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Introduction to basic ideas



Equation

q(x) = x° — bax* 4+ 72® + 52 — 21w 4 7



Equation

q(x) = x° — bax* 4+ 72® + 52 — 21w 4 7

Function
0 7 €T 3
F :__6 5 23 3 2 <
(@) =15 — 62"+ 5o +327 -5+ 7



Equation

q(x) = 2° — 5a* + 72> + 522 — 21 + 7

Function

336

7 3
F($)21—5—6$5—|—6$3—{—3m2—f—3—|—?



Questions
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equation have ?
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Questions

How many
solutions does the
equation have ?

Compute the
sum of the
function over all
solutions ?

F = Z F(x)

sol g(x)=0
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Questions

How many
solutions does the
equation have ?

Compute the
sum of the
function over all
solutions ?

Equation

q(x) = 2° — 5a* + 72> + 522 — 21 + 7

Function
o 7 x 3
F(z) == —62° + —2° + 327 — — + =
(r) = 15 — 62" + Ga7 4827 — o 4 ¢
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Computational algebraic Geometry

\

Although the questions we ask are
somewhat trivial to solve for a single
variable. They become highly non-trivial in
the multi-variable cases and are among
the main themes of modern
computational algebraic geometry.

/




Numerical Method

Solution

1. By fundamental theorem of algebra, there are 5 solutions

2. Solve the equation numerically (up to 25 digits)

r1 = —1.428817701781382219822436
xo = 0.3819660112501051517954132

r3 = 2.618033988749894848204587

xq4 = 1.714408850890691109911218 — 1.399984900087945731206127%

x5 = 1.714408850890691109911218 4 1.399984900087945731206127%



Numerical Method

Solution

1. By fundamental theorem of algebra, there are 5 solutions

2. Solve the equation numerically (up to 25 digits)

F(x1) = 39.5573572063554668510040

F(xzs) = 0.853322962757606348443172

F(zx3) = —674.760282669717313308150

F(z4) = 299.037255462756332508564 — 107.8373055698453223160121

F(z5) = 299.037255462756332508564 + 107.837305569845322316012:



Numerical Method

Solution

1. By fundamental theorem of algebra, there are 5 solutions

2. Solve the equation numerically (up to 25 digits)

F(x1) = 39.5573572063554668510040

F(xzs) = 0.853322962757606348443172

F(zx3) = —674.760282669717313308150

F(z4) = 299.037255462756332508564 — 107.8373055698453223160121

F(z5) = 299.037255462756332508564 + 107.837305569845322316012:

F(x1) + - + F(z5) = —36.27509157509157509158

Rational number!
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Analytical Method

* Linear space spanned by

e1=2x, ey=2x", e3=a°, es41=x, e5=1
« Divide F(z) by g(z), find the remainder
F(x) = a(z)q(x) + r(z)

r(x) = —%LEA + gxg + @xz — @x + 842

D 2 15 195 21




Analytical Method

+ Linear space spanned by
e1 =at ey =2° e3=2% es=x, e5=1
« Divide F(z) by g(z), find the remainder
F(z) = a(x)q(z) + r(z)

144 , 81 , 491 , 23311 842
A R E T I Th

« Construct a matrix of the remainder in the linear space

r(z)e; = ai(z)q(x) + ri(x) ri(z) = M;j;e;

This matrix is called the companion matrix of the function



Analytical Method
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Analytical Method
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TTMF

2730

1910212 801854
1365 195
43347 203171

65 105
1699 292093
6 390
_ 207 703
2 3
_ 144 81
5 2
99031

__ 4688677 303429
390 65
— 5222 L1803
19719 1449
10 2
_ 59204 1008
105 5
23311 842
195 21

F(xy)+ -+ F(xs)

/




Analytical Method

_ 1910212 801854 _ 24539 4688677 303429
1365 195 13 390 65
43347 203171 8341 11893
65 105 15 5222 6
1699 292093 9913 19719 1449
[‘/i F p— 6 390 210 10 2
207 703 4769 59204 1008
2 3 195 105 5
\ 1w 81 491 23311 842 )
5 2 15 195 21
99031
TrMp = — — (216’1)—|— —I—F(ZB5)
2730

Remarks

1. Theresultis exact, no need to solve equations

2. ltis clear that the final result should be a rational number.
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Notions of algebraic geometry

Polynomial ring C|[z]

All polynomials in
with complex coefficients

Quotient ring

A finite dimensional
linear space Qg = Clz]/I,

ideal Iq — <Q(x)>

All polynomials of the
form a(z)q(z)

Standard basis

All monomials that cannot
be divided by LT[g(z)]



