}}\left\|p_{b}, p_{c}\right\rangle=\left\|p_{b}, p_{c}+\lambda\right\rangle$	$\begin{aligned} \widehat{\overline{i \lambda(v) K_{b}(v)}}\left\|E^{b}(v), E^{c}(v)\right\rangle & =\left\|E^{b}(v)+\lambda(v), E^{c}(v)\right\rangle, \\ e^{i \lambda(v) K_{c}(v)}\left\|E^{b}(v), E^{c}(v)\right\rangle & =\left\|E^{b}(v), E^{c}(v)+\lambda(v)\right\rangle \end{aligned}$

In contract to the Schordinger quantization, we have no differential operators like $\hat{b}, \hat{c}, \hat{K}_{b}(v), \hat{K}_{c}(v)$. However, the Hamiltonian involves the variables $b, c, K_{b}(v), K_{c}(v)$. We thus have to regularize them to be operators.

- Regularization leads to difference operator as the Hamiltonian, key to singularity resolution;
- Causes the ambiguities in LQBH.

Quantum theories

The quantum dynamics of the homogeneous model:

$$
\left.H[V]=-E_{i}^{a} E_{j}^{b}\left[\epsilon^{i j}{ }_{k} F_{a b}^{k}-2\left(1+\gamma^{2}\right) K_{[a}^{i} K_{[a}^{i}\right)\right]=2 p_{b} b c p_{c}+p_{b}^{2} b^{2}+\gamma^{2} p_{b}^{2}
$$

Regularization gives [Ashtekar, Bojowald 05', CZ, Ma, Song, Zhang 21']

$$
H[V]^{\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)}=2 p_{b} \frac{\sin \left(\tilde{\delta}_{b} b\right)}{\tilde{\delta}_{b}} p_{c} \frac{\sin \left(\tilde{\delta}_{c} c\right)}{\tilde{\delta}_{c}}+p_{b}^{2} \frac{\sin ^{2}\left(\tilde{\delta}_{b} b\right)}{\tilde{\delta}_{b}^{2}}+\gamma^{2} p_{b}^{2}
$$

Classically, $H[V]=\lim _{\tilde{\delta}_{b}, \tilde{\delta}_{c} \rightarrow 0} H[V]^{\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)}$ but in quantum theory, $\widehat{H[V]}=\lim _{\tilde{\delta}_{b}, \tilde{\delta}_{c} \rightarrow \delta_{b}, \delta_{c}} \widehat{H[V]}\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)$

Ambiguities arise due to various choices of δ_{b}, δ_{c} :

- μ_{0}-scheme, constant δ_{b}, δ_{c}; [Boehmer VandersIhoot 07', Chiou 08']
- $\bar{\mu}$-scheme, δ_{b}, δ_{c} being phase space function; [Chiou 08']
- New scheme, δ_{b}, δ_{c} being function of dynamical trajectories. [Corichi, Singh 16', Ashtekar, Olmedo Singh 18']

Quantum theories

Some results:

- Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer Vanderslhoot 07', Chiou 08', Corichi, Singh 16', Ashtekar, Olmedo Singh 18']
- Quantum dynamics: discreteness of BH mass at the dynamical level; [CZ, Ma, Song, Zhang 20' \& 21']

Quantum theories

Some results:

- Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer Vanderslhoot 07', Chiou 08', Corichi, Singh 16', Ashtekar, Olmedo Singh 18']
- Quantum dynamics: discreteness of BH mass at the dynamical level; [CZ, Ma, Song, Zhang 20^{\prime} \& $\left.21^{\prime}\right]$

Constraint equation: $\widehat{H[V]}=0$:

- Only for countably many values $m_{(n)}$, one can obtain solutions;
- The minimal value $m_{(0)}$ is not vanishing.

Quantum theories

Some results:

- Effective dynamics: singularity resolution, BH-WH transition, etc. [Boehmer VandersIhoot 07', Chiou 08', Corichi, Singh 16', Ashtekar, Olmedo Singh 18']
- Quantum dynamics: discreteness of BH mass at the dynamical levє

Constraint equation: $\widehat{H[V]}$

- Only for countably many v
- The minimal value $m_{(0)}$ is I

Not for $\bar{\mu}$ scheme!

Quantum theories

The quantum dynamics of the non-homogeneous model:

$$
C=\frac{-1}{\left|E^{b}\right| \sqrt{\left|E^{c}\right|}}\left(8 E^{c} E^{b} K_{c} K_{b}+2 E^{b 2} K_{b}^{2}+2 E^{b 2}\right)-\frac{E^{c, 2}}{2\left|E^{b}\right| \sqrt{\left|E^{c}\right|}}+\left(\frac{2 E^{c} E^{c \prime}}{\left|E^{b}\right| \sqrt{\left|E^{c}\right|}}\right)^{\prime}
$$

$\mathscr{V}=E^{b} K_{b}^{\prime}-E^{c \prime} K_{c}$
$H_{T}=\int \mathrm{d} x\left(N(x) C(x)+N^{x}(x) \mathscr{T}(c)\right)$
$\bar{\mu}$-scheme is chosen to quantize the Hamiltonian constraint. However, there still are ambiguities caused by different approached to deal with the constraint algebra:

- Gambini-Olmedo-Pullin model: choose phase space dependent lapse function and shift vector to modify the constraint algebra to get a "true" Lie algebra; [Gambini, Olmedo, Pullin 14' \& 20]
- Kelly-Santacruz-Wilson-Ewing model: Introduce the Areal gauge to do gauge fixing; [Kelly, Santacruz, Wilson-Ewing 20'\&22', see Giesel, Li Singhm, Weigl 21' for further discussion on gauge fixing]
- Han-Liu model: consider the phase-space reduce quantization where the constraints are solve at the classical level. [Han, Liu 20', CZ 21', see, e.g., Giesel, Tambornino, Thiemann 09' for phase-space reduced quantization]

Some results in the Han-Liu model: [cz 21]

- The quantum dynamics is studied by path integral formulation,
- The effective dynamics is coincide with the heuristic one where one just replaces K_{a}, K_{b} in the Hamiltonian by sine functions and solve the Hamiton's equations,
- For small BH mass, the effective dynamics is different from the heuristics one.

The spacetime ends up in a Nariai spacetime $\mathrm{ds}_{2} \times \mathrm{S}_{2}$

FIG. 1. Solutions to (6.20), (6.22), (6.23), and (6.24). The initial data are chosen such that $\tilde{\tilde{w}}\left(y_{0}\right)=6 \pi F_{0} y_{0}, \tilde{\underline{b}}\left(y_{0}\right)=-\frac{1}{6 \pi y \mathrm{y}}$,
$\tilde{\tilde{\xi}}\left(y_{0}\right)=\left(\frac{3}{2} \sqrt{\left.F_{0} y_{0}\right)^{2 / 3}, \tilde{\tilde{c}}\left(y_{0}\right)=\frac{3 F_{0}}{2} \text {, and } \underline{\underline{\xi}}^{\prime}\left(y_{0}\right)=\frac{2}{3}\left(\frac{3}{2} \sqrt{F_{0}} y_{0}\right)^{-1 / 3} \text { with } y_{0}=10^{5} \ell_{p} \text { and } F_{0}=10^{4} \ell_{p} \text {. The initial data are choose by }}\right.$, $\tilde{\tilde{\xi}}\left(y_{0}\right)=\left(\frac{3}{2} \sqrt{F_{0}} y_{0}\right)^{2 / 3}, \underline{\underline{\underline{c}}}\left(y_{0}\right)=\frac{3 F_{0}}{2}$, and $\tilde{\underline{\tilde{L}}}_{\underline{\prime}}\left(y_{0}\right)=\frac{2}{3}\left(\frac{3}{2} \sqrt{F_{0}} y_{0}\right)^{-1 / 3}$ with $y_{0}=10^{5} \ell_{p}$ and $F_{0}=10^{4} \ell_{p}$. The initial data are choose by
considering the Schwarzschild solution with $2 G M=F_{0}$ in Lemâtre coordinate at $x-t=y_{0}$. The parameters are set to be $\Delta=0.1$ and considering th
$\beta=0.2375$.

Matter collapsing in LQG

Consider LQC dust to determine the exterior spacetime by junction condition. [Lewandowski, Ma, Yang, cz^{23} ³]

Gravity coupled to homogeneous pressureless dust
$\mathrm{d} s_{\text {APS }}^{2}=-\mathrm{d} \tau^{2}+a(\tau)\left(\mathrm{d} \tilde{r}^{2}+\tilde{r}^{2} \mathrm{~d} \Omega^{2}\right)$
Dynamics: $\mathbb{H}^{2}=\frac{8 \pi G}{3} \rho\left(1-\frac{\rho}{\rho_{c}}\right), \partial_{\tau}\left(\rho a^{3}\right)=0$
τ

Matter collapsing in LQG

[Lewandowski, Ma, Yang, CZ 22']

$$
\mathrm{d} s_{\mathrm{MS}}^{2}=-\left(1-\frac{2 G M}{r}+\frac{\alpha G^{2} M^{2}}{r^{4}}\right) \mathrm{d} t^{2}+\left(1-\frac{2 G M}{r}+\frac{\alpha G^{2} M^{2}}{r^{4}}\right)^{-1} \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega^{2}, \quad \alpha=16 \sqrt{3} \pi \gamma^{3} \ell_{p}^{2}
$$

The result is the same as the one given by Kelly, Santacruz, Wilson-Ewing 20' but from loop quantization approach

Observing effect of LQBH

FIG. 6. The observational appearances of the thin disk near the BHs with the three different profiles. In each row, the first two panels show the emission intensity I_{em} / I_{0} and observational intensity I_{obs} / I_{0}, normalized to the maximum value I_{0}, of a thin disk near the quantum-corrected BH (blue) compared to those of the Schwarzschild BH (red), and the third panel depicts the density plot of $I_{\text {obs }} / I_{0}$ of a thin disk near the quantum-corrected BH. The parameters are $R_{s}=2, \gamma=1$ and $\Delta=0.1$.

Observing effect of LQBH

[CZ, Ma, Yang 23']

A new model

While the spacetime offers distinct advantages, it is not without debates: The existence of Cauchy horizon implies that the spacetime could be unstable under perturbation [Cao, Li et.al. 23' and 24', Shao, CZ, et.al. (2023)]

A new model

In a new work, we compute the SF transition amplitude in the B-Region, and study the tunneling of geometry in SF model.
$\operatorname{det}\left(e_{+}\right)=-\operatorname{det}\left(e_{-}\right)$, tunneling between opposite orientations [ArXiv: 2404.02796]

Summary

We briefly review the loop quantum BH modes:

- The first type is constructed in virtue of the homogeneity of Schwarzschild interior;
- The second type considers the interior and exterior as a whole and does quantization;
- The third type considers matter collapsing.

In these models, we have some exciting results, like BH-WH transition, discrete mass spectrum, Nariai limit of BH evolution etc. However, our answer on loop quantum BH hasn't formed a unique picture.

We come up with an observable effects to test quantum BH .

Thank you for your attention!