Notions of algebraic geometry

Polynomial ring C[z] Ideal I, = (¢(z))

All polynomials in All polynomials of the
with complex coefficients form a(z)q(x)

Quotient ring Standard basis

A finite dimensional All monomials that cannot
linear space Qg = Clz]/I, be divided by LT[g(z)]
Key results from AG

* Polynomial £'(z) — MFis mapped to a numerical matrix
« Dimension of Q, = number of solutions of ¢(x) =0
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 Equation ¢(x) =0

* Function of one variable
F(z)
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 Equation ¢(x) =0

* Function of one variable
F(z)

* Number of solutions of
q(x) =0 (Trivial)




& Baby problem

L $

Equation ¢(z) =0

Function of one variable
F(x)

Number of solutions of

g(x) =0 (Trivial)

Calculate the sum

>, Fl)

sol q(x)=0

/l\ Real problem

Bethe ansatz equations

Function of rapidities

F(u17u27"' 7uN)

Number of solutions of
Bethe ansatz equations

( Highly non-trivial !)

Calculate the sum

Z F(ui, - ,un)

sol BAE
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Polynomial ring

C[Ul," ’ JU'N]

All polynomials in

{’UJ1,'“ ,’UJN}

Algebraic
Geometry



Polynomial ring

C[Ul,"' ,'U;N]

All polynomials in

{Ul,"' ,’U;N}

Algebraic
Geometry

Generated by Bethe
ansatz equations

I :<B17"' aBn>

— {P(ul, L un)p = ia’iBi}
=1

|deal of BAE




Polynomial ring Quotient ring

Clug, -+ ,un] Qp = Clug,--- ,un]/Ip

All polynomials in

A finite dimensional

{u,--- ,un} linear space

Algebraic
Geometry

Generated by Bethe
ansatz equations

I =(By, -+ ,B,)

— {P(ul, L un)p = ia’iBi}
=1

|deal of BAE




C[Ul,"',UN] QB:(C[Ul,"' ,UN]/IB

All polynomials in _— —

A finite dimensional

{u,--- ,un} linear space

Generated by Bethe

ansatz equations number of solutions of

Bi=---=B,=0
IB :<B17"' 7Bn>
n equals dim Qg

_ {P(uh L un)|p = ZaiB"}
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BAE = gq(x) = 12" —22° + 7 =0

“Remainder” of polynomials “divided” by BAE is well-defined

All remainders in the linear space Spang(2?, z,1)
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Multi variable
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D |ffe rences More (variables) is different !

Single variable
BAE = gq(x) = 12" —22° + 7 =0

“Remainder” of polynomials “divided” by BAE is well-defined

All remainders in the linear space Spang(2?, z,1)

Multi variable
fi=y*—1 fo=axy—1 F(z,y) = 2%y + 2y* + ¢
Weseethat F(x,y)=(x+1)f1+xfo+ 22+1)
Flz,y)=fi+t(@+y) o+ (z+y+1)

The remainder is not unique'!
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|deals can be generated by different basis
I =(B1, -+ ,Bn) = (G, ,Gy)

The Groebner basis : remainders are
well-defined for this basis !
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Groebner Basis

|deals can be generated by different basis
Ip = <B1a"' an> — <G1a"' 7G8>

The Groebner basis : remainders are
well-defined for this basis !

Compute Groebner Basis

lgj‘ Pen & Paper * Mathematica ~ SINGULAR

For very simple cases, For slightly more For the Groebner basis
we can compute it by complicated cases, of BAE, we need more
hand using known use standard efficient package like

algorithms algebraic software SINGULAR



Groebner Basis

It is important to have

|deals can be generated by different basis
brilliant students !

IB — <B1;"' 7Bn> :<G1a"' 7Gs>

The Groebner basis : remainders are
well-defined for this basis !

——W. Groebner

Compute Groebner Basis

lzj‘ Pen & Paper Mathematica SINGULAR <

"

For very simple cases, For slightly more For the Groebner basis
we can compute it by complicated cases, of BAE, we need more
hand using known use standard efficient package like

algorithms algebraic software SINGULAR
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Quotient ring

Standard Basis

All monomials that cannot be
divided by LT[G,L-] ,
i=1,---,5

Bruno Buchberger



Quotient ring

Standard Basis

All monomials that cannot be
divided by LT[G,L-] ,
1=1,---.,8

Bruno Buchberger

Simple Example

fi=y*—1 fa=zy—1
(flaf2) — <G17G2>
Gi=y"—1 Ga=a2—y

Choose theorder, = > y
we have

LT[G,] = ¢*
LT[GQ] =X

The basis of Clx,y]/{f1, f2)
is given by {y, 1}

Indeed, easy to see we
have 2 solutions



Properties Important result

Mp, +p, = Mp, = Mp,

Mpl.p2=Mpl-Mp2 ZP(S):TI'MP

sol

Mp, /p, = Mp, - M;;

Companion [kkacEii. Zakakm
Matrlx Expand in terms of basis r;(s) = ZMjk ek
k=1

The matrix (Mp);; = M; is called the companion matrix of P(s1,-:- ,sk)






Fi=z%’+32zy+1 F=y>+y>-2
3

>y
?—I-?—l—él:cy(a’:—l—y)—l—Zx—l—l

P(z,y) =



Fi=z%’+32zy+1 F=y>+y>-2
3

3y
§+7+4xy(x—l—y)—l—2x—l—1

P(z,y) =

Numerical approach

« The equations F1 = F2 = 0 has 12 solutions, solve numerically

* Plug each solutionto P(z,y), each term is irrational

104
« Takethesum P = Z P(x,y) ~ — Rational number !

12 sol
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Analytical approach

1 Groebner basis of the system (Fi, F2) = (G1,G2)
Gy =3zy* +3zy+y+22t +1
Go =y’ +y*> -2



Analytical approach

1 Groebner basis of the system (Fi, F2) = (G1,G2)
Gy =3zy* +3zy+y+22t +1
Go=y’+y° —2

2 Standard basis of quotient ring : all monomials that cannot be
divided by z? and y3, 12 terms in total

3,2 3
{61:£Cy,,62:$y"',€11:y,€12:1}



Analytical approach

1 Groebner basis of the system (Fi, F2) = (G1,G2)
Gy =3zy* +3zy+y+22t +1
Go=y’+y° —2

Standard basis of quotient ring : all monomials that cannot be
2 divided by z? and y3, 12 terms in total
{er1 =2y?, ,ea=a"y -+, e11 =y, e12 = 1}
3 Compute the companion matrix
P(z,y)er = a1 Gy +ay Go + Ry (z,y)  Ria,y) = i (Mp),; €;
=1
(MP)U:(?—;“'?O,—Z) J



48

—27
252
—-168
168
—168
168

14
0
0

—54
54
—-21
336
84
0
0
0
168
0
14
0

—14

0

—511

12
—54
54

—336

336
84
336
0
0

504
—504
—210
—504

-7
0
48
6
—27
252
—168
168

The full matrix takes the following form

—420

0

—714

0
—-511
-7
—54
54
—-21
336
84

0

—1008

—420
0
—14
0

—511

12
—54
54

—336

336
84

—168

—42
0
0
0

—84

0
-7

0
48

6
—6

0
—210
—42

—168

0
—84
0
-7
-7
—12
54
0

—84

—210

—168




The full matrix takes the following form

48

—27
252
—-168
168
—168
168

14

—54
54
—-21
336

84

168

14

12 —504 0 —14 504
—54 -7 —511 0 —504
54 0 -7 —511 —210
—336 48 —54 12 —504
336 6 54 —54 -7
84 27 -21 54 0
336 252 336 —336 48
0 —168 84 336 6
0 168 0 84 —-27
0 —168 0 336 252
0 168 0 0 —168
14 0 168 0 168

104
TI‘MPI%

—420
0
—714
0
—-511
-7
—54
54
—-21
336
84
0

—1008
—420
0
—14
0
—511
12
—54
54
—336
336
84

—168
—42
0
0
0
—84
0
-7
0
48
6
—6

0
—210
—42
—168
0
—84
0
-7
-7
—12
54
0

—84
0
—210
0
—168
0
—14
0
-7
12
—12
54

\




The full matrix takes the following form

48 —54 12 —504 0 —14 504 —420 —1008 —168 0 —84
/ 6 54 —54 -7 —511 0 —504 0 —420 —42 —210 0 \

—27 —21 54 0 -7 —511 —210 —714 0 0 —42 —210
252 336 —336 48 —54 12 —504 0 —14 0 —168 0

1 —168 84 336 6 54 —54 -7 —511 0 0 0 —168

M - 168 0 84 —-27 -21 54 0 -7 —-511 —84 —84 0
P — 42 —168 0 336 252 336 —336 48 —54 12 0 0 —14
168 0 0 —168 84 336 6 54 —54 -7 -7 0

0 168 0 168 0 84 —-27 —-21 54 0 -7 -7

14 0 0 —168 0 336 252 336 —336 48 —12 12

0 14 0 168 0 0 —168 84 336 6 54 —12

0 0 14 0 168 0 168 0 84 —6 0 54

TI‘MP = 1—(;4

Comments

* No need to solve any equations
The final result is rational number
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